Investigation of Nitrate Respiration in Cupriavidus necator for Application in Life Support System
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Culture Media
2.1.1. Strains
2.1.2. Media
2.2. Inoculum Preparation
2.3. Bioreactor Cultivation
2.4. Fermentation Strategy
2.5. Analytical Procedure
2.5.1. Biomass Quantification and Characterization
2.5.2. Metabolite Quantification
2.6. Data Treatment
3. Results
3.1. Determination of the Nitrate Fermentation Conditions
3.1.1. Optimum pH
3.1.2. Anaerobiosis vs. Microaerobiosis
3.1.3. PHA Synthetic Metabolism
3.2. Continuous Cultures
4. Discussion
4.1. Effects of pH and Aeration on C. necator Anaerobic Growth
4.2. Effects of the pH and Aeration on C. necator Biomass Composition
4.3. Consideration for BLSS Integration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BLSS | Bioregenerative life support system |
| C. necator | Cupriavidus necator |
| SCP | Single-cell protein |
| VFAs | Volatile fatty acids |
| PHAs | Polyhydroxyalcanoates |
| CDW | Cell dry weight |
| PHB | Polyhydroxybutyrate |
| PHV | Polyhydroxyvalerate |
| C/N | Carbon-to-nitrogen ratio |
| nar | Nitrate reductase |
| nir | Nitrite reductase |
| nor | Nitric oxide reductase |
| nos | Nitrous oxide reductase |
| NH4+ | Ammonium |
| µ | Specific growth rate (h−1) |
| CECT | Spanish Type Culture Collection |
| DSM | DSMZ-German Collection of Microorganisms and Cell cultures GmbH |
| TSB | Tryptone Soy Broth |
| MM1 | Mineral medium 1 |
| MM2 | Mineral medium 2 |
| C | Carbon |
| N | Nitrogen |
| HPIC | High-pressure ionic chromatography |
| µmax | Maximal specific growth rate (h−1) |
| S | Substrate |
| Ynitrate | Conversion yield of nitrate into biomass (batch) (gCDW·gS−1) |
| Ynitrite | Conversion yield of nitrite into biomass (batch) (gCDW·gS−1) |
| Yglucose | Conversion yield of glucose into biomass (batch) (gCDW·gS−1) |
| Xc | Catalytic biomass |
| Ysxc | Catalytic biomass yields (chemostat) (Cmolxc·CmolS−1) |
| Ysx | Total biomass yields (chemostat) (gCDW·gS−1) |
| q | Specific consumption or production rate (mol·gCDW−1·h−1) |
| FSC-W | Forward-scatter width |
| FSC-A | Forward-scatter area |
References
- Hao, Z.; Zhu, Y.; Feng, S.; Meng, C.; Hu, D.; Liu, H.; Liu, H. Effects of Long Term Isolation on the Emotion Change of “Lunar Palace 365” Crewmembers. Sci. Bull. 2019, 64, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Lasseur, C.; Brunet, J.; de Weever, H.; Dixon, M.; Dussap, G.; Godia, F.; Leys, N.; Mergeay, M. Melissa: The European Project of a Closed Life Support System. Gravit. Space Biol. 2008, 23, 11. [Google Scholar]
- Shevtsov, J.; Escobar, C.; Schuerger, A.; Trouillefou, C.; Tuominen, L.; Wheeler, R. Bioregenerative Life Support Systems: Coordinated Research into Organisms, Technology and Systems Integration; NASA: Washington, DC, USA, 2021. [Google Scholar]
- Foster, J.F.; Litchfield, J.H. A Continuous Culture Apparatus for the Microbial Utilization of Hydrogen Produced by Electrolysis of Water in Closed-Cycle Space Systems. Biotechnol. Bioeng. 1964, 6, 441–456. [Google Scholar] [CrossRef]
- Vandamme, P.; Coenye, T. Taxonomy of the Genus Cupriavidus: A Tale of Lost and Found. Int. J. Syst. Evol. Microbiol. 2004, 54, 2285–2289. [Google Scholar] [CrossRef]
- Cruvellier, N. Etude et Modélisation du Compartiment Nitrifacteur de la Boucle MELiSSA: Coculture Sur Ammonium et Triculture Sur Urée. Ph.D. Thesis, Université de Clermont Auvergne, Clermont-Ferrand, France, 2018. [Google Scholar]
- Joris, P.; Lombard, E.; Paillet, A.; Navarro, G.; Guillouet, S.E.; Gorret, N. Recycling Potential of Cupriavidus Necator for Life Support in Space: Production of SCPs from Volatile Fatty Acid and Urea Mixture. J. Biotechnol. 2024, 396, 18–27. [Google Scholar] [CrossRef]
- Joris, P.; Navarro, G.; Paillet, A.; Lombard, E.; Gorret, N.; Guillouet, S. Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of SCPs and PHAs from Organic Wastes; Texas Tech. Library: Calgary, AB, Canada, 2023. [Google Scholar]
- Joris, P. Étude de la Bactérie Cupriavidus Necator Pour une Application Spatiale en Support Vie: Recyclage des Déchets, Alimentation et Biopolymères. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2025. Available online: https://theses.hal.science/tel-05371320v1 (accessed on 13 June 2025).
