Considerations of Bacterial Robustness and Stability to Improve Bioprocess Design
Abstract
1. Introduction
2. Causes of Genetic Heterogeneity
2.1. Stochasticity
2.2. Mutations
2.2.1. Stressors
2.2.2. Coping Mechanisms
3. Robustness
3.1. Chromosome
3.2. Plasmids
4. Monitoring Subpopulations in Bioreactor Settings
4.1. From Averaging the Bulk to Considering Subpopulations
4.2. Physiological State
4.3. Expression Heterogeneity
4.3.1. Fluorescent Reporters
4.3.2. Single-Cell Transcriptomics
4.4. Genetic Heterogeneity
4.4.1. Plasmid Copy Number
4.4.2. Variations at Sequence Level
5. Minimizing Population Diversification
5.1. Genetic Stability
5.1.1. Plasmid Stability
5.1.2. Chromosomal
5.2. Minimizing Stress Response
5.2.1. Resulting from Genetic Engineering
5.2.2. Production Related Stress
5.3. Bioprocess Design
5.3.1. Propagation Chain
5.3.2. In Situ Product Recovery
5.3.3. Culture Strategy
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AP | Active partitioning |
| CFUs | Colony forming unit |
| MATQ-seq | dC-tailing-based quantitative scRNA-seq |
| dPCR | Droplet PCR |
| FC | Flow cytometry |
| FACS | Fluorescence-activated cell sorting |
| FBA | Flux balance analysis |
| FRET | Förster Resonance Energy Transfer |
| FSC | Forward-scatter signal |
| HR | Homologous recombination |
| ImFC | Imaging flow cytometry |
| IS | Insertion sequences |
| ISPR | In situ product recovery |
| MMR | Methylation-directed mismatch repair |
| microSPLit | Microbial split-pool ligation transcriptomics |
| mrs | Multimer resolution systems |
| NGS | Next generation sequencing methods |
| NHEJ | Non-homologous end joining |
| PCN | Plasmid copy number |
| ppk | Polyphosphate kinase |
| PSKs | Post-segregational killing systems |
| PETRI-seq | Prokaryotic expression profiling by tagging RNA in situ and sequencing |
| PI | Propidium iodide |
| pseuPIRA | Pseudoalignment and Probabilistic Iterative Read Assignment |
| qPCR | Quantitative PCR |
| RecA | Recombinase A |
| RBS | Ribosome binding sites |
| RNAP | RNA polymerase |
| SSC | Side-scatter signal |
| smFRET | Single molecule Förster Resonance Energy Transfer |
| SNP | Single-nucleotide polymorphisms |
| ssDNA | Single-stranded DNA |
| SAG | Single-amplified genomes |
| SiC-seq | Single-cell genome sequencing |
| scRNA-seq | Single-cell RNA sequencing |
| UTR | Untranslated regions |
| VNC | Viable non-cultivable cell |
References
- Tribe, M.; Alpine, R.L. Scale Economies and the “0.6 Rule”. Eng. Costs Prod. Econ. 1986, 10, 271–278. [Google Scholar]
- Rugbjerg, P.; Sommer, M.O.A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 2019, 37, 869–876. [Google Scholar] [CrossRef]
- Delvigne, F.; Takors, R.; Mudde, R. Bioprocess scale-up/down as integrative enabling technology: From fl uid mechanics to systems biology and beyond. Microb. Biotechnol. 2017, 10, 1267–1274. [Google Scholar] [CrossRef]
- Reisman, H.B. Problems in Scale-Up of Biotechnology Production Processes. Crit. Rev. Biotechnol. 1993, 13, 195–253. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.P.C.; Cabral, J.M.S.; Fernandes, P. Bioprocess scale-u: Quest for the parameters to be used as criterion to move from microreactors to lab-scale. J. Chem. Technol. Biotechnol. 2010, 85, 1184–1198. [Google Scholar] [CrossRef]
- Schmidt, F.R. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 2005, 68, 425–435. [Google Scholar] [CrossRef]
- Bylund, F.; Castan, A.; Mikkola, R.; Veide, A.; Larsson, G. Influence of scale-up on the quality of recombinant human growth hormone. Biotechnol. Bioeng. 2000, 69, 119–128. [Google Scholar] [CrossRef]
- Humphrey, A. Shake flask to fermentor: What have we learned? Biotechnol. Prog. 1998, 14, 3–7. [Google Scholar] [CrossRef]
- Bartholomew, W.H.; Karow, E.O.; Sfat, M.R.; Wilhelm, R.H. Oxygen Transfer and Agitation in Submerged Fermentations. Effect of Air Flow and Agitation Rates upon Fermentation of penicillium chrysogenum and Streptomyces griseus. Ind. Eng. Chem. 1950, 42, 1810–1815. [Google Scholar] [CrossRef]
- Finn, R.K. Agitation-aeration in the laboratory and in industry. Bacteriol. Rev. 1954, 18, 254–274. [Google Scholar] [CrossRef]
- Enfors, S.O.; Jahic, M.; Rozkov, A.; Xu, B.; Hecker, M.; Jürgen, B.; Krüger, E.; Schweder, T.; Hamer, G.; O’Beirne, D.; et al. Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 2001, 85, 175–185. [Google Scholar] [CrossRef]
- Baez, A.; Shiloach, J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb. Cell Fact. 2014, 13, 181. [Google Scholar] [CrossRef]
- Bisgaard, J.; Muldbak, M.; Tajsoleiman, T.; Rydal, T.; Rasmussen, T.; Huusom, J.K.; Gernaey, K.V. Characterization of mixing performance in bioreactors using flow-following sensor devices. Chem. Eng. Res. Des. 2021, 174, 471–485. [Google Scholar] [CrossRef]
- Shiue, A.; Chen, S.C.; Jeng, J.C.; Zhu, L.; Leggett, G. Mixing performance analysis of orbitally shaken bioreactors. Appl. Sci. 2020, 10, 5597. [Google Scholar] [CrossRef]
- Jin, X.; Hapsari, N.D.; Lee, S.; Jo, K. DNA binding fluorescent proteins as single-molecule probes. Analyst 2020, 145, 4079–4095. [Google Scholar] [CrossRef]
- Gebouský, O.; Idžakovičová, K.; Haidl, J. Mixing characteristics of unbaffled bioreactor with levitating radial impeller. Chem. Eng. Sci. 2023, 276, 118801. [Google Scholar] [CrossRef]
- Reusser, F. Stability and Degeneration of Microbial Cultures on Repeated Transfer. Adv. Appl. Microbiol. 1963, 5, 189–215. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Liang, Z. Degeneration of industrial bacteria caused by genetic instability. World J. Microbiol. Biotechnol. 2020, 36, 1–16. [Google Scholar] [CrossRef]
- Kutzenok, A.; Aschner, M. Degenerative processes in a strain of Clostridium butylicm. J. Bacteriol. 1952, 64, 829–836. [Google Scholar] [PubMed]
- Sieben, M.; Steinhorn, G.; Müller, C.; Fuchs, S.; Chin, L.A.; Regestein, L.; Büchs, J. Testing plasmid stability of Escherichia coli using the Continuously Operated Shaken BIOreactor System. Biotechnol. Prog. 2016, 32, 1418–1425. [Google Scholar] [CrossRef]
- Oliveira, C.; Teixeira, J.A.; Lima, N.; Da Silva, N.A.; Domingues, L. Development of Stable Flocculent Saccharomyces cerevisiae Strain for Continuous Aspergillus niger β-Galactosidase Production. J. Biosci. Bioeng. 2007, 103, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sheintuch, M.; Xu, P. Population dynamics of engineered microbes under metabolic stress and reward in batch and continuous reactors. Chem. Eng. J. 2024, 502, 158049. [Google Scholar] [CrossRef]
- Li, N.; Zeng, W.; Xu, S.; Zhou, J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth. Syst. Biotechnol. 2020, 5, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 2015, 33, 1061–1072. [Google Scholar] [CrossRef]
- Olsson, L.; Rugbjerg, P.; Pianale, L.T.; Trivellin, C. Robustness: Linking strain design to viable bioprocesses. Trends Biotechnol. 2022, 40, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, K.M.; Kontoravdi, C. Genetically-encoded biosensors for monitoring cellular stress in bioprocessing. Curr. Opin. Biotechnol. 2015, 31, 50–56. [Google Scholar] [CrossRef]
- Dekker, L.; Polizzi, K.M. Sense and sensitivity in bioprocessing—Detecting cellular metabolites with biosensors 2. Curr. Opin. Chem. Biol. 2017, 40, 31–36. [Google Scholar] [CrossRef]
- Binder, D.; Drepper, T.; Jaeger, K.E.; Delvigne, F.; Wiechert, W.; Kohlheyer, D.; Grünberger, A. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity. Metab. Eng. 2017, 42, 145–156. [Google Scholar] [CrossRef]
