Screening and Molecular Identification of Novel Pectinolytic Bacteria from Forest Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Isolation of Pure Bacterial Strains and Preservation
2.3. Screening of Isolates for Pectinase Activity
2.4. Identification
2.5. Colony Morphology and Different Tests
2.6. Genomic DNA Extraction, 16S rDNA Amplification, and Extraction of DNA from Gel
2.7. Gene Sequencing and Phylogenetic Analysis
2.8. Growth at Different Temperature and pH
2.9. Quantitative Determination of Pectinase Enzyme Activity
2.10. Application in Oil and Juice Extraction
2.11. Statistical Analysis
3. Results
3.1. Isolation of Pure Bacterial Strain and Preservation
3.2. Screening, Identification, and Growth Conditions of Pectinolytic Isolates
3.3. Quantitative Analysis of Pectinase Enzyme Activity of Different Isolates
3.4. Application of Pectinase in Oil Extraction and Juice Extraction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedrolli, D.B.; Monteiro, A.C.; Gomes, E.; Carmona, E.C. Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J. 2009, 3, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Frati, F.; Galletti, R.; De Lorenzo, G.; Salerno, G.; Conti, E. Activity of endo-polygalacturonases in mirid bugs (Heteroptera: Miridae) and their inhibition by plant cell wall proteins (PGIPs). Eur. J. Entomol. 2006, 103, 515–522. [Google Scholar] [CrossRef]
- Kubra, K.T.; Ali, S.; Walait, M.; Sundus, H. Potential applications of pectinases in food, agricultural and environmental sectors. J. Pharm. Chem. Biol. Sci. 2017, 6, 23–34. [Google Scholar]
- Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 2001, 77, 215–227. [Google Scholar] [CrossRef]
- Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Microbial pectinases: An ecofriendly tool of nature for industries. 3 Biotech. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.D.; Kim, J.H.; Won, Y.S.; Moon, K.D.; Seo, K. Il Inhibitory Effects of Pectinase-Treated Prunus Mume Fruit Concentrate on Colorectal Cancer Proliferation and Angiogenesis of Endothelial Cells. J. Food Sci. 2019, 84, 3284–3295. [Google Scholar] [CrossRef]
- Oumer, O.J. Pectinase: Substrate, Production and their Biotechnological Applications. Int. J. Environ. Agric. Biotechnol. 2017, 2, 1007–1014. [Google Scholar] [CrossRef]
- Aislabie, J.; Deslippe, J.R. Soil Microbes and Their Contribution to Soil Services; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- Takcı, H.A.M.; Turkmen, F.U. Extracellular pectinase production and purification from a newly isolated Bacillus subtilis strain. Int. J. Food Prop. 2016, 19, 2443–2450. [Google Scholar] [CrossRef] [Green Version]
- Haile, M.; Kang, W.H. Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms 2019, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Ye, J.; Chio, C.; Liu, W.; Shi, J.; Qin, W. A simplified quick microbial genomic DNA extraction via freeze-thawing cycles. Mol. Biol. Rep. 2020, 47, 703–709. [Google Scholar] [CrossRef]
- Hall, T.A. BIoEdit: A user-friendly bilogical sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Kavuthodi, B.; Thomas, S.; Sebastian, D. Co-production of pectinase and biosurfactant by the newly isolated strain Bacillus subtilis BKDS1. Br. Microbiol. Res. J. 2015, 10, 1–12. [Google Scholar] [CrossRef]
