Evolutionarily Distinct Enzymes Uncovered Through Sequence Similarity Network Analysis of De Novo Transcriptomes from Underexplored Protist Axenic Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Protist Isolation, Culturing and Total RNA Extraction
2.2. Trimming, De Novo Transcriptome Assembly, and Functional Annotation
2.3. Protist Species Identification
2.4. Retrieval of Target Enzyme Sequences
2.5. Identification of Enzymes from Protist Transcriptomes
2.6. Sequence Similarity Network Analysis
3. Results
3.1. Protist Species Identification
3.2. Sequence Similarity Network Analysis
3.2.1. Network Size and Node Connectivity as General Indicators of Enzyme Novelty
| Enzyme Name | Total Nodes | Total Edges | Network Size | Numbers of Networks | Percentage of Total Nodes per Network Size | Percentage of Protist-Derived Nodes Among All Nodes | Percentage of Protist-Derived Nodes per Network Size | Number of Neighbors (Edges/Nodes Ratio) |
|---|---|---|---|---|---|---|---|---|
| Cellulase | 1241 | 30,233 | Major (>30 nodes) | 5 | 66.6% | 61.2% | 54.2% | 40.986 |
| Medium-sized (6–30 nodes) | 21 | 19.8% | 75.2% | 16.08 | ||||
| Small (≤5 nodes) | 33 | 8.5% | 80.2% | 2.8 | ||||
| Single | 64 | 5.2% | 64.1% | 0 | ||||
| Xylanase | 316 | 3024 | Major | 1 | 45.60% | 84.80% | 83.30% | 36.75 |
| Medium-sized | 7 | 25.30% | 91.30% | 10.556 | ||||
| Small | 14 | 13.00% | 70.70% | 4 | ||||
| Single | 51 | 16.10% | 90.20% | 0 | ||||
| Pectinase | 145 | 2168 | Major | 1 | 55.90% | 38.60% | 0.00% | 59 |
| Medium-sized | 3 | 29.70% | 97.70% | 9.368 | ||||
| Small | 5 | 10.30% | 66.70% | 3.6 | ||||
| Single | 6 | 4.10% | 66.70% | 0 | ||||
| Mannanase | 188 | 2300 | Major | 2 | 71.80% | 53.20% | 47.40% | 37.114 |
| Medium-sized | 2 | 9.60% | 66.70% | 7.5 | ||||
| Small | 8 | 13.30% | 56.00% | 2 | ||||
| Single | 10 | 5.30% | 100.00% | 0 | ||||
| Catalase | 341 | 16,439 | Major | 2 | 91.20% | 56.00% | 54.30% | 144.732 |
| Medium-sized | 0 | 0.00% | / | / | ||||
| Small | 5 | 5.30% | 72.20% | 4 | ||||
| Single | 12 | 3.50% | 75% | 0 | ||||
| Lipase | 3070 | 19,058 | Major | 18 | 37.50% | 93.30% | 89.30% | 55.788 |
| Medium-sized | 95 | 28.80% | 95.00% | 10.952 | ||||
| Small | 244 | 22.00% | 97.00% | 4 | ||||
| Single | 357 | 11.60% | 94.70% | 0 | ||||
| Laccase | 138 | 2719 | Major | 1 | 85.50% | 31.90% | 31.40% | 45.983 |
| Medium-sized | 0 | 0% | / | / | ||||
| Small | 2 | 4.30% | 50.00% | 2 | ||||
| Single | 14 | 10.10% | 28.60% | 0 | ||||
| Esterase | 439 | 4374 | Major | 2 | 33.50% | 70.80% | 30.60% | 69.095 |
| Medium-sized | 14 | 33.00% | 89.70% | 13.478 | ||||
| Small | 34 | 21.20% | 90.30% | 4 | ||||
| Single | 54 | 12.30% | 96.30% | 0 | ||||
| Amylase | 316 | 3955 | Major | 3 | 64.20% | 56.60% | 46.30% | 37.685 |
| Medium-sized | 3 | 8.50% | 81.50% | 10 | ||||
| Small | 12 | 10.40% | 69.70% | 2.8 | ||||
| Single | 53 | 16.80% | 75.50% | 0 |
3.2.2. Detailed SSNs Reveals Potential Novel Enzymes
4. Discussion
4.1. Species-Level Distribution of Targeted Enzyme Candidates
4.2. Evidence for Sequence-Level Novelty in Protist-Derived Enzymes
4.3. Benefits of Axenic, Single-Strain Transcriptome Resources
4.4. Challenge and Prospective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SSN | Sequence Similarity Network |
| EC | Enzyme Commission |
References
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef]