- Heins, A.L.; Weuster-Botz, D. Population heterogeneity in microbial bioprocesses: Origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst. Eng. 2018, 41, 889–916. [Google Scholar] [CrossRef]
- Delvigne, F.; Zune, Q.; Lara, A.R.; Al-Soud, W.; Sørensen, S.J. Metabolic variability in bioprocessing: Implications of microbial phenotypic heterogeneity. Trends Biotechnol. 2014, 32, 608–616. [Google Scholar] [CrossRef]
- Delvigne, F.; Goffin, P. Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol. J. 2014, 9, 61–72. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Abbott, D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 2009, 5, e1000348. [Google Scholar] [CrossRef]
- De Vrieze, J.; De Mulder, T.; Matassa, S.; Zhou, J.; Angenent, L.T.; Boon, N.; Verstraete, W. Stochasticity in microbiology: Managing unpredictability to reach the Sustainable Development Goals. Microb. Biotechnol. 2020, 13, 829–843. [Google Scholar] [CrossRef]
- Wehrens, M.; Büke, F.; Nghe, P.; Tans, S.J. Stochasticity in cellular metabolism and growth: Approaches and consequences. Curr. Opin. Syst. Biol. 2018, 8, 131–136. [Google Scholar] [CrossRef]
- Williams-Rhaesa, A.M.; Poole, F.L.; Dinsmore, J.T.; Lipscomb, G.L.; Rubinstein, G.M.; Scott, I.M.; Conway, J.M.; Lee, L.L.; Khatibi, P.A.; Kelly, R.M.; et al. Genome stability in engineered strains of the extremely thermophilic lignocellulose-degrading bacterium Caldicellulosiruptor bescii. Appl. Environ. Microbiol. 2017, 83, e00444-17. [Google Scholar] [CrossRef]
- Cui, Y.; Dong, H.; Zhang, D. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synth. Biol. 2019, 8, 2194–2202. [Google Scholar] [CrossRef]
- Pitcher, R.-S.; Brissett, N.-C.; Doherty, A.-J. Nonhomologous End-Joining in Bacteria: A Microbial Perspective. Annu. Rev. Microbiol. 2007, 61, 259–282. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.L.; Lee, H.; Popodi, E.; Townes, J.P.; Tang, H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 2015, 112, E5990–E5999. [Google Scholar] [CrossRef]
- Ninio, J. Transient mutators: A semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 1991, 129, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Tanneur, I.; Dervyn, E.; Jules, M.; Nicolas, P.; Kon, G.; King, K. The mutational landscape of Bacillus subtilis conditional hyper mutat ors sho ws ho w proofreading skews DNA polymerase error rates. Nucleic Acids Res. 2025, 53, gkaf147. [Google Scholar] [CrossRef]
- Lagage, V.; Chen, V.; Uphoff, S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep. 2023, 24, e55640. [Google Scholar] [CrossRef]
- Matsui, Y.; Nagai, M.; Ying, B.W. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front. Microbiol. 2023, 14, 1145673. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, S.; Mohammad-Rafiee, F.; Santen, L.; Shaebani, R. Growth of stress-responsive bacteria in 3D colonies under confining pressure. Biophys. J. 2025, 124, 807–817. [Google Scholar] [CrossRef]
- Gifford, D.R.; Maclean, R.C. Evolutionary Reversals of Antibiotic Resistance in Experimental Populations of Pseudomonas Aeruginosa. Evolution 2013, 67, 2973–2981. [Google Scholar] [CrossRef]
- Hersh, M.N.; Ponder, R.G.; Hastings, P.J.; Rosenberg, S.M. Adaptive mutation and amplification in Escherichia coli: Two pathways of genome adaptation under stress. Res. Microbiol. 2004, 155, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Ram, Y.; Hadany, L. Evolution of stress-induced mutagenesis in the presence of horizontal gene transfer. Am. Nat. 2019, 194, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Lukačišinová, M.; Novak, S.; Paixão, T. Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Comput. Biol. 2017, 13, e1005609. [Google Scholar] [CrossRef]
- Agashe, D. The road not taken: Could stress-specific mutations lead to different evolutionary paths? PLoS Biol. 2017, 15, e2002862. [Google Scholar] [CrossRef]
- Denamur, E.; Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol. 2006, 60, 820–827. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.C.; Kim, S.W.; Kim, S.W.; Hong, S.I.; Park, Y.H. Interplay of SOS induction, recombinant gene expression, and multimerization of plasmid vectors in Escherichia coli. Biotechnol. Bioeng. 2002, 80, 84–92. [Google Scholar] [CrossRef]
- Schweder, T.; Krüger, E.; Xu, B.; Jürgen, B.; Blomsten, G.; Enfors, S.O.; Hecker, M. Monitoring of genes that respond to process-related stress in large- scale bioprocesses. Biotechnol. Bioeng. 1999, 65, 151–159. [Google Scholar] [CrossRef]
- Zoheir, A.E.; Sobol, M.S.; Meisch, L.; Ordoñez-Rueda, D.; Kaster, A.K.; Niemeyer, C.M.; Rabe, K.S. A three-colour stress biosensor reveals multimodal response in single cells and spatiotemporal dynamics of biofilms. Npj Biofilms Microbiomes 2023, 9, 57. [Google Scholar] [CrossRef]
- Vericat, J.A.; Barbé, J.; Guerrero, R. Expression of the SOS response following simultaneous treatment with methyl-nitrosoguanidine and mitomycin C in Escherichia coli. Mutat. Res. DNA Repair Rep. 1984, 132, 15–20. [Google Scholar] [CrossRef]
- Layton, J.C.; Foster, P.L. Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol. Microbiol. 2003, 50, 549–561. [Google Scholar]
- McKenzie, G.J.; Lee, P.L.; Lombardo, M.-J.; Hastings, P.J.; Rosenberg, S.M. SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification ity is produced for growth on lactose medium without acquisition of a Lac point mutation. Adaptive point mutation and amplification are separate adaptive re-sponse. Mol. Cell. 2001, 7, 571–579. [Google Scholar] [PubMed]
- Chen, F.; Liu, W.Q.; Liu, Z.H.; Zou, Q.H.; Wang, Y.; Li, Y.G.; Zhou, J.; Eisenstark, A.; Johnston, R.N.; Liu, G.R.; et al. mutL as a genetic switch of bacterial mutability: Turned on or off through repeat copy number changes. FEMS Microbiol. Lett. 2010, 312, 126–132. [Google Scholar] [CrossRef]
- Galhardo, R.S.; Hastings, P.J.; Rosenberg, S.M. Mutation as a Stress Response and the Regulation of Evolvability. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 399–435. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.L. Stress responses and genetic variation in bacteria. Mutat. Res. Mol. Mech. Mutagen. 2005, 569, 3–11. [Google Scholar] [CrossRef]
- Wright, B.E. Stress-directed adaptive mutations and evolution. Mol. Microbiol. 2004, 52, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; Løbner-Olesen, A.; Riber, L. Bacterial Chromosome Replication and DNA Repair During the Stringent Response. Front. Microbiol. 2020, 11, 582113. [Google Scholar] [CrossRef]
- Riber, L.; Løbner-Olesen, A. Inhibition of Escherichia coli chromosome replication by rifampicin treatment or during the stringent response is overcome by de novo DnaA protein synthesis. Mol. Microbiol. 2020, 114, 906–919. [Google Scholar] [CrossRef]
- Stumpf, J.D.; Foster, P.L. Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli. Mol. Microbiol. 2005, 57, 751–761. [Google Scholar] [CrossRef]
- Wegrzyn, G.; Wegrzyn, A. Stress responses and replication of plasmids in bacterial cells. Microb. Cell Fact. 2002, 1, 2. [Google Scholar] [CrossRef]
- Lombardo, M.J.; Aponyi, I.; Rosenberg, S.M. General Stress Response Regulator RpoS in Adaptive Mutation and Amplification in Escherichia coli. Genetics 2004, 166, 669–680. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dupuy, P.; Sauviac, L.; Bruand, C. Stress-inducible NHEJ in bacteria: Function in DNA repair and acquisition of heterologous DNA. Nucleic Acids Res. 2019, 47, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Darmon, E.; Leach, D.R.F. Bacterial Genome Instability. Microbiol. Mol. Biol. Rev. 2014, 78, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Capy, P.; Gasperi, G.; Biémont, C.; Bazin, C. Stress and transposable elements: Co-evolution or useful parasites? Heredity 2000, 85, 101–106. [Google Scholar] [CrossRef]