- Demir, N.; Nadaroglu, H.; Demir, Y.; Isik, C.; Taskin, E.; Adiguzel, A.; Gulluce, M. Purification and characterization of an alkaline pectin lyase produced by a newly isolated Brevibacillus borstelensis (p35) and its applications in fruit juice and oil extraction. Eur. Food Res. Technol. 2014, 239, 127–135. [Google Scholar] [CrossRef]
- Aaisha, G.A.; Barate, D.L. Isolation and Identification of Pectinolytic Bacteria from Soil Samples of Akola Region, India. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 514–521. [Google Scholar] [CrossRef]
- Karthik, J.L.; Kumar, G.; Rao, K.V.B. Screening of pectinase producing microorganisms from agricultural waste dump soil. Asian J. Biochem. Pharm. Res. 2011, 1, 329–337. [Google Scholar]
- Oumer, O.J.; Abate, D. Screening and molecular identification of pectinase producing microbes from coffee pulp. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Ajobiewe, H.F.; Ajobiewe, J.O.; Mbagwu, T.T.; Ale, T.; Yakubu, G.T. Demonstration of Pectinase Enzyme Activity from Soil Isolated Bacillus spp. in Karu Nasarawa State of Nigeria Using Orange Peels Substrate. J. Microbiol. Res. 2019, 9, 6–11. [Google Scholar] [CrossRef]
- Beg, Q.; Bhushan, B.; Kapoor, M.; Hoondal, G. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 2000, 24, 396–402. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, A.; Dua, A.; Mahajan, R. Cost-effective and concurrent production of industrially valuable xylano-pectinolytic enzymes by a bacterial isolate Bacillus pumilus AJK. Prep. Biochem. Biotechnol. 2017, 47, 8–18. [Google Scholar] [CrossRef]
- Singh, A.; Varghese, L.M.; Battan, B.; Patra, A.K.; Mandhan, R.P.; Mahajan, R. Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose. Environ. Sci. Pollut. Res. 2020, 27, 6701–6710. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.S.; Udupa, P.M. Isolation, purification and characterization of pectinase enzyme from Streptomyces thermocarboxydus. J. Clin. Microbiol. Biochem. Technol. 2019, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Govindaraji, P.K.; Vuppu, S. Characterisation of pectin and optimization of pectinase enzyme from novel Streptomyces fumigatiscleroticus VIT-SP4 for drug delivery and concrete crack-healing applications: An eco-friendly approach. Saudi J. Biol. Sci. 2020, 27, 3529–3540. [Google Scholar] [CrossRef]
- Sharma, H.P.; Patel, H.; Sharma, S. Enzymatic extraction and clarification of juice from various Fruits. Trends Post Harvest Technol. J. 2016, 2, 1–14. [Google Scholar]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3–20. [Google Scholar] [CrossRef] [Green Version]
Different Tests | Isolate S-5 | Isolate S-10 | Isolate S-14 | Isolate S-17 | |
---|---|---|---|---|---|
Colony characteristics | Small circular rough (grey powdery) colony having raised convex elevation with hard consistency | Small yellowish glistering smooth, raised colony with soft consistency | Small circular rough (white powdery) colony having raised convex elevation with hard consistency | Small whitish noncircular, flat with not smooth edge (jagged edge) | |
Pectin hydrolyzing zone (D-d) [PDI%] | 22 − 5 = 17 [129.41] | 15 − 3 = 12 [125.0] | 16 − 2 = 14 [114.28] | 12 − 2 = 10 [120.0] | |
Gram staining | + | + | + | + | |
Cell morphology | rods | rods | filamentous | rods | |
Spores | + | − | + | + | |