- Chee, J.Y.; Lakshmanan, M.; Jeepery, I.F.; Mohamad Hairudin, N.H.; Sudesh, K. The Potential Application of Cupriavidus Necator as Polyhydroxyalkanoates Producer and Animal Feed. Appl. Food Biotechnol. 2019, 6, 19–34. [Google Scholar] [CrossRef]
- Tan, G.-Y.; Chen, C.-L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 2014, 6, 706–754. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Ginni, G.; Kavitha, S.; Yukesh Kannah, R.; Kumar, V.; Adish Kumar, S.; Gunasekaran, M.; Tyagi, V.K.; Kumar, G. Polyhydroxyalkanoates Synthesis Using Acidogenic Fermentative Effluents. Int. J. Biol. Macromol. 2021, 193, 2079–2092. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.-K.; Saratale, G.D.; Kumar, M.; Bharagava, R.N.; Varjani, S.; Kadam, A.A.; Ghodake, G.S.; Palem, R.R.; Mulla, S.I.; et al. An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery. Polymers 2021, 13, 4297. [Google Scholar] [CrossRef]
- Cabecas Segura, P.; Onderwater, R.; Deutschbauer, A.; Dewasme, L.; Wattiez, R.; Leroy, B. Study of the Production of Poly(hydroxybutyrate-co-hydroxyhexanoate) and Poly(hydroxybutyrate-co-hydroxyvalerate-co-hydroxyhexanoate) in Rhodospirillum rubrum. Appl. Environ. Microbiol. 2022, 88, e0158621. [Google Scholar] [CrossRef] [PubMed]
- Cabecas Segura, P.; Wattiez, R.; Vande Wouwer, A.; Leroy, B.; Dewasme, L. Dynamic Modeling of Rhodospirillum rubrum PHA Production Triggered by Redox Stress during VFA Photoheterotrophic Assimilations. J. Biotechnol. 2022, 360, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Cabecas Segura, P.; De Meur, Q.; Tanghe, A.; Onderwater, R.; Dewasme, L.; Wattiez, R.; Leroy, B. Effects of Mixing Volatile Fatty Acids as Carbon Sources on Rhodospirillum rubrum Carbon Metabolism and Redox Balance Mechanisms. Microorganisms 2021, 9, 1996. [Google Scholar] [CrossRef]
- Bellini, S.; Tommasi, T.; Fino, D. Poly(3-hydroxybutyrate) Biosynthesis by Cupriavidus necator: A Review on Waste Substrates Utilization for a Circular Economy Approach. Bioresour. Technol. Rep. 2022, 17, 100985. [Google Scholar] [CrossRef]
- Sakarika, M.; Kerckhof, F.-M.; Van Peteghem, L.; Pereira, A.; Van Den Bossche, T.; Bouwmeester, R.; Gabriels, R.; Van Haver, D.; Ulčar, B.; Martens, L.; et al. The Nutritional Composition and Cell Size of Microbial Biomass for Food Applications Are Defined by the Growth Conditions. Microb. Cell Factories 2023, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- Lykidis, A.; Pérez-Pantoja, D.; Ledger, T.; Mavromatis, K.; Anderson, I.J.; Ivanova, N.N.; Hooper, S.D.; Lapidus, A.; Lucas, S.; González, B.; et al. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader. PLoS ONE 2010, 5, e9729. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, A.; Fricke, W.F.; Reinecke, F.; Kusian, B.; Liesegang, H.; Cramm, R.; Eitinger, T.; Ewering, C.; Pötter, M.; Schwartz, E.; et al. Genome Sequence of the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006, 24, 1257–1262. [Google Scholar] [CrossRef]