- Foster, P.L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 373–397. [Google Scholar] [CrossRef]
- Vandecraen, J.; Chandler, M.; Aertsen, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 2017, 43, 709–730. [Google Scholar] [CrossRef]
- Ngan, W.Y.; Parab, L.; Bertels, F.; Gallie, J. A more significant role for insertion sequences in large-scale rearrangements in bacterial genomes. mBio 2025, 16, e0305224. [Google Scholar] [CrossRef]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef]
- Fan, C.; Wu, Y.H.; Decker, C.M.; Rohani, R.; Salazar, M.G.; Ye, H.; Cui, Z.; Schmidt, F.; Huang, W.E. Defensive Function of Transposable Elements in Bacteria. ACS Synth. Biol. 2019, 8, 2141–2151. [Google Scholar] [CrossRef]
- Lee, C.; Choi, N.; Bae, M.K.; Choo, K.; Lee, S.J. Transposition of insertion sequences was triggered by oxidative stress in radiation-resistant bacterium Deinococcus geothermalis. Microorganisms 2019, 7, 446. [Google Scholar] [CrossRef]
- Shin, E.; Ye, Q.; Lee, S.J. Active Transposition of Insertion Sequences in Prokaryotes: Insights from the Response of Deinococcus geothermalis to Oxidative Stress. Antioxidants 2022, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.S.; Mountain, S.; Beeri, K.; Adams, M.D. Assessment of insertion sequence mobilization as an adaptive response to oxidative stress in Acinetobacter baumannii using IS-seq. J. Bacteriol. 2017, 199, e00833-16. [Google Scholar] [CrossRef]
- Shi, Y.; Chai, L.; Tang, C.; Yang, Z.; Zhang, H.; Chen, R.; Chen, Y.; Zheng, Y. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 2013, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Wery, J.; Hidayat, B.; Kieboom, J.; De Bont, J.A.M. An Insertion Sequence Prepares Pseudomonas putida S12 for Severe Solvent Stress. J. Biol. Chem. 2001, 276, 5700–5706. [Google Scholar] [CrossRef]
- Rugbjerg, P.; Sarup-Lytzen, K.; Nagy, M.; Sommer, M.O.A. Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc. Natl. Acad. Sci. USA 2018, 115, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Volmer, J.; Schmid, A.; Bühler, B. Guiding bioprocess design by microbial ecology. Curr. Opin. Microbiol. 2015, 25, 25–32. [Google Scholar] [CrossRef]
- Kirchberger, P.C.; Schmidt, M.L.; Ochman, H. The Ingenuity of Bacterial Genomes. Annu. Rev. Microbiol. 2020, 74, 815–834. [Google Scholar] [CrossRef]
- Kuo, C.H.; Ochman, H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 2010, 6, e1001050. [Google Scholar] [CrossRef]
- Krakauer, D.C.; Plotkin, J.B. Redundancy, antiredundancy, and the robustness of genomes. Proc. Natl. Acad. Sci. USA 2002, 99, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Skogman, S.G.; Nilsson, J. Temperature-dependent retention of a tryptophan-operon-bearing plasmid in Escherichia coli. Gene 1984, 31, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Sleight, S.C.; Sauro, H.M. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits. ACS Synth. Biol. 2013, 2, 519–528. [Google Scholar] [CrossRef]
- Bzymek, M.; Lovett, S.T. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA 2001, 98, 8319–8325. [Google Scholar] [CrossRef]
- Oliveira, P.H.; Prather, K.J.; Prazeres, D.M.F.; Monteiro, G.A. Analysis of DNA repeats in bacterial plasmids reveals the potential for recurrent instability events. Appl. Microbiol. Biotechnol. 2010, 87, 2157–2167. [Google Scholar] [CrossRef]
- Beamud, B.; Benz, F.; Bikard, D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024, 32, 804–819. [Google Scholar] [CrossRef] [PubMed]
- Anton, B.P.; Blumenthal, R.; Eaglesham, J.B.; Mruk, I.; Roberts, R.J.; Xu, S.-Y.; Weigele, P.R.; Raleigh, E.A. Biology of host-dependent restriction-modification in prokaryotes. EcoSal Plus 2025, 13, eesp-0014-2022. [Google Scholar] [CrossRef]
- Vasu, K.; Nagaraja, V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef]
- Kang, H.; Gao, A.; Zhu, Y. Bacterial restriction-modification systems: Mechanisms of defense against phage infection. Biophys. Rep. 2025, 11, 330–343. [Google Scholar] [CrossRef]
- Nussenzweig, P.M.; Marraffini, L.A. Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annu. Rev. Genet. 2020, 54, 93–120. [Google Scholar] [CrossRef]
- Horvath, P.; Barrangou, R. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 2010, 327, 167–171. [Google Scholar] [CrossRef]
- Barrangou, R. The roles of CRISPR—Cas systems in adaptive immunity and beyond. Curr. Opin. Immunol. 2015, 32, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Lopatina, A.; Tal, N.; Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu. Rev. Virol. 2020, 7, 371–384. [Google Scholar] [CrossRef]
- Jahn, M.; Crang, N.; Gynnå, A.H.; Kabova, D.; Frielingsdorf, S.; Lenz, O.; Charpentier, E.; Hudson, E.P. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl. Environ. Microbiol. 2024, 90, e0074824. [Google Scholar] [CrossRef]
- Klumpp, S. Growth-rate dependence reveals design principles of plasmid copy number control. PLoS ONE 2011, 6, e20403. [Google Scholar] [CrossRef]
- Brockhurst, M.A.; Harrison, E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 2022, 30, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Ares-arroyo, M.; Rocha, E.P.C.; Gonzalez-zorn, B. Evolution of ColE1-like plasmids across γ-Proteobacteria: From bacteriocin production to antimicrobial resistance. PLoS Genet. 2021, 17, e1009919. [Google Scholar] [CrossRef]
- Hägg, P.; De Pohl, J.W.; Abdulkarim, F.; Isaksson, L.A. A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J. Biotechnol. 2004, 111, 17–30. [Google Scholar] [CrossRef]
- Cegłowski, P.; Zielenkiewicz, U. Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim. Pol. 2001, 48, 1003–1023. [Google Scholar] [CrossRef]
- Jones, K.L.; Kim, S.W.; Keasling, J.D. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2000, 2, 328–338. [Google Scholar] [CrossRef]
- Mishra, D.; Srinivasan, R. Catching a Walker in the Act—DNA Partitioning by ParA Family of Proteins. Front. Microbiol. 2022, 13, 1–25. [Google Scholar] [CrossRef]
- Siguier, P.; Campos, M.; Cornet, F.; Bouet, J.Y.; Guynet, C. Atypical low-copy number plasmid segregation systems, all in one? Plasmid 2023, 127, 102694. [Google Scholar] [CrossRef]
- Brendler, T.; Reaves, L.; Austin, S. Interplay between Plasmid Partition and Postsegregational Killing Systems. J. Bacteriol. 2004, 186, 2504–2507. [Google Scholar] [CrossRef]
- Liao, Y.C.; Saengsawang, B.; Chen, J.W.; Zhuo, X.Z.; Li, S.Y. Construction of an Antibiotic-Free Vector and its Application in the Metabolic Engineering of Escherichia Coli for Polyhydroxybutyrate Production. Front. Bioeng. Biotechnol. 2022, 10, 837944. [Google Scholar] [CrossRef]
- Fraikin, N.; Van Melderen, L. Single-cell evidence for plasmid addiction mediated by toxin–antitoxin systems. Nucleic Acids Res. 2024, 52, 1847–1859. [Google Scholar] [CrossRef]
- Khodak, Y.A.; Shaifutdinov, R.R.; Khasanov, D.S.; Orlova, N.A.; Vorobiev, I.I. Location and Orientation of the Genetic Toxin–Antitoxin Element hok/sok in the Plasmid Affect Expression of Pharmaceutically Significant Proteins in Bacterial Cells. Biochemistry 2023, 88, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Bentley, W.E.; Quiroga, O.E. Investigation of subpopulation heterogeneity and plasmid stability in recombinant escherichia coli via a simple segregated model. Biotechnol. Bioeng. 1993, 42, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, R.; Nilsson, E.; Striedner, G.; Bayer, K. Stabilizing plasmid copy number to improve recombinant protein production. Biotechnol. Bioeng. 2002, 77, 142–147. [Google Scholar] [CrossRef]
