Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Media
2.2. Fermentation
2.3. Determination of Biomass
2.4. Determination of Lactic Acid and Ethanol Content
2.5. Untargeted Metabolome Analysis
2.6. Effects of Co-Culture on Cell Morphology
2.7. Statistical Analysis
3. Results
3.1. Effect of Co-Culture on the Growth and Metabolic Characteristics of S. cerevisiae and L. panis
3.2. Identifying Metabolites Secreted by S. cerevisiae for Promoting L. panis Growth
3.3. S. cerevisiae Inhibits the Growth of L. panis by Metabolite Inhibition
3.4. Effects of Co-Culture on Microbial Morphology
3.5. Controlling Lactic Acid Production Using Solid-State Simulated Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.S.; Du, H.; Zhang, Y.; Xu, Y. Environmental Microbiota Drives Microbial Succession and Metabolic Profiles during Chinese Liquor Fermentation. Appl. Environ. Microbiol. 2018, 84, e02369-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.M.; Meng, Y.J.; Wang, Y.L.; Zhou, Q.W.; Li, A.J.; Liu, G.Y.; Li, J.X.; Xing, X.H. Prokaryotic communities in multidimensional bottom-pit-mud from old and young pits used for the production of Chinese Strong-Flavor Baijiu. Food Chem. 2020, 312, 126084. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Q.; Wang, P.; Lin, J.C.; Huang, L.; Xu, Y. Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Appl. Environ. Microbiol. 2017, 83, e01475-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, G.Y.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Chen, L. Diversity of yeast species during fermentative process contributing to Chinese Maotai-flavour liquor making. Lett. Appl. Microbiol. 2012, 55, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wu, Q.; Wang, L.; Wang, D.Q.; Chen, L.Q.; Xu, Y. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. J. Ind. Microbiol. Biotechnol. 2015, 42, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Cai, W.C.; Wang, W.P.; Shu, N.; Zhang, Z.D.; Hou, Q.C.; Shan, C.H.; Guo, Z. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu. Food Sci. Nutr. 2021, 9, 1003–1016. [Google Scholar] [CrossRef]
- Zuo, Q.C.; Huang, Y.G.; MinGuo. Evaluation of bacterial diversity during fermentation process: A comparison between handmade and machine-made high-temperature Daqu of Maotai-flavor liquor. Ann. Microbiol. 2020, 70, 1–10. [Google Scholar] [CrossRef]
- Song, Z.W.; Du, H.; Zhang, Y.; Xu, Y. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing. Front. Microbiol. 2017, 8, 1294. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Xi-Bin, L.; Yao-Ling, W.; Xiang-Lian, Z.; Qiao-Ling, Z.; Liang-Qiang, C.; Jie, Y.; Ru-Ye, L.; Fan, Y.; He-Yu, W.; et al. Diversity of yeasts from fermented grain in Maotai liquor fermentation. Mycosystema 2019, 38, 620–630. [Google Scholar] [CrossRef]
- Plata, C.; Millan, C.; Mauricio, J.C.; Ortega, J.M. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Carmona, M.; Zamarro, M.A.T.; BláZquez, B.; Durante-RodríGuez, G.; JuáRez, J.F.; Valderrama, J.A.S.; Barragán, M.A.J.L.; García, J.L.; Díaz, E. Anaerobic Catabolism of Aromatic Compounds: A Genetic and Genomic View. Microbiol. Mol. Biol. Rev. 2009, 73, 71–133. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.L.; Hao, F.; Lv, X.B.; Chen, B.; Yang, Y.B.; Zeng, X.L.; Yang, F.; Wang, H.Y.; Wang, L. Diversity of lactic acid bacteria in Moutai-flavor liquor fermentation process. Food Biotechnol. 2020, 34, 212–227. [Google Scholar] [CrossRef]
- Lv, X.; Wu, Y.L.; Hao, F.; Zeng, X.L. Analysis of Microbial Diversity in the 1st and 2nd Fermentation Cycle of Jiangxiang Baijiu based on High Throughput Sequencing Technology. Brew. Technol. 2019, 3, 52–58. [Google Scholar] [CrossRef]
- Yang, F.; Chen, L.Q.; Liu, Y.F.; Li, J.H.; Wang, L.; Chen, J. Identification of microorganisms producing lactic acid during solid-state fermentation of Maotai flavour liquor. J. Inst. Brew. 2019, 125, 171–177. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.L.; Liu, Y.F.; Li, J.H.; Wang, L.; Chen, J. Lactic acid biosynthesis pathways and important genes of Lactobacillus panis L7 isolated from the Chinese microbiome. Food Biosci. 2020, 36, 100627. [Google Scholar] [CrossRef]
- Deng, N.; Du, H.; Xu, Y. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. J. Agric. Food Chem. 2020, 68, 4903–4911. [Google Scholar] [CrossRef]
- Wang, S.L.; Wu, Q.; Nie, Y.; Wu, J.F.; Xu, Y. Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Appl. Environ. Microbiol. 2019, 85, e03090-18. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.J.; Tian, Z.G.; Meng, W.N.; Li, Z.J. Microbial Diversity and Physicochemical Characteristics of the Maotai-Flavored Liquor Fermentation Process. J. Nanosci. Nanotechnol. 2020, 20, 4097–4109. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Tian, Z.Q.; Meng, W.N.; Li, C.Y.; Li, Z.J. Changes in Microbial Diversity, Physicochemical Characteristics, and Flavor Substances During Maotai-Flavored Liquor Fermentation and Their Correlations. J. Biobased Mater. Bioenergy 2019, 13, 290–307. [Google Scholar] [CrossRef]