- Cramm, R. Genomic View of Energy Metabolism in Ralstonia eutropha H16. Microb. Physiol. 2009, 16, 38–52. [Google Scholar] [CrossRef]
- Pfitzner, J.; Schlegel, H.G. Denitrifikation bei Hydrogenomonas eutropha Stamm H16. Archiv. Mikrobiol. 1973, 90, 199–211. [Google Scholar] [CrossRef]
- Tiemeyer, A.; Link, H.; Weuster-Botz, D. Kinetic Studies on Autohydrogenotrophic Growth of Ralstonia eutropha with Nitrate as Terminal Electron Acceptor. Appl. Microbiol. Biotechnol. 2007, 76, 75–81. [Google Scholar] [CrossRef]
- Repaske, R.; Ambrose, C.A.; Repaske, A.C.; De Lacy, M.L. Bicarbonate Requirement for Elimination of the Lag Period of Hydrogenomonas eutropha. J. Bacteriol. 1971, 107, 712–717. [Google Scholar] [CrossRef]
- Maiti, B.K.; Moura, I.; Moura, J.J.G. Nitrate-Nitrite Interplay in the Nitrogen Biocycle. Molecules 2025, 30, 3023. [Google Scholar] [CrossRef]
- Stein, L.Y.; Klotz, M.G. The Nitrogen Cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef]
- Verbeelen, T.; Leys, N.; Ganigué, R.; Mastroleo, F. Development of Nitrogen Recycling Strategies for Bioregenerative Life Support Systems in Space. Front. Microbiol. 2021, 12, 700810. [Google Scholar] [CrossRef] [PubMed]
- Orita, I.; Iwazawa, R.; Nakamura, S.; Fukui, T. Identification of Mutation Points in Cupriavidus necator NCIMB 11599 and Genetic Reconstitution of Glucose-Utilization Ability in Wild Strain H16 for Polyhydroxyalkanoate Production. J. Biosci. Bioeng. 2012, 113, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, H.G.; Lafferty, R.; Krauss, I. The Isolation of Mutants Not Accumulating Poly-β-Hydroxybutyric Acid. Archiv. Mikrobiol. 1970, 71, 283–294. [Google Scholar] [CrossRef]
- Lu, J.; Brigham, C.J.; Rha, C.; Sinskey, A.J. Characterization of an Extracellular Lipase and Its Chaperone from Ralstonia eutropha H16. Appl. Microbiol. Biotechnol. 2013, 97, 2443–2454. [Google Scholar] [CrossRef]
- Marc, J.; Grousseau, E.; Lombard, E.; Sinskey, A.J.; Gorret, N.; Guillouet, S.E. Over Expression of GroESL in Cupriavidus Necator for Heterotrophic and Autotrophic Isopropanol Production. Metab. Eng. 2017, 42, 74–84. [Google Scholar] [CrossRef]
- Boy, C.; Lesage, J.; Alfenore, S.; Gorret, N.; Guillouet, S.E. Plasmid Expression Level Heterogeneity Monitoring via Heterologous eGFP Production at the Single-Cell Level in Cupriavidus necator. Appl. Microbiol. Biotechnol. 2020, 104, 5899–5914. [Google Scholar] [CrossRef]
- Boy, C.; Lesage, J.; Alfenore, S.; Guillouet, S.E.; Gorret, N. Investigation of the Robustness of Cupriavidus necator Engineered Strains during Fed-Batch Cultures. AMB Expr. 2021, 11, 151. [Google Scholar] [CrossRef]
- Timoumi, A.; Cléret, M.; Bideaux, C.; Guillouet, S.E.; Allouche, Y.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Dynamic Behavior of Yarrowia lipolytica in Response to pH Perturbations: Dependence of the Stress Response on the Culture Mode. Appl. Microbiol. Biotechnol. 2017, 101, 351–366. [Google Scholar] [CrossRef]
