Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pulp Sludge
2.2. Torrefaction of Pulp Sludge
2.3. Anaerobic Digestion Experimental Setup
2.4. Analytical Methods
3. Results
3.1. Properties and Composition of the Pulp Sludge
3.2. Product Yield during Torrefaction
3.3. Composition and Properties of the Torrefaction Condensate
3.4. Biomethane and Volatile Fatty Acids Production Potential
3.4.1. Influence of Torrefaction Temperature
3.4.2. Influence of Anaerobic Digestion Operating Temperature
3.4.3. Influence of Substrate Loading
3.5. Comparative Analysis
4. Summary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kähler, F.; Carus, M.; Porc, O.; vom Berg, C. Turning off the Tap for Fossil Carbon: Future prospects for a global chemical and derived material sector based on renewable carbon. Ind. Biotechnol. 2021, 17, 245–258. [Google Scholar] [CrossRef]
- Bajpai, P. Generation of Waste in Pulp and Paper Mills. In Management of Pulp and Paper Mill Waste; Bajpai, P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–17. [Google Scholar] [CrossRef]
- Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Praveenkumar, R.; Tolvanen, H.; Palmroth, M.R.T.; Konttinen, J.; Rintala, J. Anaerobic batch conversion of pine wood torrefaction condensate. Bioresour. Technol. 2017, 225, 299–307. [Google Scholar] [CrossRef]
- Liaw, S.S.; Frear, C.; Lei, W.; Zhang, S.; Garcia-Perez, M. Anaerobic digestion of C1–C4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials. Fuel Process Technol. 2015, 131, 150–158. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Yang, Y.H. Microbial production of volatile fatty acids: Current status and future perspectives. Rev. Environ. Sci. Biotechnol. 2017, 16, 327–345. [Google Scholar] [CrossRef]
- Vázquez-Fernández, A.; Suárez-Ojeda, M.E.; Carrera, J. Review about bioproduction of Volatile Fatty Acids from wastes and wastewaters: Influence of operating conditions and organic composition of the substrate. J. Environ. Chem. Eng. 2022, 10, 107917. [Google Scholar] [CrossRef]
- Rocha-Meneses, L.; Ivanova, A.; Atouguia, G.; Ávila, I.; Raud, M.; Orupõld, K.; Kikas, T. The effect of flue gas explosive decompression pretreatment on methane recovery from bioethanol production waste. Ind. Crops Prod. 2019, 127, 66–72. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Pärn, L.; Kikas, T. Torrefaction of Pulp Industry Sludge to Enhance Its Fuel Characteristics. Energies 2022, 15, 6175. [Google Scholar] [CrossRef]
- Huang, M.; Chang, C.C.; Yuan, M.H.; Chang, C.Y.; Wu, C.H.; Shie, J.L.; Chen, Y.-H.; Chen, Y.-H.; Ho, C.; Chang, W.-R.; et al. Production of torrefied solid bio-fuel from pulp industrywaste. Energies 2017, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Fagernas, L.; Kuoppala, E.; Arpiainen, V. Composition, utilization and economic assessment of torrefaction condensates. Energy Fuels 2015, 29, 3134–3142. [Google Scholar] [CrossRef]
- Macedo, L.A.; Silveira, E.A.; Rousset, P.; Valette, J.; Commandré, J.M. Synergistic effect of biomass potassium content and oxidative atmosphere: Impact on torrefaction severity and released condensables. Energy 2022, 254, 124472. [Google Scholar] [CrossRef]
- Nocquet, T.; Dupont, C.; Commandre, J.M.; Grateau, M.; Thiery, S.; Salvador, S. Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1—Experimental study. Energy 2014, 72, 180–187. [Google Scholar] [CrossRef]
- Zhang, S.; Su, Y.; Ding, K.; Zhu, S.; Zhang, H.; Liu, X.; Xiong, Y. Effect of inorganic species on torrefaction process and product properties of rice husk. Bioresour. Technol. 2018, 265, 450–455. [Google Scholar] [CrossRef]
- Mahadevan, R.; Adhikari, S.; Shakya, R.; Wang, K.; Dayton, D.; Lehrich, M.; Taylor, S.E. Effect of Alkali and Alkaline Earth Metals on in-Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass: A Microreactor Study. Energy Fuels 2016, 30, 3045–3056. [Google Scholar] [CrossRef]
- De Macedo, L.A.; Commandré, J.M.; Rousset, P.; Valette, J.; Pétrissans, M. Influence of potassium carbonate addition on the condensable species released during wood torrefaction. Fuel Process Technol. 2018, 169, 248–257. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Z.B.; Yang, X.C.; Dong, C.Q.; Zhu, X.F. Catalytic fast pyrolysis of biomass impregnated with K3PO 4 to produce phenolic compounds: Analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis 2013, 104, 139–145. [Google Scholar] [CrossRef]
