Screening and Application of Pseudomonas protegens from Municipal Sludge for the Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Contaminated Soil and Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Screening of Pseudomonas protegens
2.3. Acclimation of Pseudomonas protegens
2.4. Purification and Preservation of Pseudomonas protegens
2.5. Enhancement of Pseudomonas protegens
2.6. Determination of PBDE Degradation Efficiency by Pseudomonas protegens
2.7. Determination of Respiration Intensity of Pseudomonas protegens
2.8. Performance of Pseudomonas protegens in Degrading BDE-47 in Water and Soil Samples
3. Results and Discussion
3.1. Molecular Identification and Physiological–Biochemical Characterization of Pseudomonas protegens
3.2. Growth Characteristics of Pseudomonas protegens
3.3. BDE-47 Degradation Efficacy of Pseudomonas protegens
3.4. Enhancement of BDE-47 Degradation by Strain-Conditioning Amendments
3.5. Practical Application of Pseudomonas protegens for BDE-47 Degradation in Contaminated Water and Soil
4. Conclusions
- (1)
- A BDE-47 aerobic-degrading bacterial strain designated YP1 was isolated from activated sludge at Tuanzhou Wastewater Treatment Plant in Yiyang City, Hunan Province. Based on morphological characteristics, physiological–biochemical properties, and 16S rDNA sequence homology analysis, this strain was identified as Pseudomonas protegens. This study reports the first discovery of Pseudomonas protegens capable of degrading BDE-47.
- (2)
- Pseudomonas protegens strain YP1 exhibited excellent BDE-47 degradation performance: when inoculated into a mineral-salt medium containing 115 μg/L of BDE-47 and incubated at 37 °C, pH 7, in darkness with shaking, it achieved a 69.57% removal efficiency within 75 h.
- (3)
- All tested carbon sources—yeast extract, glucose, acetate, and ethanol—enhanced the BDE-47 degradation efficiency of Pseudomonas protegens. While inducers 2,4-dichlorophenol, bisphenol A, and toluene promoted BDE-47 degradation, hydroquinone inhibited the process. Among these, glucose and 2,4-dichlorophenol demonstrated the most pronounced enhancement on BDE-47 degradation by Pseudomonas protegens. Consequently, both compounds were selected as strain-enhancing agents to boost the degradation capacity of Pseudomonas protegens toward BDE-47.
- (4)
- Pseudomonas protegens strain YP1 demonstrates considerable practical potential. When introduced into BDE-47-contaminated real water and soil matrices, it maintains growth under suboptimal conditions and at elevated pollutant levels. Within 14 days, the strain achieved BDE-47 removal efficiencies of 52.60% in water and 48.26% in soil, evidencing its robust tolerance and efficacious performance under field-relevant scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.F.; Yuan, L.M.; Lin, Q.H.; Ma, S.T.; Yu, Y.X. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. Sci. Total Environ. 2019, 696, 133902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Qin, C.Z.; Sui, M.P.; Luo, S.Y.; Zhang, H.Y.; Zhu, J.W. Understanding the mechanism of polybrominated diphenyl ethers reducing the anaerobic co-digestion efficiency of excess sludge and kitchen waste. Environ. Sci. Pollut. Res. 2022, 29, 41357–41367. [Google Scholar] [CrossRef] [PubMed]
- Ohoro, C.R.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Polybrominated diphenyl ethers in the environmental systems: A review. J. Environ. Health Sci. Eng. 2021, 19, 1229–1247. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.; Vander Heide, R.; Roy, N.M. Toxicity of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on oligodendrocytes during embryonic zebrafish development. Environ. Toxicol. Pharmacol. 2025, 114, 104627. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J. 2024, 22, e8497. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, D.; Zhang, L.; Zhang, Q.; Ding, P.; Chen, X.; Huang, C.; Hu, G.; Li, T.J.H.; Advances, E.H. Polybrominated diphenyl ethers in aquatic products of Guangzhou city, South China: Accumulation, distribution and health risk. In Hygiene and Environmental Health Advances; Elsevier: Amsterdam, The Netherlands, 2024; Volume 9, p. 100085. [Google Scholar]