- Roels, J.A. Energetics and Kinetics in Biotechnology; Elsevier Biomedical Press: Amsterdam, The Netherlands, 1983; ISBN 978-0-444-80437-2. [Google Scholar]
- Kohlmann, Y.; Pohlmann, A.; Schwartz, E.; Zühlke, D.; Otto, A.; Albrecht, D.; Grimmler, C.; Ehrenreich, A.; Voigt, B.; Becher, D.; et al. Coping with Anoxia: A Comprehensive Proteomic and Transcriptomic Survey of Denitrification. J. Proteome Res. 2014, 13, 4325–4338. [Google Scholar] [CrossRef]
- Robertson, L.A.; Kuenen, J.G. Aerobic Denitrification: A Controversy Revived. Arch. Microbiol. 1984, 139, 351–354. [Google Scholar] [CrossRef]
- Yang, J.; Feng, L.; Pi, S.; Cui, D.; Ma, F.; Zhao, H.; Li, A. A Critical Review of Aerobic Denitrification: Insights into the Intracellular Electron Transfer. Sci. Total Environ. 2020, 731, 139080. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, W.; Chai, X.; Dai, X.; Wu, B. PHA Stimulated Denitrification through Regulation of Preferential Cofactor Provision and Intracellular Carbon Metabolism at Different Dissolved Oxygen Levels by Pseudomonas stutzeri. Chemosphere 2022, 309, 136641. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Giacinti, G.; Raynaud, C.D.; Cameleyre, X.; Alfenore, S.; Guillouet, S.; Gorret, N. Impact of the Environmental Parameters on Single Cell Protein Production and Composition by Cupriavidus necator. J. Biotechnol. 2024, 388, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.K.; Theriot, J.A. Surface Area to Volume Ratio: A Natural Variable for Bacterial Morphogenesis. Trends Microbiol. 2018, 26, 815–832. [Google Scholar] [CrossRef]
- Pritchard, R.H. Review Lecture on the Growth and Form of a Bacterial Cell. Philos. Trans. R. Soc. Lond. 1974, 267, 303–336. [Google Scholar] [CrossRef]
- Sud, I.J.; Schaechter, M. Dependence of the content of cell envelopes on the growth rate of Bacillus megaterium. J. Bacteriol. 1964, 88, 1612–1617. [Google Scholar] [CrossRef]
- Levin, P.A.; Angert, E.R. Small but Mighty: Cell Size and Bacteria. Cold Spring Harb. Perspect. Biol. 2015, 7, a019216. [Google Scholar] [CrossRef]
- Vadia, S.; Tse, J.L.; Lucena, R.; Yang, Z.; Kellogg, D.R.; Wang, J.D.; Levin, P.A. Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size. Curr. Biol. 2017, 27, 1757–1767.e5. [Google Scholar] [CrossRef]
- Vadia, S.; Levin, P.A. Growth Rate and Cell Size: A Re-Examination of the Growth Law. Curr. Opin. Microbiol. 2015, 24, 96–103. [Google Scholar] [CrossRef]
- Roy, S.; Nirakar, P.; Yong, N.G.H.; Stefan, W. Denitrification Kinetics Indicates Nitrous Oxide Uptake Is Unaffected by Electron Competition in Accumulibacter. Water Res. 2021, 189, 116557. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Dang, Z.; Li, C.; Zhou, Y.; Yang, B.; Huang, S. Simultaneous Oxygen and Nitrate Respiration for Nitrogen Removal Driven by Aeration: Carbon/Nitrogen Metabolism and Metagenome-Based Microbial Ecology. J. Water Process Eng. 2022, 50, 103196. [Google Scholar] [CrossRef]