- Di Blasi, C.; Galgano, A.; Branca, C. Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Ind. Eng. Chem. Res. 2009, 48, 3359–3369. [Google Scholar] [CrossRef]
- Hübner, T.; Mumme, J. Integration of pyrolysis and anaerobic digestion—Use of aqueous liquor from digestate pyrolysis for biogas production. Bioresour. Technol. 2015, 183, 86–92. [Google Scholar] [CrossRef]
- Hao, J.; Wang, H. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresour. Technol. 2015, 175, 367–373. [Google Scholar] [CrossRef]
- Kim, M.; Gomec, C.Y.; Ahn, Y.; Speece, R.E. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 2003, 24, 1183–1190. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Zou, D.; Yuan, H.; Zhu, B.; Li, X.; Pang, Y. Influence of Temperature on Hydrolysis Acidification of Food Waste. Procedia Environ. Sci. 2012, 16, 85–94. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Amodio, V.; Belgiorno, V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason. Sonochem. 2012, 19, 596–600. [Google Scholar] [CrossRef]
- Wilson, C.A.; Murthy, S.M.; Fang, Y.; Novak, J.T. The effect of temperature on the performance and stability of thermophilic anaerobic digestion. Water Sci. Technol. 2008, 57, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, M.; Yu, Y.; Wu, H. Effect of temperature on ternary phase diagrams of pyrolytic lignin, mixed solvent and water. Fuel 2020, 262, 116458. [Google Scholar] [CrossRef]
- Meng, J.; Moore, A.; Tilotta, D.C.; Kelley, S.S.; Adhikari, S.; Park, S. Thermal and Storage Stability of Bio-Oil from Pyrolysis of Torrefied Wood. Energy Fuels 2015, 29, 5117–5126. [Google Scholar] [CrossRef]
- Joseph, J.; Rasmussen, M.J.; Fecteau, J.P.; Kim, S.; Lee, H.; Tracy, K.A.; Stemmler, E.A. Compositional Changes to Low Water Content Bio-oils during Aging: An NMR, GC/MS, and LC/MS Study. Energy Fuels 2016, 30, 4825–4840. [Google Scholar] [CrossRef]
- Li, H.; Xia, S.; Li, Y.; Ma, P.; Zhao, C. Stability evaluation of fast pyrolysis oil from rice straw. Chem. Eng. Sci. 2015, 135, 258–265. [Google Scholar] [CrossRef]
- Levén, L.; Nyberg, K.; Schnürer, A. Conversion of phenols during anaerobic digestion of organic solid waste—A review of important microorganisms and impact of temperature. J. Environ. Manag. 2012, 95, S99–S103. [Google Scholar] [CrossRef]
- Jansson, A.T.; Patinvoh, R.J.; Taherzadeh, M.J.; Horváth, I.S. Effect of organic compounds on dry anaerobic digestion of food and paper industry wastes. Bioengineered 2020, 11, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, M.M.; Woods, S.L.; Ferguson, J.F. Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res. 1984, 18, 601–607. [Google Scholar] [CrossRef]
- Siegert, I.; Banks, C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 2005, 40, 3412–3418. [Google Scholar] [CrossRef]
- Awe, O.W.; Lu, J.; Wu, S.; Zhao, Y.; Nzihou, A.; Lyczko, N.; Minh, D.P. Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste Biomass Valorization 2018, 9, 2295–2306. [Google Scholar] [CrossRef]
- Hao, J.; de los Reyes, F.L.; He, X. Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. J. Environ. Manag. 2020, 268, 110708. [Google Scholar] [CrossRef] [PubMed]
- Ponsá, S.; Gea, T.; Sánchez, A. Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 2011, 108, 352–360. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Jain, R.; Praveenkumar, R.; Rintala, J.; Romar, H.; Konttinen, J. Adsorption of furfural from torrefaction condensate using torrefied biomass. Chem. Eng. J. 2018, 334, 558–568. [Google Scholar] [CrossRef]
- Marchetti, R.; Vasmara, C.; Fiume, F. Pig slurry improves the anaerobic digestion of waste cooking oil. Appl. Microbiol. Biotechnol. 2019, 103, 8267–8279. [Google Scholar] [CrossRef]