- Xue, J.; Xiao, Q.; Zhang, M.; Li, D.; Wang, X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int. J. Mol. Sci. 2023, 24, 13487. [Google Scholar] [CrossRef]
- Gao, J.; Xie, Z.; Wang, Z.; Yu, Y.; Qi, Z.; Yu, X.; Zhong, T.; Wang, L.; Feng, K.; Peng, Y.; et al. Human toxicity of polybrominated diphenyl ethers (PBDEs) and their derivatives: A comprehensive review. Curr. Res. Food Sci. 2024, 9, 100918. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Ouyang, Y.; Li, S.; Sun, Y.; Tan, W.; Ren, L.; Zhou, X. Adverse outcome pathways of PBDEs inducing male reproductive toxicity. Environ. Res 2024, 240, 117598. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Guan, D.; Wang, Y.; Fu, Z.; Sun, Y.; Wang, D.; Zhang, H. New insights into mechanism of emerging pollutant polybrominated diphenyl ether inhibiting sludge dark fermentation. Bioresour. Technol. 2023, 368, 128358. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Tian, Y.; Liao, J.; Fang, D.; Wang, L.; Zeng, R.; Xiong, S.; Liu, X.; Chen, Q.; et al. Exposure levels and determinants of placental polybrominated diphenyl ethers in Chinese pregnant women. Environ. Res. 2024, 241, 117615. [Google Scholar] [CrossRef]
- Hu, G.C.; Dai, J.Y.; Xu, Z.C.; Luo, X.J.; Cao, H.; Wang, J.S.; Mai, B.X.; Xu, M.Q. Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian lake, north China. Environ. Int. 2010, 36, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xi, B.; Huo, S.; Deng, L.; Pan, H.; Xia, X.; Zhang, J.; Ren, Y.; Liu, H. Polybrominated diphenyl ethers occurrence in major inflowing rivers of Lake Chaohu (China): Characteristics, potential sources and inputs to lake. Chemosphere 2013, 93, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.M.; Yuan, Q.; Liu, S.W.; Zhao, P.; Liang, C.; Ma, Y.L.; Li, S.Q.; Zhu, X.Y.; Hao, X.Q.; Shi, J.; et al. BDE-47 flame retardant exposure induces microglial pyroptosis and cognitive deficits by activating the mtROS-NLRP3 axis via Sirt3 downregulation and is salvaged by honokiol. Environ. Pollut. 2023, 334, 122158. [Google Scholar] [CrossRef] [PubMed]
- Matsukami, H.; Tue, N.M.; Suzuki, G.; Someya, M.; Tuyen, L.H.; Viet, P.H.; Takahashi, S.; Tanabe, S.; Takigami, H. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci. Total Environ. 2015, 514, 492–499. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.H.; Tao, M.L.; Zhou, D.D.; Zhang, Y.; Yao, J.; Kong, Q.N.; Guo, B.B. Occurrence and distribution characteristics of PCBs and PBDEs in farmland soils adjacent to electronic circuit board dismantling ruins. Front. Environ. Sci. 2023, 10, 1048345. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, C.; Liu, Y.; Chen, H.; Liu, C.; Lou, Z.; Lin, J. The Typical Polybrominated Diphenyl Ethers (PBDEs) and Heavy Metals Distributions in a Formal e-Waste Dismantling Site. Bull. Environ. Contam. Toxicol. 2023, 110, 52. [Google Scholar] [CrossRef]
- Oloruntoba, K.; Sindiku, O.; Osibanjo, O.; Weber, R. Polybrominated diphenyl ethers (PBDEs) concentrations in soil, sediment and water samples around electronic wastes dumpsites in Lagos, Nigeria. Emerg. Contam. 2022, 8, 206–215. [Google Scholar] [CrossRef]
- Abafe, O.A.; Harrad, S.; Abdallah, M.A. Novel Insights into the Dermal Bioaccessibility and Human Exposure to Brominated Flame Retardant Additives in Microplastics. Environ. Sci. Technol. 2023, 57, 10554–10562. [Google Scholar] [CrossRef]
- Cai, K.; Song, Q.; Yuan, W.; Yang, G.; Li, J. Composition changes, releases, and potential exposure risk of PBDEs from typical E-waste plastics. J. Hazard. Mater. 2022, 424, 127227. [Google Scholar] [CrossRef]