- Ho, C.M.; Tseng, S.K.; Chang, Y.J. Autotrophic Denitrification via a Novel Membrane-Attached Biofilm Reactor. Lett. Appl. Microbiol. 2001, 33, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Ishimaru, M.; Hatamoto, M.; Yamaguchi, T.; Araki, N.; Okabe, S. N2O Production Using Native Nos-Deficient Denitrifying Bacterial Strains Screened by a Genome Mining Approach. Bioresour. Technol. Rep. 2020, 11, 100529. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Barco-Mendoza, G.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ochoa, M.A.V.; González-Aguilar, G.A. Single-Cell Protein Production as a Strategy to Reincorporate Food Waste and Agro By-Products Back into the Processing Chain. Bioengineering 2022, 9, 623. [Google Scholar] [CrossRef]
- Siegrist, H.; Brunner, I.; Koch, G.; Phan, L.C.; Le, V.C. Reduction of Biomass Decay Rate under Anoxic and Anaerobic Conditions. Water Sci. Technol. 1999, 39, 129–137. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V.; Ahmed, Z.; Dobrenko, S.; Saliuk, A. Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. Int. J. Environ. Sci. Technol. 2015, 12, 725–738. [Google Scholar] [CrossRef]
- Coats, E.R.; Loge, F.J.; Wolcott, M.P.; Englund, K.; McDonald, A.G. Production of Natural Fiber Reinforced Thermoplastic Composites through the Use of Polyhydroxybutyrate-Rich Biomass. Bioresour. Technol. 2008, 99, 2680–2686. [Google Scholar] [CrossRef]
- Collet, C.; Vaidya, A.A.; Gaugler, M.; West, M.; Lloyd-Jones, G. Extrusion of PHA-Containing Bacterial Biomass and the Fate of Endotoxins: A Cost-Reducing Platform for Applications in Molding, Coating and 3D Printing. Mater. Today Commun. 2022, 33, 104162. [Google Scholar] [CrossRef]



| Mode | Batch | ||||
|---|---|---|---|---|---|
| Experiment | A | B * | C | D | E |
| Strain | CECT 4623 | CECT 4623 | CECT 4623 | CECT 4623 | DSM 541 |
| pH | 7.0/7.3 | 7.5 | 8.0/8.5 | 7.5 | 7.5 |
| Carbon source | Glucose | Glucose | Glucose | Glucose | Fructose |
| Nitrogen source | Urea | Urea | Urea | Urea | Urea |
| Aeration | Anaerobiosis | Anaerobiosis | Anaerobiosis | Microaerobiosis | Anaerobiosis |
| Mode | Chemostat | ||||
| D (h−1) | 0.02 | 0.02 | 0.02 | ||
| Experiment | C1 | C2 | C3 | ||
| Carbon source | Glucose | Acetic acid | Acetic acid | ||
| Nitrogen source | Urea | Urea | Urea | ||
| Limiting substrate | Nitrate and nitrite | Nitrate and nitrite | Acetic acid | ||
| Transient period duration (h) | 286 | 359 | 505 | ||
| Steady-state duration (h) | 98 | 66 | 71 | ||
| Strains | Aeration | Experiment | pH | µnitrate | µnitrite | Ynitrate | Ynitrite | Yglucose | Proteins | PHB | DNA | RNA | Sum of the Biomass Components |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (h−1) | (h−1) | (gCDW·gnitrate−1) | (gCDW·gnitrite−1) | (gCDW·gglucose−1) | (%CDW) | (%CDW) | (%CDW) | (%CDW) | (%CDW) | ||||
| CECT 4623 | Anaerobiosis | A | 7.0 | 0.0044 ± 0.0002 | / | 0.27 ± 0.04 | / | / | 22 ± 1 | 29 ± 6 | 3.7 ± 0.3 | 1.4 ± 0.2 | 56 ± 6 |