Capsule | − | − | − | − | |
Biofilm | − | − | − | − | |
Catalase | + | + | − | + | |
Oxidase | − | − | − | − | |
Indole | − | − | − | − | |
MR | + | + | − | − | |
VP | − | + | − | − | |
Citrate | − | − | − | − | |
H2S | − | − | − | − | |
TSI | alkaline/alkaline | acid/alkaline | alkaline/alkaline | acid/acid | |
DNase | + | + | + | + | |
Urease | − | − | − | − | |
Hemolysis | − | − | − | − | |
Starch hydrolysis | + | − | − | ++ | |
Gelatin hydrolysis | − | − | − | − | |
Lactose | − | − | − | − | |
VRB | − | − | − | − | |
Cellulase (D-d) | + (15) | + (3) | + (9) | − | |
Xylanase (D-d) | + (8.5) | − | + (7) | + (4) | |
Amylase (D-d) | + (2) | − | − | + (5) | |
Growth in different temperatures | 25 °C | + | − | + | + |
30 °C | + * | + | + * | + | |
35 °C | + * | + * | + * | + * | |
40 °C | + * | + * | + * | + | |
50 °C | − | − | − | + | |
Growth in different pH | pH 5 | − | − | − | − |
pH 6 | + | − | + | − | |
pH 7 | + * | + | + * | + | |
pH 8 | + * | + * | + * | + * | |
pH 9 | + | + * | + | + * | |
Antibiotic susceptibility test | Zone of inhibition (mm) | ||||
Antibiotics used | Ampicillin | 0 (R) | 18.3 ± 1.5 (S) | 0 (R) | >14 (S) |
Bacitracin | 18.3 ± 0.6 (S) | 49.3 ± 2.1 (S) | 18.3 ± 2.1 (S) | >11 (S) | |
Penicillin | 0 (R) | 27.7 ± 0.6 (R) | 0 (R) | >29 (S) | |
Novobiocin | 27.7 ± 0.6 (S) | 44.3 ± 1.2 (S) | 24.7 ± 0.6 (S) | >16 (S) | |
Chloramphenicol | 23.7 ± 0.6 (S) | 41.7 ± 1.2 (S) | 25.3 ± 1.5 (S) | >18 (S) | |
Erythromycin | 18.3 ± 0.6 (I) | 37.0 ± 1.7 (S) | 16.3 ± 1.5 (I) | >23 (S) | |
Tetracycline | 17.7 ± 1.5 (I) | 29.7 ± 2.5 (S) | 15.3 ± 0.6 (I) | >19 (S) |
Sample | Oil Extraction (mL) | Juice Extraction (mL) | Juice Recovery% | Clarity (Transmittance%) | Relative Viscosity |
---|---|---|---|---|---|
Control | 1.1 ± 0.2 b | 0.3 ± 0.3 c | 41.0 ± 0.2 e | 30.2 ± 1.0 d | 2.9 ± 0.1 a |
S-5 | 1.2 ± 0.0 a b | 2.0 ± 1.0 b c | 44.2 ± 0.1 c | 33.1 ± 1.9 c d | 2.4 ± 0.0 b |
S-10 | 1.7 ± 0.1 a | 4.9 ± 0.9 a | 51.8 ± 0.1 a | 48.9 ± 1.0 a | 1.9 ± 0.0 d |
S-14 | 1.1 ± 0.1 b | 1.7 ± 0.9 b c | 43.6 ± 0.1 d | 35.8 ± 1.8 b c | 1.8 ± 0.0 e |
S-17 | 1.1 ± 0.1 b | 2.7 ± 0.9 b | 46.2 ± 0.1 b | 38.9 ± 1.6 b | 2.3 ± 0.0 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Khatiwada, J.R.; Zhang, X.; Chio, C.; Kognou, A.L.M.; Chen, F.; Han, S.; Chen, X.; Qin, W. Screening and Molecular Identification of Novel Pectinolytic Bacteria from Forest Soil. Fermentation 2021, 7, 40. https://doi.org/10.3390/fermentation7010040
Shrestha S, Khatiwada JR, Zhang X, Chio C, Kognou ALM, Chen F, Han S, Chen X, Qin W. Screening and Molecular Identification of Novel Pectinolytic Bacteria from Forest Soil. Fermentation. 2021; 7(1):40. https://doi.org/10.3390/fermentation7010040
Chicago/Turabian StyleShrestha, Sarita, Janak Raj Khatiwada, Xiaodong Zhang, Chonlong Chio, Aristide Laurel Mokale Kognou, Feifei Chen, Sihai Han, Xuatong Chen, and Wensheng Qin. 2021. "Screening and Molecular Identification of Novel Pectinolytic Bacteria from Forest Soil" Fermentation 7, no. 1: 40. https://doi.org/10.3390/fermentation7010040
APA StyleShrestha, S., Khatiwada, J. R., Zhang, X., Chio, C., Kognou, A. L. M., Chen, F., Han, S., Chen, X., & Qin, W. (2021). Screening and Molecular Identification of Novel Pectinolytic Bacteria from Forest Soil. Fermentation, 7(1), 40. https://doi.org/10.3390/fermentation7010040