- Bukhari, I.; Haq, F.; Kiran, M.; Aziz, T.; Mehmood, S.; Haroon, M. Lignocellulosic biomass as a renewable resource: Driving second-generation biofuel innovation from agricultural waste. Biomass Bioenergy 2025, 201, 108133. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, D.; Zhao, X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 2021, 146, 111169. [Google Scholar] [CrossRef]
- Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J.; Hayashi, S.; Domen, K.; Hara, M. Biodiesel made with sugar catalyst. Nature 2005, 438, 178. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane Production from Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef]
- Liu, Y.; Min, J.; Feng, X.; He, Y.; Liu, J.; Wang, Y.; He, J.; Do, H.; Sage, V.; Yang, G.; et al. A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies 2020, 13, 2451. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Setegn, H.; Abate, A. Pectinase from Microorganisms and Its Industrial Applications. Sci. World J. 2022, 2022, 1881305. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Kenealy, W.R.; Jeffries, T.W. Enzyme Processes for Pulp and Paper: A Review of Recent Developments. In Wood Deterioration and Preservation; ACS Symposium Series 845; American Chemical Society: Washington, DC, USA, 2003; Chapter 12; pp. 210–239. [Google Scholar] [CrossRef]
- Gutierrez, A.; Del Rio, J.C.; Martinez, A.T. Microbial and enzymatic control of pitch in the pulp and paper industry. Appl. Microbiol. Biotechnol. 2009, 82, 1005–1018. [Google Scholar] [CrossRef]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000 Res. 2016, 5, 396. [Google Scholar] [CrossRef]
- Siddiqui, K.S.; Cavicchioli, R. Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75, 403–433. [Google Scholar] [CrossRef]
- Antranikian, G.; Egorova, K. Extremophiles, a Unique Resource of Biocatalysts for Industrial Biotechnology. In Physiology and Biochemistry of Extremophiles; Gerday, C., Glansdorff, N., Eds.; ASM Press: Washington, DC, USA, 2007; Chapter 27. [Google Scholar] [CrossRef]
- Ishino, S.; Ishino, Y. DNA polymerases as useful reagents for biotechnology—The history of developmental research in the field. Front. Microbiol. 2014, 5, 465. [Google Scholar] [CrossRef]
- Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green Fluorescent Protein as a Marker for Gene Expression. Science 1994, 263, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Rigoldi, F.; Donini, S.; Redaelli, A.; Parisini, E.; Gautieri, A. Engineering of thermostable enzymes for industrial applications. APL Bioeng. 2018, 2, 011501. [Google Scholar] [CrossRef] [PubMed]
- Contesini, F.J.; Davanço, M.G.; Borin, G.P.; Vanegas, K.G.; Cirino, J.P.G.; Melo, R.R.; Mortensen, U.H.; Hildén, K.; Campos, D.R.; Carvalho, P.O. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020, 10, 1032. [Google Scholar] [CrossRef]
- Ndochinwa, O.G.; Wang, Q.Y.; Amadi, O.C.; Nwagu, T.N.; Nnamchi, C.I.; Okeke, E.S.; Moneke, A.N. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024, 10, e32673. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, A.; Liu, W.; Yamada, K.; Kishida, T.; Toyohara, H. Animal cellulases with a focus on aquatic invertebrates. Fish. Sci. 2013, 79, 1–13. [Google Scholar] [CrossRef]
- Liu, W.; Nafisyah, A.L.; Koike, K.; Matsuoka, K. Reappraisal of cellulase activities in mangrove wetlands resulting from preliminary investigations in East Java, Indonesia. Bull. Osaka Mus. Nat. Hist. 2021, 75, 15–27. [Google Scholar]