- Sánchez-Romero, M.A.; Mérida-Floriano, Á.; Casadesús, J. Copy Number Heterogeneity in the Virulence Plasmid of Salmonella enterica. Front. Microbiol. 2020, 11, 599931. [Google Scholar] [CrossRef] [PubMed]
- García-Timermans, C.; Kerckhof, F.-M.; Boon, N.; Rubbens, P.; Heyse, J.; Props, R.; Skirtach, A.G.; Waegeman, W. Discriminating Bacterial Phenotypes at the Population and Single-Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting. Cytom. Part A 2020, 97, 713–726. [Google Scholar] [CrossRef]
- Fernandes, R.L.; Nierychlo, M.; Lundin, L.; Pedersen, A.E.; Tellez, P.E.P.; Dutta, A.; Carlquist, M.; Bolic, A.; Schäpper, D.; Brunetti, A.C.; et al. Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 2011, 29, 575–599. [Google Scholar] [CrossRef] [PubMed]
- Broger, T.; Odermatt, R.P.; Huber, P.; Sonnleitner, B. Real-time on-line flow cytometry for bioprocess monitoring. J. Biotechnol. 2011, 154, 240–247. [Google Scholar] [CrossRef]
- Díaz, M.; Herrero, M.; García, L.A.; Quirós, C. Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 2010, 48, 385–407. [Google Scholar] [CrossRef]
- Bouchedja, D.N.; Danthine, S.; Kar, T.; Fickers, P.; Boudjellal, A.; Delvigne, F. Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour. Bioprocess. 2017, 4, 3. [Google Scholar] [CrossRef]
- Narayana, S.K.; Mallick, S.; Siegumfeldt, H.; van den Berg, F. Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology. Fermentation 2020, 6, 10. [Google Scholar] [CrossRef]
- Dimitriadis, S.; Dova, L.; Kotsianidis, I.; Hatzimichael, E.; Kapsali, E.; Markopoulos, G.S. Imaging Flow Cytometry: Development, Present Applications, and Future Challenges. Methods Protoc. 2024, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, M.; Dagkesamanskaya, A.; Vieu, P.G.; Duperray, M.; Duplan-Eche, V.; François, J.M. A flow cytometry method for quantitative measurement and molecular investigation of the adhesion of bacteria to yeast cells. Sci. Rep. 2024, 14, 20935. [Google Scholar] [CrossRef]
- Konieczny, M.; Rhein, P.; Czaczyk, K.; Białas, W.; Juzwa, W. Imaging flow cytometry to study biofilm-associated microbial aggregates. Molecules 2021, 26, 7096. [Google Scholar] [CrossRef]
- Power, A.L.; Barber, D.G.; Groenhof, S.R.M.; Wagley, S.; Liu, P.; Parker, D.A.; Love, J. The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes. Front. Cell. Infect. Microbiol. 2021, 11, 716592. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, Y.; Collins, D.J.; Ai, Y. Fluorescence activated cell sorting: Via a focused traveling surface acoustic beam. Lab Chip 2017, 17, 3176–3185. [Google Scholar] [CrossRef]
- Galbusera, L.; Bellement-Theroue, G.; Urchueguia, A.; Julou, T.; van Nimwegen, E. Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS ONE 2020, 15, e0240233. [Google Scholar] [CrossRef]
- Kim, S.B.; Lyou, E.S.; Kim, M.S.; Lee, T.K. Bacterial Resuscitation from Starvation-Induced Dormancy Results in Phenotypic Diversity Coupled with Translational Activity Depending on Carbon Substrate Availability. Microb. Ecol. 2023, 86, 325–336. [Google Scholar] [CrossRef]
- Rao, N.S.; Lundberg, L.; Palmkron, S.; Håkansson, S. Flow cytometric analysis reveals culture condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri. Sci. Rep. 2021, 11, 23567. [Google Scholar] [CrossRef] [PubMed]
- Timoumi, A.; Guillouet, S.E.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2018, 102, 3831–3848. [Google Scholar] [CrossRef]
- Davey, H.; Guyot, S. Estimation of Microbial Viability Using Flow Cytometry. Curr. Protoc. Cytom. 2020, 93, e72. [Google Scholar] [CrossRef]
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 2017, 123, 464–477. [Google Scholar] [CrossRef]
- Suissa, R.; Oved, R.; Maan, H.; Hadad, U.; Gilhar, O.; Meijler, M.M.; Koren, O.; Kolodkin-Gal, I. Context-dependent differences in the functional responses of Lactobacillaceae strains to fermentable sugars. Front. Microbiol. Introd. 2022, 13, 949932. [Google Scholar] [CrossRef]
- Rosenberg, M.; Azevedo, N.F.; Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019, 9, 6483. [Google Scholar] [CrossRef] [PubMed]
- Boy, C.; Lesage, J.; Alfenore, S.; Gorret, N.; Guillouet, S.E. Plasmid expression level heterogeneity monitoring via heterologous eGFP production at the single-cell level in Cupriavidus necator. Appl. Microbiol. Biotechnol. 2020, 104, 5899–5914. [Google Scholar] [CrossRef]
- McGoverin, C.; Robertson, J.; Jonmohamadi, Y.; Swift, S.; Vanholsbeeck, F. Species Dependence of SYTO 9 Staining of Bacteria. Front. Microbiol. 2020, 11, 545419. [Google Scholar] [CrossRef]
- Barbesti, S.; Citterio, S.; Labra, M.; Baroni, M.D.; Neri, M.G.; Sgorbati, S. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 2000, 40, 214–218. [Google Scholar] [CrossRef]
- Dragan, A.I.; Casas-Finet, J.R.; Bishop, E.S.; Strouse, R.J.; Schenerman, M.A.; Geddes, C.D. Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys. J. 2010, 99, 3010–3019. [Google Scholar] [CrossRef]
- Carlquist, M.; Fernandes, R.L.; Helmark, S.; Heins, A.L.; Lundin, L.; Sørensen, S.J.; Gernaey, K.V.; Lantz, A.E. Physiological heterogeneities in microbial populations and implications for physical stress tolerance. Microb. Cell Fact. 2012, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Gaforio, J.J.; Serrano, M.J.; Ortega, E.; Algarra, I.; De Cienfuegos, G.A. Use of SYTOX green dye in the flow cytometric analysis of bacterial phagocytosis. Cytometry 2002, 48, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Sträuber, H.; Müller, S. Viability States of Bacteria—Specific Mechanisms of Selected Probes. Cytometry 2010, 77, 623–634. [Google Scholar] [CrossRef]
- Berney, M.; Vital, M.; Hülshoff, I.; Weilenmann, H.U.; Egli, T.; Hammes, F. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res. 2008, 42, 4010–4018. [Google Scholar] [CrossRef] [PubMed]
- Dunkers, J.P.; Iyer, H.; Jones, B.; Camp, C.H.; Stranick, S.J.; Lin, N.J. Toward absolute viability measurements for bacteria. J. Biophotonics 2021, 14, e202100175. [Google Scholar] [CrossRef]
- Baert, J.; Delepierre, A.; Telek, S.; Fickers, P.; Toye, D.; Delamotte, A.; Lara, A.R.; Jaén, K.E.; Gosset, G.; Jensen, P.R.; et al. Microbial population heterogeneity versus bioreactor heterogeneity: Evaluation of Redox Sensor Green as an exogenous metabolic biosensor. Eng. Life Sci. 2016, 16, 643–651. [Google Scholar] [CrossRef]
- Kundu, K.; Weber, N.; Griebler, C.; Elsner, M. Phenotypic heterogeneity as key factor for growth and survival under oligotrophic conditions. Environ. Microbiol. 2020, 22, 3339–3356. [Google Scholar] [CrossRef]
- Hatzinger, P.B.; Palmer, P.; Smith, R.L.; Peñarrieta, C.T.; Yoshinari, T. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria. J. Microbiol. Methods 2003, 52, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.A.; Siegele, D.A.; Lockless, S.W. Use of a fluorescence-based assay to measure Escherichia coli membrane potential changes in high throughput. Antimicrob. Agents Chemother. 2020, 64, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mason, D.J.; Lopéz-Amorós, R.; Allman, R.; Stark, J.M.; Lloyd, D. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria. J. Appl. Bacteriol. 1995, 78, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Novo, D.; Perlmutter, N.G.; Hunt, R.H.; Shapiro, H.M. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 1999, 35, 55–63. [Google Scholar] [CrossRef]