- Pang, X.N.; Huang, X.N.; Chen, J.Y.; Yu, H.X.; Wang, X.Y.; Han, B.Z. Exploring the diversity and role of microbiota during material pretreatment of light -flavor Baijiu. Food Microbiol. 2020, 91, 103514. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Kwon, E.Y.; Bae, S.J.; Cho, B.R.; Kim, S.Y.; Hahn, J.S. Improvement of D-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol. J. 2017, 12, 1700015. [Google Scholar] [CrossRef]
- Kuanyshev, N.; Ami, D.; Signori, L.; Porro, D.; Morrissey, J.P.; Branduardi, P. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation. Fems Yeast Res. 2016, 16, fow058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.S.; Teng, C.; Xu, D.; Fu, Z.L.; Liu, P.X.; Wu, Q.H.; Yang, R.; Li, X.T. Improving Ethyl Acetate Production in Baijiu Manufacture by Wickerhamomyces anomalus and Saccharomyces cerevisiae Mixed Culture Fermentations. BioMed Res. Int. 2019, 2019, 1470543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Du, H.; Xu, Y. Volatile Organic Compound-Mediated Antifungal Activity of Pichia spp. and Its Effect on the Metabolic Profiles of Fermentation Communities. Appl. Environ. Microbiol. 2021, 87, e02992-20. [Google Scholar] [CrossRef]
- Tian, R.Z.; Liu, Y.F.; Cao, Y.T.; Zhang, Z.J.; Li, J.H.; Liu, L.; Du, G.C.; Chen, J. Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nat. Commun. 2020, 11, 5078. [Google Scholar] [CrossRef]
- van Tatenhove-Pel, R.J.; Rijavec, T.; Lapanje, A.; van Swam, I.; Zwering, E.; Hernandez-Valdes, J.A.; Kuipers, O.P.; Picioreanu, C.; Teusink, B.; Bachmann, H. Microbial competition reduces metabolic interaction distances to the low mu m-range. ISME J. 2021, 15, 688–701. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Andant, C.; Talon, R. Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus. Int. J. Food Microbiol. 2020, 326, 108653. [Google Scholar] [CrossRef]
- Shangjie, Y.; Yao, J.; Rongqing, Z.; Chongde, W. Interaction between microorganisms in traditional fermented food and its application. Bio-Ind. Technol. 2019, 4, 48–54. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wang, L.; Tan, Y.W.; Wang, H.Y.; Yang, F.; Chen, L.Q.; Hao, F.; Lv, X.B.; Du, H.; Xu, Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor Baijiu. Int. J. Food Microbiol. 2021, 336, 108898. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, B.; Jiang, C.; Lu, S.; Yang, Y.; Li, K.; Fan, Z.; Jiang, Y. Effect of Ethanol Stress on the Metabolic Activity of Lactobacillus plantarum D5-5. J. Food Sci. Biotechnol. 2016, 35, 12. [Google Scholar]
- Zhao, C.J.; Schieber, A.; Ganzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Clement, H.; Prost, C.; Chiron, H.; Ducasse, M.B.; Della Valle, G.; Courcoux, P.; Onno, B. The effect of organic wheat flour by-products on sourdough performances assessed by a multi-criteria approach. Food Res. Int. 2018, 106, 974–981. [Google Scholar] [CrossRef]
- Garcia, C.; Rendueles, M.; Diaz, M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review. Food Res. Int. 2019, 119, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.B.; Lu, Z.R.; Soteyome, T.; Ye, Y.R.; Huang, T.Y.; Liu, J.Y.; Harro, J.M.; Kjellerup, B.V.; Peters, B.M. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: Coexistence-relevant mechanisms. Crit. Rev. Microbiol. 2021, 47, 386–396. [Google Scholar] [CrossRef]
- Ponomarova, O.; Gabrielli, N.; Sevin, D.C.; Mulleder, M.; Zimgibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U.; et al. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst. 2017, 5, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wan, B.; Yang, F.; Zhang, X.; Li, J.; Du, G.; Wang, L.; Chen, J. Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation 2022, 8, 33. https://doi.org/10.3390/fermentation8010033
Liu Y, Wan B, Yang F, Zhang X, Li J, Du G, Wang L, Chen J. Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation. 2022; 8(1):33. https://doi.org/10.3390/fermentation8010033
Chicago/Turabian StyleLiu, Yanfeng, Bing Wan, Fan Yang, Xiaolong Zhang, Jianghua Li, Guocheng Du, Li Wang, and Jian Chen. 2022. "Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome" Fermentation 8, no. 1: 33. https://doi.org/10.3390/fermentation8010033
APA StyleLiu, Y., Wan, B., Yang, F., Zhang, X., Li, J., Du, G., Wang, L., & Chen, J. (2022). Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation, 8(1), 33. https://doi.org/10.3390/fermentation8010033