- Caron, D.; Worden, A.; Countway, P.; Demir, E.; Heidelberg, K.B. Protists are microbes too: A perspective. ISME J. 2009, 3, 4–12. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The new tree of eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef]
- Zallot, R.; Oberg, N.; Gerlt, J.A. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019, 58, 4169–4182. [Google Scholar] [CrossRef]
- Atkinson, H.J.; Morris, J.H.; Ferrin, T.E.; Babbitt, P.C. Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies. PLoS ONE 2009, 4, e4345. [Google Scholar] [CrossRef]
- Pawlowski, J.; Audic, S.; Adl, S.; Bass, D.; Belbahri, L.; Berney, C.; Bowser, S.S.; Cepicka, I.; Decelle, J.; Dunthorn, M.; et al. CBOL Protist Working Group: Barcoding Eukaryotic Richness beyond the Animal, Plant, and Fungal Kingdoms. PLoS Biol. 2012, 10, e1001419. [Google Scholar] [CrossRef]
- Gao, X.; Chen, K.; Xiong, J.; Zou, D.; Yang, F.; Ma, Y.; Jiang, C.; Gao, X.; Wang, G.; Gu, S.; et al. The P10K database: A data portal for the protist 10 000 genomes project. Nucleic Acids Res. 2024, 52, D747–D755. [Google Scholar] [CrossRef]
- Ishii, K.I.; Imai, I.; Natsuike, M.; Sawayama, S.; Ishino, R.; Liu, W.; Fukusaki, K.; Ishikawa, A. A simple technique for establishing axenic cultures of centric diatoms from resting stage cells in bottom sediments. Phycologia 2018, 57, 674–679. [Google Scholar] [CrossRef]
- Jeong, H.J.; du Yoo, Y.D.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef]
- Robinson, S.L.; Piel, J.; Sunagawa, S. A roadmap for metagenomic enzyme discovery. Nat. Prod. Rep. 2021, 38, 1994–2023. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A.; McLoughlin, S.Y.; Kershner, J.P.; Copley, S.D. Differential Effects of a Mutation on the Normal and Promiscuous Activities of Orthologs: Implications for Natural and Directed Evolution. Mol. Biol. Evol. 2015, 32, 100–108. [Google Scholar] [CrossRef]
- Matsuoka, K. Organic-walled dinoflagellate cysts from surface sediments of Nagasaki Bay and Senzaki Bay, West Japan. Bull. Fac. Lib. Arts Nagasaki Univ. 1985, 25, 21–115. [Google Scholar]
- Tanimura, M.W.L.; Nagai, Y.; Matsuoka, K.; Toyofuku, T. Endogenous glycoside hydrolases reveal foraminiferal capacity to degrade terrestrial and marine polysaccharides. ISME Commun. 2025, 5, ycaf149. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J.; del Campo, J. Marine protists are not just big bacteria. Curr. Biol. 2017, 27, R541–R549. [Google Scholar] [CrossRef] [PubMed]
- Faktorová, D.; Nisbet, R.E.R.; Fernández Robledo, J.A.; Casacuberta, E.; Sudek, L.; Allen, A.E.; Ares, M.; Aresté, C.; Balestreri, C.; Barbrook, A.C.; et al. Genetic tool development in marine protists: Emerging model organisms for experimental cell biology. Nat. Methods 2020, 17, 481–494. [Google Scholar] [CrossRef]
- Schoenle, A.; Francis, O.; Archibald, J.M.; Burki, F.; de Vries, J.; Dumack, K.; Eme, L.; Florent, I.; Hehenberger, E.; Hoffmeyer, T.T.; et al. Protist genomics: Key to understanding eukaryotic evolution. Trends Genet. 2025, 41, 868–882. [Google Scholar] [CrossRef]


| No. | Eukaryotic Super Group | Class | Species Name | Culture Medium |
|---|---|---|---|---|
| 1 | Archaeplastida | Chlorophyceae | Chlamydomonas parallestriata strain 1 | AF6 |
| 2 | Chlamydomonas parallestriata strain 2 | AF6 | ||
| 3 | Desmodesmus pannonicus | AF6 | ||
| 4 | Haematococcus lacustris | AF6 | ||
| 5 | Cryptista | Cryptophyceae | Hemiselmis andersenii | IMK |
| 6 | Haptista | Haptophyceae | Prymnesium parvum | IMKSi |