- Guevara, M.D.; Halte, M.; Erhardt, M.; Popp, P.F. Fluorescent tools for the standardized work in Gram-negative bacteria. J. Biol. Eng. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Schulte, M.; Grotheer, L.; Hensel, M. Bright individuals: Applications of fluorescent protein-based reporter systems in single-cell cellular microbiology. Mol. Microbiol. 2024, 121, 605–617. [Google Scholar] [CrossRef]
- Daunert, S.; Barrett, G.; Feliciano, J.S.; Shetty, R.S.; Shrestha, S.; Smith-Spencer, W. Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev. 2000, 100, 2705–2738. [Google Scholar] [CrossRef]
- Bajar, B.T.; Wang, E.S.; Zhang, S.; Lin, M.Z.; Chu, J. A guide to fluorescent protein FRET pairs. Sensors 2016, 16, 1488. [Google Scholar] [CrossRef]
- Tecon, R.; Van Der Meer, J.R. Information from single-cell bacterial biosensors: What is it good for? Curr. Opin. Biotechnol. 2006, 17, 4–10. [Google Scholar] [CrossRef]
- Barbier, M.; Damron, F.H. Rainbow vectors for broad-range bacterial fluorescence labeling. PLoS ONE 2016, 11, e0146827. [Google Scholar] [CrossRef]
- Buckley, A.M.; Petersen, J.; Roe, A.J.; Douce, G.R.; Christie, J.M. LOV-based reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 2015, 27, 39–45. [Google Scholar] [CrossRef]
- Hossain, G.S.; Saini, M.; Miyake, R.; Ling, H.; Chang, M.W. Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms. Trends Biotechnol. 2020, 38, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Füchslin, H.P.; Rüegg, I.; Van Der Meer, J.R.; Egli, T. Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid. Environ. Microbiol. 2003, 5, 878–887. [Google Scholar] [CrossRef]
- Delvigne, F.; Pêcheux, H.; Tarayre, C. Fluorescent reporter libraries as useful tools for optimizing microbial cell factories: A review of the current methods and applications. Front. Bioeng. Biotechnol. 2015, 3, 147. [Google Scholar] [CrossRef]
- Jaffrey, S.R. RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells. Adv. Pharmacol. 2018, 82, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Du, X.; Shi, Q.; Zhang, J.; He, Y.; Chen, Y.; Ming, Z.; Wang, D.; Zhong, W.; Liang, Y.; et al. A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA. Nat. Commun. 2020, 11, 2794. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.Q.; Zhang, J.; Jin, B.; Chen, T.; Wang, Z.W. Development and characterization of a glycine biosensor system for fine - tuned metabolic regulation in Escherichia coli. Microb. Cell Fact. 2022, 21, 56. [Google Scholar] [CrossRef]
- Zhang, J.; Jensen, M.K.; Keasling, J.D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 2015, 28, 1–8. [Google Scholar] [CrossRef]
- Hwang, H.G.; Ye, D.Y.; Jung, G.Y. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol. Adv. 2023, 69, 108251. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.K.; Su, Y.; Contreras, L.M.; Hammond, M.C. Synthetic Biology of Small RNAs and Riboswitches. Microbiol. Spectr. 2018, 6, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Cheng, R.; Miao, C.; Gong, Q.; Gu, Y.; Lu, X. Artificial trans -encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res. 2011, 39, e50. [Google Scholar] [CrossRef]
- Verma, A.K.; Noumani, A.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef]
- Balleza, E.; Kim, J.M.; Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 2018, 15, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Hebisch, E.; Knebel, J.; Landsberg, J.; Frey, E.; Leisner, M. High Variation of Fluorescence Protein Maturation Times in Closely Related Escherichia coli Strains. PLoS ONE 2013, 8, e75991. [Google Scholar] [CrossRef]
- Höfig, H.; Cerminara, M.; Ritter, I.; Schöne, A.; Pohl, M.; Steffen, V.; Walter, J.; Vergara, I.; Pont, D.; Katranidis, A. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species. Molecules 2018, 23, 3105. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, B.; Garcia, A.P.; Schmid, J.A. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors 2015, 15, 26281–26314. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Xu, Z.; Chen, Z.; Liu, X.; Wang, C. FRET monitoring of transcription factor activities in living bacteria. BioRxiv 2022, 1–51. [Google Scholar] [CrossRef]
- East, A.K.; Mauchline, T.H.; Poole, P.S. Biosensors for Ligand Detection. Adv. Appl. Microbiol. 2008, 64, 137–166. [Google Scholar] [CrossRef]
- Moussa, R.; Baierl, A.; Steffen, V.; Kubitzki, T.; Wiechert, W.; Pohl, M. An evaluation of genetically encoded FRET-based biosensors for quantitative metabolite analyses in vivo. J. Biotechnol. 2014, 191, 250–259. [Google Scholar] [CrossRef]
- Hare, P.J.; Lagree, T.J.; Byrd, B.A.; Demarco, A.M.; Mok, W.W.K. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters. Microorganisms 2021, 9, 2277. [Google Scholar] [CrossRef]
- Heins, A.L.; Hoang, M.D.; Weuster-Botz, D. Advances in automated real-time flow cytometry for monitoring of bioreactor processes. Eng. Life Sci. 2022, 22, 260–278. [Google Scholar] [CrossRef]
- Davey, H.M.; Kell, D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 1996, 60, 641–696. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y. Emerging tools for uncovering genetic and transcriptomic heterogeneities in bacteria. Biophys. Rev. 2024, 16, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Imdahl, F.; Vafadarnejad, E.; Homberger, C.; Saliba, A.E.; Vogel, J. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat. Microbiol. 2020, 5, 1202–1206. [Google Scholar] [CrossRef]
- Blattman, S.B.; Jiang, W.; Oikonomou, P.; Tavazoie, S. Prokaryotic Single-Cell RNA Sequencing by In Situ Combinatorial Indexing. Nat. Microbiol. 2020, 5, 1192–1201. [Google Scholar] [CrossRef]
- Kuchina, A.; Brettner, L.M.; Paleologu, L.; Roco, C.M.; Rosenberg, A.B.; Carignano, A.; Kibler, R.; Hirano, M.; DePaolo, R.W.; Seelig, G. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2021, 371, eaba5257. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.E.; San, K. A comparison of two plating techniques to estimate plasmid stability of a prolonged chemostat culture. Biotechnol. Technol. 1989, 3, 397–400. [Google Scholar] [CrossRef]
- Siegel, R.; Ryu, D.D.Y. Kinetic study of instability of recombinant plasmid pPLc23trpAl in E. coli using two-stage continuous culture system. Biotechnol. Bioeng. 1985, 27, 28–33. [Google Scholar] [CrossRef]
- Ghozzi, S.; Ng, J.W.; Chatenay, D.; Robert, J. Inference of plasmid-copy-number mean and noise from single-cell gene expression data. Phys. Rev. E 2010, 82, 25–28. [Google Scholar] [CrossRef]
- Ng, J.W.; Chatenay, D.; Robert, J.; Poirier, M.G. Plasmid copy number noise in monoclonal populations of bacteria. Phys. Rev. E 2010, 81, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Rammohan, J.; Anderson, D.A.; Alperovich, N.; Ross, D.; Voigt, C.A. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 2021, 12, 1475. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Helinski, D.R.; Toukdarian, A. Localization of the naturally occurring plasmid ColE1 at the cell pole. J. Bacteriol. 2007, 189, 1946–1953. [Google Scholar] [CrossRef]
- Silva, F.; Loureno, O.; Maia, C.; Queiroz, J.A.; Domingues, F.C. Impact of plasmid induction strategy on overall plasmid DNA yield and E. coli physiology using flow cytometry and real-time PCR. Process Biochem. 2011, 46, 174–181. [Google Scholar] [CrossRef]
- Kim, A.L.; Shin, H.J.; Lee, J.Y.; Bae, Y.K. Development of a media cell-free DNA direct digital PCR method for cell viability estimation. Anal. Chim. Acta 2024, 1323, 343064. [Google Scholar] [CrossRef]