| 7.3 | 0.0073 ± 0.0001 | 0.012 | 0.31 ± 0.04 | / | 0.35 ± 0.02 | 27 ± 1 | 37 ± 2 | 3.6 ± 0.3 | 0.8 ± 0.1 | 68 ± 7 | |||
| B * | 7.5 | 0.036 ± 0.001 | 0.050 ± 0.003 | 0.11 ± 0.00 | 0.26 ± 0.08 | 0.29 ± 0.01 | 42 ± 6 | 28 ± 12 | 3.7 ± 0.9 | 1.0 ± 0.2 | 75 ± 5 | ||
| C | 8.0 | 0.012 ± 0.001 | 0.009 | 0.14 ± 0.01 | / | 0.30 ± 0.04 | 35 ± 4 | 23 ± 9 | 2.1 ± 0.3 | 1.4 ± 0.5 | 62 ± 9 | ||
| 8.5 | 0 | / | / | / | / | / | / | / | / | / | |||
| Microaerobiosis | D | 7.5 | 0.104 ± 0.013 | 0.027 | 0.24 ± 0.02 | 0.52 ± 0.00 | 0.29 ± 0.02 | 49 ± 5 | 32 ± 7 | 3.1 ± 0.7 | 2.0 ± 0.2 | 86 ± 3 | |
| DSM 541 | Anaerobiosis | E | 7.5 | 0.033 ± 0.001 | 0 | 0.05 ± 0.01 | 0 | / | / | / | / | / | / |
| Experiment | D | Carbon Source | Limiting Substrate | CDW | Ysx | Ysxc | Protein | PHA | DNA | RNA |
|---|---|---|---|---|---|---|---|---|---|---|
| (h−1) | (g·L−1) | (gCDW·gS−1) | (Cmolxc·cmolS−1) | (%CDW) | (%CDW) | (%CDW) | (%CDW) | |||
| C1 | 0.023 | Glucose | Nitrate and nitrite | 1.6 ± 0.1 | 0.38 ± 0.02 | 0.43 ± 0.03 | 33 ± 2 | 57 ± 1 | 3.9 ± 0.4 | 1.4 ± 0.2 |
| C2 | 0.021 | Acetic acid | 0.94 ± 0.08 | 0.29 ± 0.03 | 0.33 ± 0.02 | 29 ± 1 | 57 ± 3 | 3.6 ± 0.3 | 0.80 ± 0.1 | |
| C3 | 0.024 | Acetic acid | 0.59 ± 0.02 | 0.21 ± 0.01 | 0.24 ± 0.01 | 39 ± 2 | 45 ± 2 | 2.2 ± 0.4 | 0.40 ± 0.01 |
| Experiment | D | C/N | qC/qN | qN | qC | qCO2 | qPHB | Carbon Balance | Nitrogen Balance |
|---|---|---|---|---|---|---|---|---|---|
| (h−1) | (Nmmol·g−1·h−1) | (Cmmol·g−1·h−1) | (%) | (%) | |||||
| C1 | 0.023 | 8.2 | 23 ± 5 | −0.20 ± 0.02 | −4.7 ± 0.6 | 1.9 ± 0.2 | 1.5 ± 0.1 | 88 ± 1 | 108 ± 10 |
| C2 | 0.021 | 8.7 | 29 ± 4 | −0.20 ± 0.02 | −5.4 ± 0.5 | 2.7 ± 0.4 | 1.4 ± 0.2 | 93 ± 2 | 99 ± 9 |
| C3 | 0.024 | 2.8 | 6 ± 1 | −1.1 ± 0.2 | −6.8 ± 0.2 | 6.0 ± 0.1 | 0.91 ± 0.07 | 114 ± 8 | 79 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Joris, P.; Lombard, E.; Paillet, A.; Navarro, G.; Guillouet, S.E.; Gorret, N. Investigation of Nitrate Respiration in Cupriavidus necator for Application in Life Support System. Fermentation 2026, 12, 81. https://doi.org/10.3390/fermentation12020081
Joris P, Lombard E, Paillet A, Navarro G, Guillouet SE, Gorret N. Investigation of Nitrate Respiration in Cupriavidus necator for Application in Life Support System. Fermentation. 2026; 12(2):81. https://doi.org/10.3390/fermentation12020081
Chicago/Turabian StyleJoris, Pierre, Eric Lombard, Alexis Paillet, Gregory Navarro, Stephane E. Guillouet, and Nathalie Gorret. 2026. "Investigation of Nitrate Respiration in Cupriavidus necator for Application in Life Support System" Fermentation 12, no. 2: 81. https://doi.org/10.3390/fermentation12020081
APA StyleJoris, P., Lombard, E., Paillet, A., Navarro, G., Guillouet, S. E., & Gorret, N. (2026). Investigation of Nitrate Respiration in Cupriavidus necator for Application in Life Support System. Fermentation, 12(2), 81. https://doi.org/10.3390/fermentation12020081