| 7 | TSAR | Chrysophyceae | Ochromonas vasocystis strain 1 | AF6 |
| 8 | Ochromonas vasocystis strain 2 | AF6 | ||
| 9 | Bacillariophyceae | Nitzschia sp. 1 | IMKSi | |
| 10 | Nitzschia sp. 2 | IMKSi | ||
| 11 | Nitzschia sp. 3 | IMKSi | ||
| 12 | Sellaphora aff. pupula | IMKSi | ||
| 13 | Amphora aff. subtropica | IMKSi | ||
| 14 | Dinophyceae | Amphidinium carterae | IMKSi | |
| 15 | Eustigmatophyceae | Nannochloropsis oceanica | IMK |
| Enzyme Name | EC Number | Alternative Enzyme Name | Industrial Applications | Numbers of Protein Sequences Found in UniProtKB/Swiss-Prot | Numbers of Protein Found in Present Study/Strain Included |
|---|---|---|---|---|---|
| cellulase | EC 3.2.1.4 | avicelase beta-1,4-endoglucanhydrolase beta-1,4-glucanase carboxymethylcellulase celludextrinase endo-1,4-beta-D-glucanase endo-1,4-beta-D-glucanohydrolase endoglucanase | Cellulose degradation; essential enzyme in the paper industry, used to improve the brightness and strength of paper. | Bacteria: 92 Amoebozoa: 1 Fungi: 54 Metazoa: 3 Viridiplantae: 54 Total: 204 | Archaeplastida Chlorophyceae: 122/4 Cryptista Cryptophyceae: 5/1 Haptista Haptophyceae: 263/1 TSAR Chrysophyceae: 58/2 Bacillariophyceae: +G2: G15159/5 Dinophyceae: 73/1 Eustigmatophyceae: 79/1 |
| EC 3.2.1.21 | beta-glucosidase beta-D-glucosideglucohydrolase cellobiase | Bacteria: 23 Amoebozoa: 1 Fungi: 107 Metazoa: 3 Viridiplantae: 86 Total: 220 | |||
| EC 3.2.1.74 | glucan1,4-beta-glucosidase 1,4-beta-D-glucanglucohydrolase exo-1,4-beta-D-glucosidase exo-1,4-beta-glucanase exo-1,4-beta-glucosidase | N.A. | |||
| EC 3.2.1.91 | cellulose1,4-beta-cellobiosidase 1,4-beta-cellobiohydrolase 4-beta-D-glucancellobiohydrolase avicelase exo-1,4-beta-D-glucanase exocellobiohydrolase exoglucanase | Bacteria: 9 Fungi: 49 Metazoa: 1 Total: 59 | |||
| EC 3.2.1.176 | cellulose1,4-beta-cellobiosidase cellulaseSS endoglucanaseSS | Bacteria: 2 | |||
| EC 3.2.1.203 | carboxymethylcellulase CMCase | N.A. | |||
| Xylanase | EC 3.2.1.8 | endo-1,4-beta-xylanase | Hemicellulose degradation; promotes the release of lignin from pulp during bleaching. | N.A. | Archaeplastida Chlorophyceae: 44/4 Cryptista Cryptophyceae: 0 Haptista Haptophyceae: 84/1 TSAR Chrysophyceae: 20/2 Bacillariophyceae: 82/5 Dinophyceae: 23/1 Eustigmatophyceae: 15/1 |
| EC 3.2.1.37 | xylan 1,4-beta-xylosidase 1,4-beta-D-xylan xylohydrolase beta-xylosidase exo-1,4-beta-xylosidase xylobiase | Bacteria: 17 Fungi: 24 Viridiplantae: 4 Total: 45 | |||
| EC 3.2.1.156 | oligosaccharide reducing-end xylanase reducing end xylose-releasing exo-oligoxylanase | Bacteria: 3 Total: 3 | |||
| Pectinase | EC 3.2.1.15 | endo-polygalacturonase pectin depolymerase polygalacturonase | Enhancement of pulp bleaching; Degumming; Treats pectic substances in wastewater, contributing to reductions in COD and BOD. | Bacteria: 5 Fungi: 59 Metazoa: 2 Viridiplantae: 23 Total: 89 | Archaeplastida Chlorophyceae: 3/2 Cryptista Cryptophyceae: 0 Haptista Haptophyceae: 10/1 TSAR Chrysophyceae: 15/2 Bacillariophyceae: 17/5 Dinophyceae: 11/1 Eustigmatophyceae: 0 |
| Mannanase | EC 3.2.1.25 | beta-mannosidase mannase | Enhancement of pulp bleaching Mannan degradation improves physical properties such as pulp drainability and beatability (fiber fibrillation). | Fungi: 21 Metazoa: 6 Total: 27 | Archaeplastida Chlorophyceae: 44/4 Cryptista Cryptophyceae: 0 Haptista Haptophyceae: 36/1 TSAR Chrysophyceae: 11/2 Bacillariophyceae: 56/5 Dinophyceae: 4/1 Eustigmatophyceae: 0 |