- Tal, S.; Paulsson, J. Evaluating quantitative methods for measuring plasmid copy numbers in single cells. Plasmid 2012, 67, 167–173. [Google Scholar] [CrossRef]
- Chen, S.; Gong, P.; Zhang, J.; Shan, Y.; Han, X.; Zhang, L. Use of qPCR for the analysis of population heterogeneity and dynamics during Lactobacillus delbrueckii spp. bulgaricus batch culture. Artif. Cells Nanomedicine Biotechnol. 2021, 49, 1–10. [Google Scholar] [CrossRef]
- Škulj, M.; Okršlar, V.; Jalen, Š.; Jevševar, S.; Slanc, P.; Štrukelj, B.; Menart, V. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb. Cell Fact. 2008, 7, 6. [Google Scholar] [CrossRef]
- Munguía-Soto, R.; García-Rendõn, A.; Garibay-Escobar, A.; Guerrero-Germán, P.; Tejeda-Mansir, A. Segregated growth kinetics of Escherichia coli DH5α-NH36 in exponential-fed perfusion culture for pDNA vaccine production. Biotechnol. Appl. Biochem. 2015, 62, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Jahn, M.; Vorpahl, C.; Türkowsky, D.; Lindmeyer, M.; Bühler, B.; Harms, H.; Müller, S. Accurate determination of plasmid copy number of flow-sorted cells using droplet digital PCR. Anal. Chem. 2014, 86, 5969–5976. [Google Scholar] [CrossRef]
- Maddamsetti, R.; Shyti, I.; Wilson, M.L.; Son, H.; Baig, Y.; Zhou, Z.; Lu, J.; You, L. Scaling laws of bacterial and archaeal plasmids. Nat. Commun. 2025, 16, 6023. [Google Scholar] [CrossRef]
- Shendure, J.; Porreca, G.J.; Reppas, N.B.; Lin, X.; McCutcheon, J.P.; Rosenbaum, A.M.; Wang, M.D.; Zhang, K.; Mitra, R.D.; Church, G.M. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science 2005, 309, 1728–1732. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Loman, N.J.; Quick, J.; Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 2015, 12, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Sedlazeck, F.J.; Rescheneder, P.; Smolka, M.; Fang, H.; Nattestad, M.; von Haeseler, A.; Schatz, M.C. Accurate detection of complex structural variations using single molecule sequencing. Nat. Methods 2018, 15, 461–468. [Google Scholar] [CrossRef]
- Chen, Z.; Erickson, D.L.; Meng, J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 2020, 21, 631. [Google Scholar] [CrossRef] [PubMed]
- Oxford Nanopore Technologies. Oxford Nanopore Sequencing Accuracy. Available online: https://nanoporetech.com (accessed on 6 January 2026).
- Renganathan, P.; Gaysina, L.A.; Gutiérrez, C.G.; Omar, E.; Puente, R.; Sainz-hernández, J.C. Harnessing Engineered Microbial Consortia for Xenobiotic Bioremediation: Integrating Multi-Omics and AI for Next-Generation Wastewater Treatment. J. Xenobiotics 2025, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Rocío, E.; Nikola, Z.; Adèle, D.-M.; Yannick, R. SINGLe: Accurate detection of single nucleotide polymorphisms using nanopore sequencing in gene libraries. BioRxiv 2020. bioRxiv:2020.03.25.007146. [Google Scholar] [CrossRef]
- Khrenova, M.G.; Panova, T.V.; Rodin, V.A.; Kryakvin, M.A.; Lukyanov, D.A.; Osterman, I.A.; Zvereva, M.I. Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int. J. Mol. Sci. 2022, 23, 8569. [Google Scholar] [CrossRef]
- Lan, F.; Demaree, B.; Ahmed, N.; Abate, A.R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 2017, 35, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Chijiiwa, R.; Hosokawa, M.; Kogawa, M.; Nishikawa, Y.; Ide, K.; Sakanashi, C.; Takahashi, K.; Takeyama, H. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome 2020, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yin, Y.; Zhang, H.; Needham, D.M.; Evans, E.D.; Dai, C.L.; Lu, P.J.; Alm, E.J.; Weitz, D.A. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 2022, 376, eabm1483. [Google Scholar] [CrossRef]
- Rugbjerg, P.; Dyerberg, A.S.B.; Quainoo, S.; Munck, C.; Sommer, M.O.A. Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metab. Eng. 2021, 65, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wood, T.K. Evaluation of the hok/sok killer locus for enhanced plasmid stability. Biotechnol. Bioeng. 1994, 44, 912–921. [Google Scholar] [CrossRef]
- Gerdes, K.; Rasmussen, P.B.; Molin, S. Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proc. Natl. Acad. Sci. USA 1986, 83, 3116–3120. [Google Scholar] [CrossRef]
- Pecota, D.C.; Kim, C.S.; Wu, K.; Gerdes, K.; Wood, T.K. Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability. Appl. Environ. Microbiol. 1997, 63, 1917–1924. [Google Scholar] [CrossRef]
- Boy, C.; Lesage, J.; Alfenore, S.; Gorret, N.; Guillouet, S.E. Comparison of plasmid stabilization systems during heterologous isopropanol production in fed-batch bioreactor. J. Biotechnol. 2023, 366, 25–34. [Google Scholar] [CrossRef]
- Bouet, J.-Y.; Funnell, B.E. Plasmid Localization and Partition in Enterobacteriaceae. EcoSal Plus 2019, 8, ESP-0003-2019. [Google Scholar] [CrossRef]
- Million-Weaver, S.; Camps, M. Mechanisms of plasmid segregation: Have multicopy plasmids been overlooked? Plasmid 2014, 75, 27–36. [Google Scholar] [CrossRef]
- Galen, J.E.; Nair, J.; Wang, J.Y.; Wasserman, S.S.; Tanner, M.K.; Sztein, M.B.; Levine, M.M. Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect. Immun. 1999, 67, 6424–6433. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, P. Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein. Microb. Cell Fact. 2019, 18, 58. [Google Scholar] [CrossRef]
- Zheng, Y.; Chai, R.; Wang, T.; He, Y.; Shen, P.; Liu, J. RNA polymerase stalling-derived genome instability underlies ribosomal antibiotic efficacy and resistance evolution. Nat. Commun. 2024, 15, 6579. [Google Scholar] [CrossRef] [PubMed]
- Bedore, A.M.; Waters, C.M.; Bedore, A.M.; Waters, C.M. Plasmid-free cheater cells commonly evolve during laboratory growth. Appl. Environ. Microbiol. 2024, 90, e0231123. [Google Scholar] [CrossRef]
- Zhang, Z.; Claessen, D.; Rozen, D.E. Understanding microbial divisions of labor. Front. Microbiol. 2016, 7, 2070. [Google Scholar] [CrossRef] [PubMed]
- Mignon, C.; Sodoyer, R.; Werle, B. Antibiotic-free selection in biotherapeutics: Now and forever. Pathogens 2015, 4, 157–181. [Google Scholar] [CrossRef]
- Voss, I.; Steinbüchel, A. Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16. Metab. Eng. 2006, 8, 66–78. [Google Scholar] [CrossRef]
- Taguchi, A.T.; Dikanov, S.A.; Oishi, Y.; Gennis, R.B. Escherichia coli amino acid auxotrophic expression host strains for investigating protein structure—Function relationships. J. Biochem. 2021, 169, 387–394. [Google Scholar] [CrossRef]
- Schneider, J.C.; Jenings, A.F.; Mun, D.M.; McGovern, P.M.; Chew, L.C. Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. Biotechnol. Prog. 2005, 21, 343–348. [Google Scholar] [CrossRef]
- Budde, C.F.; Riedel, S.L.; Willis, L.B.; Rha, C.K.; Sinskey, A.J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 2011, 77, 2847–2854. [Google Scholar] [CrossRef]
- McAteer, S.; Coulson, A.; McLennan, N.; Masters, M. The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J. Bacteriol. 2001, 183, 7403–7407. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, Y.; Wang, J.; Lin, Y.; Yan, Y. Synthetic symbiosis combining plasmid displacement enables rapid construction of phenotype-stable strains. Metab. Eng. 2019, 55, 85–91. [Google Scholar] [CrossRef]
- Mattozzi, M.D.; Ziesack, M.; Voges, M.J.; Silver, P.A.; Way, J.C. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab. Eng. 2013, 16, 130–139. [Google Scholar] [CrossRef]
- Porter, R.D.; Black, S.; Pannuri, S.; Carlson, A. Use of the Escherichia coll ssb gene to prevent bioreactor takeover by plasmidless cells. Bio/Technology 1990, 8, 47–51. [Google Scholar] [CrossRef]
