Characteristics of Biogas Production Activity and Microbial Community during Sub-Moderate Temperature Anaerobic Digestion of Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Inoculum
2.2. Anaerobic Fixed-Bed Reactors
2.3. Experimental Procedure
2.4. Sampling
2.5. Microbial Analysis
2.5.1. High-Throughput Sequencing
2.5.2. Assessment of Microbial Biodiversity with Hill Number
2.5.3. Quantitative Real-Time PCR (Q-PCR) of Methanogens
2.6. Analysis of Volatile Fatty Acids (VFAs), CH4, and COD
2.7. Statistical Methods
3. Results and Discussion
3.1. Effect of Temperature and OLR on Biogas Production
3.2. Effect of Temperature and OLR on COD Removal and VFA Accumulation
3.3. Temperature Adaptation Strategy for the Anaerobic Digester Employed in Wastewater Treatment
- (1)
- The assumed average temperature throughout the year was 15 °C;
- (2)
- The digester has a volumetric capacity of 1000 m3 (height-to-diameter ratio of 9:4, consistent with the reactor in this study), making it suitable for engineering applications, and assuming that the operation process of this study was used;
- (3)
- The reactor was assumed to be insulated with the common material rock wool, for which the heat conductivity coefficient is 0.038 W/(m·K) [38] and the insulation thickness of engineering is 150 mm;
- (4)
- Heat loss = a × A × ∆T/∆X, where a is the heat conductivity coefficient, A is the bioreactor area, ∆T is the difference between fermentation and ambient temperature, and ∆X is the insulation thickness of the insulation material;
- (5)
- The heat requirement for the feedstock was determined by utilizing the daily water inflow; the temperature differential; and the specific heat capacity of wastewater, which was assumed to be 4200 J/kg·K;
- (6)
- A heat efficiency of 65% for the hot-water boiler was used to heat the reactors [39];
- (7)
- The volumetric biogas production rate was derived from the daily biogas production and the calculated volume of the test reactor at the specific organic loading rate (OLR) employed in this study;
- (8)
- The calorific value of the biogas was approximately 21 MJ/m3 [40].
3.4. Effect of Temperature and OLR on Microbial Community Diversity
3.5. Effects of Temperature and OLR on Community Composition and Ecological Function
3.5.1. Bacterial Community
3.5.2. Archaeal Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angenent, L.T.; Karim, K.; Al Dahhan, M.H.; Wrenn, B.A.; Domíguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004, 22, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gueiza, M.S.; Vila, J.J.; Mata-Alvarez, J.; Chimenos, J.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Kovalovszki, A.; Treu, L.; Ellegaard, L.; Luo, G.; Angelidaki, I. Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion. Appl. Energy 2020, 263, 114646. [Google Scholar] [CrossRef]
- De Vrieze, J.D.; Saunders, A.M.; He, Y.; Fang, J.; Nielsen, P.H.; Verstraete, W.; Boon, N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015, 75, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Pap, B.; Györkei, Á.; Boboescu, I.Z.; Nagy, I.K.; Bíró, T.; Kondorosi, É.; Maróti, G. Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation. Bioresour. Technol. 2015, 177, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Duan, C.; Yu, J.; Dong, W.; Wang, H. Response of vfas and microbial interspecific interaction to primary sludge fermentation temperature. J. Clean. Prod. 2021, 322, 129081. [Google Scholar] [CrossRef]
- Zi-Yan, L.; Daisuke, I.; Michihiko, I. Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: A review. J. Water Process Eng. 2023, 52, 103506. [Google Scholar] [CrossRef]
- Robles, A.; Ruano, M.V.; Ribes, J.; Ferrer, J. Performance of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system at mesophilic and psychrophilic conditions. Sep. Purif. Technol. 2013, 104, 290–296. [Google Scholar] [CrossRef]
- Kamyab, B.; Zilouei, H.; Rahmanian, B. Investigation of the effect of hydraulic retention time on anaerobic digestion of potato leachate in two-stage mixed-uasb system. Biomass Bioenergy 2019, 130, 105383. [Google Scholar] [CrossRef]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef]
- Liu, A.; Chou, C.; Chen, L.; Kuo, C. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis. J. Biotechnol. 2015, 194, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, Y.; Dhar, B.R. Pushing the organic loading rate in electro -chemically assisted anaerobic digestion of blackwater at ambient temperature: Insights into microbial community dynamics. Sci. Total Environ. 2021, 781, 146694. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Chen, F.; Zhong, C.; Zhou, J.; Wu, X.; Yong, X.; Zhou, H.; Jiang, M.; Jia, H.; Wei, P. Effects of different carriers on biogas production and microbial community structure during anaerobic digestion of cassava ethanol wastewater. Environ. Technol. 2016, 38, 2253–2262. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Tho, B.L.; Toan, P.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Trego, A.C.; Holohan, B.C.; Keating, C.; Graham, A.; O’Flaherty, V. First proof of concept for full-scale, direct, low-temperature anaerobic treatment of municipal wastewater. Bioresour. Technol. 2021, 341, 125786. [Google Scholar] [CrossRef] [PubMed]