- Kakar, F.L.; Koupaie, E.H.; Hafez, H.; Elbeshbishy, E. Effect of hydrothermal pretreatment on volatile fatty acids production from source-separated organics. Processes 2019, 7, 576. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z. Enhanced volatile fatty acids accumulation in anaerobic digestion through arresting methanogenesis by using hydrogen peroxide. Water Environ. Res. 2021, 93, 2051–2059. [Google Scholar] [CrossRef]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sárvári-Horváth, I.; Taherzadeh, M.J. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Murali, N.; Srinivas, K.; Ahring, B.K. Increasing the production of volatile fatty acids from corn stover using bioaugmentation of a mixed rumen culture with homoacetogenic bacteria. Microorganisms 2021, 9, 337. [Google Scholar] [CrossRef]
GC-MS Area % of Total | ||
---|---|---|
Compound | TC-275 | TC-300 |
Acetic acid | 36.77 | 27.92 |
2-Propanone, 1-hydroxy- | 5.32 | 4.43 |
Propanoic acid | 0.67 | 4.1 |
1,2-Dimethylhydrazine | 0 | 0.34 |
Pyridine | 0.29 | 0.43 |
1-Hydroxy-2-butanone | 1.76 | 1.63 |
Butanoic acid | 0 | 1.29 |
2-methylpyridine | 0.21 | 0.28 |
3-Methoxy-2-butanol | 0 | 0.32 |
2-Cyclopenten-1-one | 0.30 | 0.76 |
2-Furanmethanol | 6.52 | 6.34 |
2-Propanone, 1-(acetyloxy)- | 1.50 | 2.25 |
2-Cyclopenten-1-one, 2-methyl- | 0 | 0.41 |
1-(2-Furanyl)-ethanone | 0 | 0.37 |
4-hydroxybutanoic acid | 3.07 | 2.84 |
Piperidine, 1-methyl- | 0 | 0.49 |
Pyridine, 2,5-dimethyl- | 0.23 | 0.36 |
Pyridine, 2,3-dimethyl- | 0 | 0.22 |
1-(acetyloxy)-2-butanone | 0.20 | 0.31 |
2-Cyclopenten-1-one, 3-methyl- | 0.27 | 0.44 |
3-methyl-2(5H)-furanone | 0.27 | 0 |
Phenol | 3.54 | 2.29 |
Pyridine, 3-methoxy- | 0.93 | 0.87 |
Not identified | 7.49 | 10.57 |
3-Methyl-1,2-cyclopentanedione | 3.03 | 3.26 |
2H-Pyran-2-one, tetrahydro- | 0.65 | 0.95 |
2-Methoxyphenol (Guaiacol) | 3.09 | 2.95 |
Methanesulfonamide, N,N-dimethyl- | 2.39 | 1.2 |
2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- | 1.45 | 0 |
N-methyl-1,3-propanediamine | 0.76 | 0 |
5-methyl-2-pentylpyridine | 0 | 0.15 |
Creosol | 0.30 | 0.76 |
1,4:3,6-Dianhydro-.alpha.-d-glucopyranose | 0.22 | 0 |
4-ethyl-2-methoxyphenol (p-Ethylguaiacol) | 0.66 | 0.46 |
2-Methoxy-4-vinylphenol (p-Vinylguaiacol) | 0.50 | 0.29 |
2,6-dimethoxyphenol (Syringol) | 10.95 | 10.54 |
5-tert-Butylpyrogallol | 1.25 | 0 |
Homovanillic acid | 0.65 | 0 |
1,2,3-Trimethoxybenzene | 0 | 0.52 |
5-Methyl-1,2,3-trimethoxybenzene | 0 | 1.06 |
1-(4-methylthiophenyl)-2-propanone | 0 | 0.58 |
Properties | ||
Volatile solids (%) | 6.69 | 9.01 |
pH | 4.08 | 4.16 |
Higher heating value (HHV) MJ/kg | 4.9 | 2.2 |
Methane Potential Comparison | ||
---|---|---|
Substrate | Methane Yield (mL/g VS Added) | Reference |
Fat, oil, and grease (FOG) deposits | 845 | [34] |
Co-digestion of OFMSW and vegetable oil | 699 | [35] |
Waste cooking oil + hydration medium, | 922 | [37] |
Pine-derived torrefaction condensate | 430–492 | [4] |
Agricultural waste derived torrefaction condensate | 32–106 mL/g condensate | [5] |
Pulp sludge-derived condensate | 401–772 | This study |
Volatile fatty acids comparison | ||
Substrate | VFA yield (g/g VS added) | Reference |
Hydrothermally treated thickened waste-activated sludge | 1.53 | [38] |
Glucose (methanogenesis inhibition using H2O2) | 1.23 | [39] |
Food waste (methanogenesis inhibition using 2-bromoethanesulfonate) | 0.8 | [40] |
Pretreated corn stover (methanogenesis inhibition using 2-bromoethanesulfonate) | 2.19 | [41] |
Pulp sludge torrefaction condensate (methanogenesis inhibition using 2-bromoethanesulfonate) | 1.1–4.78 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doddapaneni, T.R.K.C.; Cahyanti, M.N.; Orupõld, K.; Kikas, T. Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy. Fermentation 2022, 8, 453. https://doi.org/10.3390/fermentation8090453
Doddapaneni TRKC, Cahyanti MN, Orupõld K, Kikas T. Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy. Fermentation. 2022; 8(9):453. https://doi.org/10.3390/fermentation8090453
Chicago/Turabian StyleDoddapaneni, Tharaka Rama Krishna C., Margareta Novian Cahyanti, Kaja Orupõld, and Timo Kikas. 2022. "Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy" Fermentation 8, no. 9: 453. https://doi.org/10.3390/fermentation8090453
APA StyleDoddapaneni, T. R. K. C., Cahyanti, M. N., Orupõld, K., & Kikas, T. (2022). Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy. Fermentation, 8(9), 453. https://doi.org/10.3390/fermentation8090453