- Kang, C.W.; Lim, H.G.; Yang, J.; Noh, M.H.; Seo, S.W.; Jung, G.Y. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng. 2018, 48, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Brechun, K.E.; Förschle, M.; Schmidt, M.; Kranz, H. Method for plasmid-based antibiotic-free fermentation. Microb. Cell Factorie 2024, 23, 18. [Google Scholar] [CrossRef]
- Williams, S.G.; Cranenburgh, R.M.; Weiss, A.M.E.; Wrighton, C.J.; Sherratt, D.J.; Hanak, J.A.J. Repressor titration: A novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res. 1998, 26, 2120–2124. [Google Scholar] [CrossRef]
- Amrofell, M.B.; Rengarajan, S.; Vo, S.T.; Tovar, E.S.R.; LoBello, L.; Dantas, G.; Moon, T.S. Engineering E. coli strains using antibiotic-resistance-gene-free plasmids. Cell Rep. Methods 2023, 3, 100669. [Google Scholar] [CrossRef] [PubMed]
- Goormans, A.R.; Snoeck, N.; Decadt, H.; Vermeulen, K.; Peters, G.; Coussement, P.; Van Herpe, D.; Beauprez, J.J.; De Maeseneire, S.L.; Soetaert, W.K. Comprehensive study on Escherichia coli genomic expression: Does position really matter? Metab. Eng. 2020, 62, 10–19. [Google Scholar] [CrossRef]
- Wiser, M.J.; Ribeck, N.; Lenski, R.E. Long-Term Dynamics of Adaptation in Asexual Populations. Science 2013, 342, 1364–1367. [Google Scholar] [CrossRef]
- Rugbjerg, P.; Olsson, L. The future of self-selecting and stable fermentations. J. Ind. Microbiol. Biotechnol. 2020, 47, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Nyerges, Á.; Bálint, B.; Cseklye, J.; Nagy, I.; Pál, C.; Feher, T. CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synth. Biol. 2019, 4, ysz008. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.; Sankaranarayanan, S.; Watts, A.; Raipuria, R.K. Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene. 2021, 29, 100899. [Google Scholar] [CrossRef]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell. 2015, 59, 149–161. [Google Scholar] [CrossRef]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Welch, M.; Govindarajan, S.; Ness, J.E.; Villalobos, A.; Gurney, A.; Minshull, J.; Gustafsson, C. Design parameters to control synthetic gene expression in Eschorichia coli. PLoS ONE 2009, 4, e7002. [Google Scholar] [CrossRef]
- Gorochowski, T.E.; Van Den Berg, E.; Kerkman, R.; Roubos, J.A.; Bovenberg, R.A.L. Using synthetic biological parts and microbioreactors to explore the protein expression characteristics of Escherichia coli. ACS Synth. Biol. 2014, 3, 129–139. [Google Scholar] [CrossRef]
- Kodumal, S.J.; Patel, K.G.; Reid, R.; Menzella, H.G.; Welch, M.; Santi, D.V. Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci.USA 2004, 101, 15573–15578. [Google Scholar] [CrossRef]
- Menzella, H.G. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb. Cell Fact. 2011, 10, 11–15. [Google Scholar]
- Wu, G.; Yan, Q.; Jones, J.A.; Tang, Y.J.; Fong, S.S.; Koffas, M.A.G. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends Biotechnol. 2016, 34, 652–664. [Google Scholar] [CrossRef]
- Nielsen, J.; Keasling, J.D. Engineering Cellular Metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef]
- Windhorst, C.; Gescher, J. Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16. Biotechnol. Biofuels 2019, 12, 163. [Google Scholar] [CrossRef]
- Antoniewicz, M.R. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications Maciek. Metab. Eng. 2021, 63, 2–12. [Google Scholar] [CrossRef]
- Hoyt, K.O.; Woolston, B.M. Adapting isotopic tracer and metabolic flux analysis approaches to study C1 metabolism. Curr. Opin. Biotechnol. 2022, 75, 102695. [Google Scholar] [CrossRef]
- Rud, I.; Jensen, P.R.; Naterstad, K.; Axelsson, L. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 2006, 152, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Siegl, T.; Tokovenko, B.; Myronovskyi, M.; Luzhetskyy, A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab. Eng. 2013, 19, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.R.; Furches, A.; Wolff, G.N.; Gorday, K.; Guss, A.M. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab. Eng. Commun. 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Mohiuddin, S.G.; Massahi, A.; Orman, M.A. High-Throughput Screening of a Promoter Library Reveals New Persister Mechanisms in Escherichia coli. Microbiol. Spectr. 2022, 10, e0225321. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.; Mijakovic, I.; Jensen, P.R. Synthetic promoter libraries—Tuning of gene expression. Trends Biotechnol. 2006, 24, 53–55. [Google Scholar] [CrossRef]
- Mishra, S.; Perkovich, P.M.; Mitchell, W.P.; Venkataraman, M.; Pfleger, B.F. Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae008. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Zhang, Z.; Yin, X.; Wang, B.; Yang, X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J. Ind. Microbiol. Biotechnol. 2023, 50, kuac023. [Google Scholar] [CrossRef]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.O.; Adam, M.; Diego, S. Tool for Biological Discovery and Industrial Biotechnology. Metab. Eng. 2020, 56, 1–16. [Google Scholar] [CrossRef]
- Hanke, P.; Parrello, B.; Vasieva, O.; Akins, C.; Chlenski, P.; Babnigg, G.; Henry, C.; Foflonker, F.; Brettin, T.; Antonopoulos, D.; et al. Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning. Metab. Eng. Commun. 2023, 17, e00225. [Google Scholar] [CrossRef]
- Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with arti fi cial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 2020, 11, e00149. [Google Scholar] [CrossRef]
- Goshisht, M.K. Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges. ASC Omega 2024, 9, 9921–9945. [Google Scholar] [CrossRef]
- Rai, K.; Wang, Y.; O’Connell, R.W.; Patel, A.B.; Bashor, C.J. Using Machine Learning to Enhance and Accelerate Synthetic Biology. Curr. Opin. Biomed. Eng. 2024, 31, 100553. [Google Scholar] [CrossRef]
- Wu, S.G.; Shimizu, K.; Tang, J.K.; Tang, Y.J. Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. ChemBioEng Rev. 2016, 3, 45–54. [Google Scholar] [CrossRef]
- Beardall, W.A.V.; Stan, G.; Dunlop, M.J. Deep Learning Concepts and Applications for Synthetic Biology. GEN Biotechnol. 2022, 1, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Palacios, S.; Collins, J.J.; Del Vecchio, D. Machine learning for synthetic gene circuit engineering. Curr. Opin. Biotechnol. 2025, 92, 103263. [Google Scholar] [CrossRef]
- Fouillaud, M.; Dufoss, L. Microbial Secondary Metabolism and Biotechnology. Microorganisms 2022, 10, 123. [Google Scholar] [CrossRef]
- Rajpurohit, H.; Eiteman, M.A. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Keasling, J.D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 2001, 72, 408–415. [Google Scholar] [CrossRef]
- Donovan, R.S.; Robinson, C.W.; Glick, B.R. Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter. Can. J. Microbiol. 2000, 46, 532–541. [Google Scholar] [CrossRef]
- Matera, A.; Dulak, K.; Sordon, S.; Huszcza, E.; Popłoński, J. Modular plasmid design for autonomous multi-protein expression in Escherichia coli. J. Biol. Eng. 2025, 19, 14. [Google Scholar] [CrossRef]
- Grousseau, E.; Lu, J.; Gorret, N.; Guillouet, S.E.; Sinskey, A.J. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 2014, 98, 4277–4290. [Google Scholar] [CrossRef]
- Gruber, S.; Schwendenwein, D.; Magomedova, Z.; Thaler, E.; Hagen, J.; Schwab, H.; Heidinger, P. Design of inducible expression vectors for improved protein production in Ralstonia eutropha H16 derived host strains. J. Biotechnol. 2016, 235, 92–99. [Google Scholar] [CrossRef] [PubMed]