- Connaughton, S.; Collins, G.; O’Flaherty, V. Development of microbial community structure and actvity in a high-rate anaerobic bioreactor at 18°C. Water Res. 2006, 40, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- McKeown, R.M.; Hughes, D.; Collins, G.; Mahony, T.; O’Flaherty, V. Low-temperature anaerobic digestion for wastewater treatment. Curr. Opin. Biotechnol. 2012, 23, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Akila, G.; Chandra, T.S. Performance of an UASB reactor treating synthetic wastewater at low-temperature using cold-adapted seed slurry. Process Biochem. 2007, 42, 466–471. [Google Scholar] [CrossRef]
- Madden, P.; Chinalia, F.A.; Enright, A.; Collins, G.; O’Flaherty, V. Perturbation-independent Community Development in Low-Temperature Anaerobic Biological Wastewater Treatment Bioreactors. Biotechnol. Bioeng. 2010, 105, 79–87. [Google Scholar] [CrossRef]
- Bialek, K.; Cysneiros, D.; O’Flaherty, V. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: Microbial community structure, population dynamics, and kinetics of methanogenic populations. Archaea 2013, 2013, 346171. [Google Scholar] [CrossRef]
- Enright, A.; McGrath, V.; Gill, D.; Collins, G.; O’Flaherty, V. Effect of seed sludge and operation conditions on performance and archaeal community structure of low-temperature anaerobic solvent-degrading bioreactors. Syst. Appl. Microbiol. 2009, 32, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; He, Z.W.; Li, M.H.; Zong, S.M.; Wang, Z.F.; Ge, B.; Zhang, P.; Li, X.K.; Wang, A.J. Insights into methanogenesis of mesophilic-psychrophilic varied anaerobic digestion of municipal sludge with antibiotic stress. J. Environ. Manag. 2023, 331, 117278. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Ramiro-Garcia, J.; Paulo, L.M.; Braguglia, C.M.; Gagliano, M.C.; O’Flaherty, V. Psychrophilic and mesophilic anaerobic treatment of synthetic dairy wastewater with long chain fatty acids: Process performances and microbial community dynamics. Bioresour. Technol. 2023, 3801, 129124. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Cardenas, E.; Rogers, S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. Water Res. 2021, 204, 117596. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xin, Y.; Jiang, Y.; Huang, L.; Shen, P. Improving the efficiency of anaerobic digestion of Molasses alcohol wastewater using Cassava alcohol wastewater as a mixed feedstock. Bioresour. Technol. 2022, 344, 126179. [Google Scholar] [CrossRef] [PubMed]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Yusoff, F.M.; Toda, T. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012, 118, 110–218. [Google Scholar] [CrossRef]
- Carballa, M.; Regueiro, L.; Lema, J.M. Microbial management of anaerobic digestion: Exploiting the microbiome-functionality nexus. Curr. Opin. Biotechnol. 2015, 33, 103–111. [Google Scholar] [CrossRef]
- Haegeman, B.; Hamelin, J.; Moriarty, J.; Neal, P.; Dushoff, J.; Weitz, J.S. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013, 7, 1092–1101. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.H.; Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3599–3609. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Yuan, X.; Cao, Y.; Li, J.; Wen, B.; Cui, Z. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard. Bioresour. Technol. 2012, 118, 281–288. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.W.; Gao, L.J.; Yu, J.D.; Yuan, X.F.; Zhu, W.B.; Wang, X.; Cui, Z.J. Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresour. Technol. 2018, 250, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Joel, T. Van’t Hoff analysis of K°(T): How good…or bad? Biophysical Chemistry. 2006, 120, 114–120. [Google Scholar] [CrossRef]
- Zuo, X.Y.; Yuan, H.R.; Wachemo, A.C.; Wang, X.T.; Zhang, L.; Li, J.; Wen, H.L.; Wang, J.X.; Li, X.J. The relationships among sCOD, VFAs, microbial community, and biogas production during anaerobic digestion of rice straw pretreated with ammonia. Chin. J. Chem. Eng. 2020, 8, 286–292. [Google Scholar] [CrossRef]
- Weiland, P. Production and energetic use of biogas from energy crops andwastes in Germany. Appl. Biochem. Biotechnol. 2003, 109, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Streckienė, G.; Martinaitis, V.; Andersen, A.N.; Katz, J. Feasibility of CHP-plantswith thermal stores in the German spot market. Appl. Energy 2009, 86, 2308–2316. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Sun, H. Reducing the thermal conductivity of rock wool insulation boards: CN201520630474.4 [P]. CN204940569U (2023-10-03). Available online: https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0W4dJebv7J62u0sSxe4_ew0htP0HjOpCBGWikk0hK9q0EO6NUUDPmbv36PkkszP9S&uniplatform=NZKPT (accessed on 4 October 2023).