| EC 3.2.1.78 | mannan endo-1,4-beta-mannosidase beta-mannanase endo-1,4-mannanase | Bacteria: 10 Fungi: 27 Metazoa: 2 Viridiplantae: 22 Total: 61 | |||
| Catalase | EC 1.11.1.6 | / | Neutralizing residual hydrogen peroxide (H2O2), a common oxidizing agent used in bleaching and etching processes | Bacteria: 66 Amoebozoa: 2 Fungi: 21 Metazoa: 15 TSAR: 1 Viridiplantae: 44 Total: 150 | Archaeplastida Chlorophyceae: 40/4 Cryptista Cryptophyceae: 4/1 Haptista Haptophyceae: 61/1 TSAR Chrysophyceae: 21/2 Bacillariophyceae: 105/5 Dinophyceae: 10/1 Eustigmatophyceae: 13/1 |
| Lipase | EC 3.1.1.3 | triacylglycerol lipase tributyrase triglyceride lipase | Acts on triglycerides in pitch Reduces sticky deposits. | Bacteria: 44 Fungi: 92 Metazoa: 65 Viridiplantae: 5 Total: 206 | Archaeplastida Chlorophyceae: 715/4 Cryptista Cryptophyceae: 48/1 Haptista Haptophyceae: 438/1 TSAR Chrysophyceae: 339/2 Bacillariophyceae: 835/5 Dinophyceae: 319/1 Eustigmatophyceae: 172/1 |
| Laccase | EC 1.10.3.2 | Urushiol oxidase | Used in bleaching, especially for recycled paper. | Archaea: 1 Bacteria: 2 Fungi: 46 Viridiplantae: 45 Total: 84 | Archaeplastida Chlorophyceae: 26/4 Cryptista Cryptophyceae: 0 Haptista Haptophyceae: 0 TSAR Chrysophyceae: 5/2 Bacillariophyceae: 11/3 Dinophyceae: 1/1 Eustigmatophyceae: 1/1 |
| Esterase | EC 3.1.1.11 | Pectinesterase pectin demethoxylase pectin methoxylase pectin methylesterase | Reducing pitch | Bacteria: 6 Fungi: 9 Metazoa: 1 Viridiplantae: 88 Total: 104 | Archaeplastida Chlorophyceae: 68/4 Cryptista Cryptophyceae: 3/1 Haptista Haptophyceae: 49/1 TSAR Chrysophyceae: 19/2 Bacillariophyceae: 88/5 Dinophyceae: 59/1 Eustigmatophyceae: 28/1 |
| EC 3.1.1.13 | sterol esterase Cholesterol esterase cholesterol ester synthase triterpenol esterase | Amoebozoa: 1 Fungi: 3 Metazoa: 20 Total: 24 | |||
| Amylase | EC 3.2.1.1 | alpha-amylase glycogenase | Starch with reduced viscosity via amylase treatment is used as a paper surface coating agent or internal filler | Archaea: 5 Bacteria: 36 Fungi: 15 Metazoa: 54 Viridiplantae: 27 Total: 137 | Archaeplastida Chlorophyceae: 76/4 Cryptista Cryptophyceae: 1/1 Haptista Haptophyceae: 20/1 TSAR Chrysophyceae: 5/2 Bacillariophyceae: 7/3 Dinophyceae: 38/1 Eustigmatophyceae: 10/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tanimura, M.W.L.; Kayama, M.; Matsuoka, K. Evolutionarily Distinct Enzymes Uncovered Through Sequence Similarity Network Analysis of De Novo Transcriptomes from Underexplored Protist Axenic Cultures. Fermentation 2026, 12, 71. https://doi.org/10.3390/fermentation12020071
Tanimura MWL, Kayama M, Matsuoka K. Evolutionarily Distinct Enzymes Uncovered Through Sequence Similarity Network Analysis of De Novo Transcriptomes from Underexplored Protist Axenic Cultures. Fermentation. 2026; 12(2):71. https://doi.org/10.3390/fermentation12020071
Chicago/Turabian StyleTanimura, Manabu W. L., Motoki Kayama, and Kazumi Matsuoka. 2026. "Evolutionarily Distinct Enzymes Uncovered Through Sequence Similarity Network Analysis of De Novo Transcriptomes from Underexplored Protist Axenic Cultures" Fermentation 12, no. 2: 71. https://doi.org/10.3390/fermentation12020071
APA StyleTanimura, M. W. L., Kayama, M., & Matsuoka, K. (2026). Evolutionarily Distinct Enzymes Uncovered Through Sequence Similarity Network Analysis of De Novo Transcriptomes from Underexplored Protist Axenic Cultures. Fermentation, 12(2), 71. https://doi.org/10.3390/fermentation12020071