- De Baets, J.; De Paepe, B.; De Mey, M. Delaying production with prokaryotic inducible expression systems. Microb. Cell Fact. 2024, 23, 249. [Google Scholar] [CrossRef]
- Gelain, L.; Yeoh, J.W.; Hossain, G.S.; Alfenore, S.; Guillouet, S.; Ling, H.; Poh, C.L.; Gorret, N.; Foo, J.L. Identification and monitoring of cell heterogeneity from plasmid recombination during limonene production. Appl. Microbiol. Biotechnol. 2025, 109, 4. [Google Scholar] [CrossRef]
- Nordström, B.; Uhlin, K. Runaway-replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology 1992, 10, 661–666. [Google Scholar]
- Joshi, S.H.N.; Yong, C.; Gyorgy, A. Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. Nat. Commun. 2022, 13, 6691. [Google Scholar] [CrossRef]
- Bervoets, I.; Charlier, D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: Opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol. Rev. 2019, 43, 304–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, W.; Wang, Z.; Zhao, H.; Shi, S. Development of Host-Orthogonal Genetic Systems for Synthetic Biology. Adv. Biol. 2021, 5, 2000252. [Google Scholar] [CrossRef]
- Borkowski, O.; Ceroni, F.; Stan, G.B.; Ellis, T. Overloaded and stressed: Whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol. 2016, 33, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.V.; Sanders, T.M.; Prather, K.L.J. A dynamic metabolite valve for the control of central carbon metabolism. Metab. Eng. 2012, 14, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.D. Into new territory: Improved microbial synthesis through engineering of the essential metabolic network. Curr. Opin. Biotechnol. 2016, 38, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Venayak, N.; Anesiadis, N.; Cluett, W.R.; Mahadevan, R. Engineering metabolism through dynamic control. Curr. Opin. Biotechnol. 2015, 34, 142–152. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, L.; Ding, L.; Su, X.; Luo, H.; Huang, H.; Wang, Y.; Yao, B.; Zhang, J.; Wang, X. Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide. World J. Microbiol. Biotechnol. 2024, 40, 389. [Google Scholar] [CrossRef]
- Malla, S.; van der Helm, E.; Darbani, B.; Wieschalka, S.; Förster, J.; Borodina, I.; Sommer, M.O.A. A Novel Efficient L-Lysine Exporter Identified by Functional Metagenomics. Front. Microbiol. 2022, 13, 855736. [Google Scholar] [CrossRef]
- Mann, M.S.; Dragovic, Z.; Schirrmacher, G.; Lütke-Eversloh, T. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol. Lett. 2012, 34, 1643–1649. [Google Scholar] [CrossRef]
- Marc, J.; Grousseau, E.; Lombard, E.; Sinskey, A.J.; Gorret, N.; Guillouet, S.E. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab. Eng. 2017, 42, 74–84. [Google Scholar] [CrossRef]
- Park, M.; Tsai, S.L.; Chen, W. Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors 2013, 13, 5777–5795. [Google Scholar] [CrossRef]
- Doong, S.J.; Gupta, A.; Prather, K.L.J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc. Natl. Acad. Sci. USA 2018, 115, 2964–2969. [Google Scholar] [CrossRef]
- Hoang, M.D.; Riessner, S.; Vargas, J.E.O.; von den Eichen, N.; Heins, A.L. Influence of Varying Pre-Culture Conditions on the Level of Population Heterogeneity in Batch Cultures with an Escherichia coli Triple Reporter Strain. Microorganisms 2023, 11, 1763. [Google Scholar] [CrossRef]
- Van Hecke, W.; Kaur, G.; De Wever, H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol. Adv. 2014, 32, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Salas-Villalobos, U.A.; Gómez-Acata, R.V.; Castillo-Reyna, J.; Aguilar, O. In situ product recovery as a strategy for bioprocess integration and depletion of inhibitory products. J. Chem. Technol. Biotechnol. 2021, 96, 2735–2743. [Google Scholar] [CrossRef]
- Santos, A.G.; de Albuquerque, T.L.; Ribeiro, B.D.; Coelho, M.A.Z. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol. Appl. Biochem. 2021, 68, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
- Outram, V.; Lalander, C.A.; Lee, J.G.M.; Davies, E.T.; Harvey, A.P. Applied in situ product recovery in ABE fermentation. Biotechnol. Prog. 2017, 33, 563–579. [Google Scholar] [CrossRef]
- González-Peñas, H.; Lu-Chau, T.A.; Moreira, M.T.; Lema, J.M. Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnol. Lett. 2015, 37, 577–584. [Google Scholar] [CrossRef]
- Sassi, H.; Nguyen, T.M.; Telek, S.; Gosset, G.; Grünberger, A.; Delvigne, F. Segregostat: A novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microb. Biotechnol. 2019, 12, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Ghoul, M.; Griffin, A.S.; West, S.A. Towards an evolutionary definition of cheating. Evolution 2014, 68, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Bouchat, R.; Vélard, F.; Audonnet, S.; Rioult, D.; Delvigne, F.; Rémond, C.; Rakotoarivonina, H. Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior. Microb. Cell Fact. 2022, 21, 39. [Google Scholar] [CrossRef]
- Bouchat, R.; Delvigne, F.; Rémond, C.; Rakotoarivonina, H. Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production. Bioprocess Biosyst. Eng. 2022, 45, 1359–1370. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Telek, S.; Zicler, A.; Martinez, J.A.; Zacchetti, B.; Kopp, J.; Slouka, C.; Herwig, C.; Grünberger, A.; Delvigne, F. Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol. Bioeng. 2021, 118, 3847–3859. [Google Scholar] [CrossRef] [PubMed]






| Category | Dye | Ref |
|---|---|---|
| Membrane integrity | ||
| Difference in dye uptake in viable and non-viable cells | Propidium iodide (PI) | [116,128,129,130] |
| PI + SYTO 9 | [129] | |
| PI + SYBR green | [131,132] | |
| PI + Piccogreen | [133] | |
| PI + DNA stains | [134] | |
| Sytox Green | [133,135] | |
| Ethidium Monoazide Bromide (EMA) | [29] | |
| Rhodomine 123 (RH123) | [136,137] | |
| DiBAC4(3) | [116,128,129,130] | |
| Metabolic activity | ||
| Respiration | 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) | [136,137] |
| Redox sensor green (RSG) | [133,138] | |
| ROS | Dehydrorhodamine 123(DHR) | [29,135] |
| Redox indicator | 2-(p-iodophenyl)-3-(pnitrophenyl)-5-phenyl tetrazolium chloride (INT) | [139] |
| Methylene Blue | [129] | |
| Enzymatic activity | Fluorescein diacetate (FDA) | [131] |
| CFDA | [129,140] | |
| Other stains | ||
| Membrane potential | Calcafluor white (CFW) | [141,142] |
| DiOC2(3) | [143,144] | |
| Property: Cell surface polysaccharides | Fluorescent lectin | [134] |
| Property: exoenzymes | Fluorescent dye-labeled substrates | [134] |
| Internal compounds: polyhydroalkanoates | Nile blue, Nile Red | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pijpstra, P.; Guillouet, S.E.; Heidinger, P.; Kourist, R.; Gorret, N. Considerations of Bacterial Robustness and Stability to Improve Bioprocess Design. Fermentation 2026, 12, 54. https://doi.org/10.3390/fermentation12010054
Pijpstra P, Guillouet SE, Heidinger P, Kourist R, Gorret N. Considerations of Bacterial Robustness and Stability to Improve Bioprocess Design. Fermentation. 2026; 12(1):54. https://doi.org/10.3390/fermentation12010054
Chicago/Turabian StylePijpstra, Pauline, Stéphane E. Guillouet, Petra Heidinger, Robert Kourist, and Nathalie Gorret. 2026. "Considerations of Bacterial Robustness and Stability to Improve Bioprocess Design" Fermentation 12, no. 1: 54. https://doi.org/10.3390/fermentation12010054
APA StylePijpstra, P., Guillouet, S. E., Heidinger, P., Kourist, R., & Gorret, N. (2026). Considerations of Bacterial Robustness and Stability to Improve Bioprocess Design. Fermentation, 12(1), 54. https://doi.org/10.3390/fermentation12010054