- Chen, W.; Xu, R. Clean coal technology development in China. Energy Policy 2010, 38, 2123–2130. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Yan, F.; Su, D.F.; Wang, Y.F.; Zhou, H.G. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system. Bioresour. Technol. 2017, 224, 56–62. [Google Scholar] [CrossRef]
- D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 2006, 7, 385–389. [Google Scholar] [CrossRef]
- Luo, G.; De Francisci, D.; Kougias, P.G.; Laura, T.; Zhu, X.; Angelidaki, I. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnol. Biofuels 2015, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef] [PubMed]
- Riviere, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 2009, 3, 700–714. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, Y.; Yamada, T.; Hanada, S.; Ohashi, A.; Harada, H.; Kamagata, Y. Anaerolinea thermophila gen. nov., sp nov and Caldilinea aerophila gen. nov., sp nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int. J. Syst. Evol. Microbiol. 2003, 53, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Sekiguchi, Y.; Hanada, S.; Imachi, H.; Ohashi, A.; Harada, H.; Kamagata, Y. Anaerolinea thermolimosa sp nov., Levilinea saccharolytica gen. nov., sp nov and Leptolinea tardivitalis gen. nov., so. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov and Caldilineae classis nov in the bacterial phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2006, 56, 1331–1340. [Google Scholar] [PubMed]
- Jannasch, H.W.; Huber, R.; Belkin, S.; Stetter, K.O. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 1988, 150, 103–104. [Google Scholar] [CrossRef]
- Pradhan, N.; Dipasquale, L.; d’Ippolito, G.; Fontana, A.; Panico, A.; Pirozzi, F.; Lens, P.N.; Esposito, G. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. Water Res. 2016, 99, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.J.; Knights, D.; Garcia, M.L.; Scalfone, N.B.; Smith, S.; Yarasheski, K.; Cummings, T.A.; Beers, A.R.; Knight, R.; Angenent, L.T. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 2011, 108, 4158–4163. [Google Scholar] [CrossRef]
- Jumas-Bilak, E.; Roudiere, L.; Marchandin, H. Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int. J. Syst. Evol. Microbiol. 2009, 59, 1028–1035. [Google Scholar] [CrossRef]
- Maukonen, J.; Saarela, M.; Raaska, L. Desulfovibrionales-related bacteria in a paper mill environment as detected with molecular techniques and culture. J. Ind. Microbiol. Biotechnol. 2006, 33, 45–54. [Google Scholar] [CrossRef]
- Li, J.; Ban, Q.; Zhang, L.; Jha, A.K. Syntrophic Propionate Degradation in Anaerobic Digestion: A Review. Int. J. Agric. Biol. 2012, 14, 843–850. [Google Scholar] [CrossRef]
- Honda, T.; Fujita, T.; Tonouchi, A. Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field. Int. J. Syst. Evol. Microbiol. 2013, 63, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Vanwonterghem, I.; Jensen, P.D.; Dennis, P.G.; Hugenholtz, P.; Rabaey, K. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J. 2014, 8, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Hanreich, A.; Schimpf, U.; Zakrzewski, M.; Schlüter, A.; Benndorf, D.; Heyer, R.; Rapp, E.; Pühler, A.; Reichl, U.; Klocke, M. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst. Appl. Microbiol. 2013, 36, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Newcomb, M.; Wu, J.D. Cellulase, clostridia, and ethano. Microbiol. Mol. Biol. Rev. 2005, 69, 124–154. [Google Scholar] [CrossRef] [PubMed]
- Muller, V. Energy Conservation in Acetogenic Bacteria. Appl. Environ. Microbiol. 2003, 69, 6345–6353. [Google Scholar] [CrossRef]
- Vital, M.; Howe, A.C.; Tiedje, J.M. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta) genomic Data. mBio 2014, 5, e00889-14. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, E.; Fondi, M.; Fani, R.; Torriani, S.; Felis, G.E. Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst. Appl. Microbiol. 2013, 36, 291–305. [Google Scholar] [CrossRef]
- André, L.; Ndiaye, M.; Pernier, M.; Lespinard, O.; Pauss, A.; Lamy, E.; Ribeiro, T. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations. Bioresour. Technol. 2016, 207, 353–360. [Google Scholar] [CrossRef]
- Song, M.; Shin, S.G.; Hwang, S. Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresour. Technol. 2010, 1011, S23–S28. [Google Scholar] [CrossRef]
- Fournier, G.P.; Gogarten, J.P. Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J. Bacteriol. 2008, 190, 1124–1127. [Google Scholar] [CrossRef]
- Karakashev, D.; Batstone, D.J.; Angelidaki, I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 2005, 71, 331–338. [Google Scholar] [CrossRef]
- Lee, H.; Rittmann, B.E. Evaluation of Metabolism Using Stoichiometry in Fermentative Biohydrogen. Biotechnol. Bioeng. 2009, 102, 749–758. [Google Scholar] [CrossRef]
Temperature | 15 °C | 20 °C | 25 °C | 35 °C | |
---|---|---|---|---|---|
Heat loss (MJ/d) | 0 | 60.5 | 121.0 | 241.9 | |
Heat requirement for feedstock (MJ/d) | 0 | 5600.0 | 11,200.0 | 22,400.0 | |
Heat efficiency (%) | 65.0 | 65.0 | 65.0 | 65.0 | |
Input energy (MJ/d) | 0 | 8708.4 | 17,416.9 | 34,833.7 | |
Volumetric biogas Production rate (L/L·d) | 9.9 kg (COD)/m3·d | 2.0 | 3.2 | 3.3 | 3.9 |
19.8 kg (COD)/m3·d | / | 4.9 | 5.4 | 8.7 | |
Volume of digester (m3) | 1000.0 | 1000.0 | 1000.0 | 1000.0 | |
Biogas output (m3/d) | 9.9 kg (COD)/m3·d | 2033.3 | 3191.7 | 3283.3 | 3916.7 |
19.8 kg (COD)/m3·d | / | 4908.3 | 5425.0 | 8708.3 | |
Heating value of biogas (MJ/m3) | 21.0 | 21.0 | 21.0 | 21.0 | |
Energy output (MJ/d) | 9.9 kg (COD)/m3·d | 42,700.0 | 67,025.0 | 68,950.0 | 82,250.0 |
19.8 kg (COD)/m3·d | / | 103,075.0 | 113,925.0 | 182,875.0 | |
Net energy output (MJ/d) | 9.9 kg (COD)/m3·d | 42,700.0 | 58,316.6 | 51,533.1 | 47,416.3 |
19.8 kg (COD)/m3·d | / | 94,366.6 | 96,508.1 | 148,041.3 |
0N | 1N | 2N | Average Daily Biogas Production | |
---|---|---|---|---|
R | 0.504 | 0.288 | 0.163 | 0.718 |
p-value | 0.028 * | 0.149 | 0.281 | 0.001 ** |
8.25 kg (COD)/m3·d | 23.10 kg (COD)/m3·d | IN | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature | 0N | 1N | 2N | 0N | 1N | 2N | 0N | 1N | 2N |
15 °C | 282 | 3.08 | 1.57 | 158 | 1.69 | 1.17 | 522 | 7.67 | 2.47 |
20 °C | 146 | 1.45 | 1.12 | 197 | 1.71 | 1.17 | |||
25 °C | 121 | 1.53 | 1.15 | 210 | 2.64 | 1.52 | |||
35 °C | 133 | 1.7 | 1.2 | 223 | 2.03 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, H.; Zhao, Y.; Yuan, X.; Cui, Z. Characteristics of Biogas Production Activity and Microbial Community during Sub-Moderate Temperature Anaerobic Digestion of Wastewater. Fermentation 2023, 9, 903. https://doi.org/10.3390/fermentation9100903
Wu J, Zhang H, Zhao Y, Yuan X, Cui Z. Characteristics of Biogas Production Activity and Microbial Community during Sub-Moderate Temperature Anaerobic Digestion of Wastewater. Fermentation. 2023; 9(10):903. https://doi.org/10.3390/fermentation9100903
Chicago/Turabian StyleWu, Jingwei, Huan Zhang, Ye Zhao, Xufeng Yuan, and Zongjun Cui. 2023. "Characteristics of Biogas Production Activity and Microbial Community during Sub-Moderate Temperature Anaerobic Digestion of Wastewater" Fermentation 9, no. 10: 903. https://doi.org/10.3390/fermentation9100903
APA StyleWu, J., Zhang, H., Zhao, Y., Yuan, X., & Cui, Z. (2023). Characteristics of Biogas Production Activity and Microbial Community during Sub-Moderate Temperature Anaerobic Digestion of Wastewater. Fermentation, 9(10), 903. https://doi.org/10.3390/fermentation9100903