- Lan, Y.; Gao, X.; Xu, H.; Li, M. 20 years of polybrominated diphenyl ethers on toxicity assessments. Water Res. 2024, 249, 121007. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, N.; Liu, Y.; Wang, X.; Liu, Y.; Jiao, D.; Wang, H. Competitive microbial degradation among PBDE congeners in anaerobic wetland sediments: Implication by multiple-line evidences including compound-specific stable isotope analysis. J. Hazard. Mater. 2021, 412, 125233. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Yerushalmi, L.; Haghighat, F.; Chen, Z.; Zhuang, Y. Comparison of photocatalysis and photolysis of 2,2,4,4-tetrabromodiphenyl ether (BDE-47): Operational parameters, kinetic studies, and data validation using three modern machine learning models. Chemosphere 2023, 326, 138363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Wang, J.; Xu, S.; Zhang, Z.; Guan, Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2′,4,4′-tetrabromodiphenyl ether in soil. Environ. Int. 2024, 194, 109098. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Luo, Z.; Zhi, D.; Hou, D.; Luo, L.; Du, S.; Zhou, Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. J. Hazard. Mater. 2021, 403, 123674. [Google Scholar] [CrossRef]
- Li, G.Y.; Xiong, J.K.; Wong, P.K.; An, T.C. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community. Environ. Pollut. 2016, 208, 796–802. [Google Scholar] [CrossRef]
- Yu, Y.; Yin, H.; Huang, W.; Peng, H.; Lu, G.; Dang, Z. Cellular changes of microbial consortium GY1 during decabromodiphenyl ether (BDE-209) biodegradation and identification of strains responsible for BDE-209 degradation in GY1. Chemosphere 2020, 249, 126205. [Google Scholar] [CrossRef]
- Huo, L.; Zhao, C.; Gu, T.; Yan, M.; Zhong, H. Aerobic and anaerobic biodegradation of BDE-47 by bacteria isolated from an e-waste-contaminated site and the effect of various additives. Chemosphere 2022, 294, 133739. [Google Scholar] [CrossRef]
- Ti, Q.; Gu, C.; Cai, J.; Fan, X.; Zhang, Y.; Bian, Y.; Sun, C.; Jiang, X. Understanding the role of bacterial cellular adsorption, accumulation and bioavailability regulation by biosurfactant in affecting biodegradation efficacy of polybrominated diphenyl ethers. J. Hazard. Mater. 2020, 393, 122382. [Google Scholar] [CrossRef]
- Gu, C.; Jin, Z.; Fan, X.; Ti, Q.; Yang, X.; Sun, C.; Jiang, X. Comparative evaluation and prioritization of key influences on biodegradation of 2,2′,4,4′-tetrabrominated diphenyl ether by bacterial isolate B. xenovorans LB400. J. Environ. Manag. 2023, 331, 117320. [Google Scholar] [CrossRef]
- Tang, S.; Yin, H.; Yu, X.; Chen, S.; Lu, G.; Dang, Z. Transcriptome profiling of Pseudomonas aeruginosa YH reveals mechanisms of 2, 2′, 4, 4′-tetrabrominated diphenyl ether tolerance and biotransformation. J. Hazard. Mater. 2021, 403, 124038. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, X.; Xia, N.; Wu, S.; Gao, F.; Zhou, W. Identification and biodegradation efficiency of a newly isolated 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) aerobic degrading bacterial strain. Int. Biodeterior. Biodegrad. 2013, 76, 24–31. [Google Scholar] [CrossRef]
- Feng, M.; Yin, H.; Cao, Y.; Peng, H.; Lu, G.; Liu, Z.; Dang, Z. Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Ecotoxicol. Environ. Saf. 2018, 154, 45–51. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, H.; Peng, H.; Tang, S.; Lu, G.; Dang, Z. Biodegradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd(2). Environ. Sci. Pollut. Res. Int. 2017, 24, 11415–11424. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.; Liu, R.; Zhou, X.; Bartlam, M.; Wang, Y. Transcriptome Profiling of Stenotrophomonas sp. Strain WZN-1 Reveals Mechanisms of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) Biotransformation. Environ. Sci. Technol. 2022, 56, 11288–11299. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, M.; Yuan, Y.; Rong, X.; Dang, Z.; Yin, H. Integrated toxicology, metabolomics, and transcriptomics analyses reveal the biodegradation and adaptation mechanisms to BDE-47 in Pseudomonas plecoglossicida. Chem. Eng. J. 2023, 454, 140412. [Google Scholar] [CrossRef]
- Qi, X.; Xu, X.; Xu, C.; Lv, G.; Cai, J.; Cheng, Z.; Yang, Z.; Yin, H. Pseudomonas plecoglossicida inoculation reshapes rhizosphere microbiome for BDE-47 dissipation in the alfalfa rhizosphere. J. Hazard. Mater. 2025, 495, 138959. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, H.C.; Wang, C.; Zhu, C.Q.; Tam, N.F. Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil. J. Hazard. Mater. 2015, 300, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, L.; Yang, L.; Gu, Q.; Li, Y.; Zhang, J.; Wu, S.; Chen, M.; Xie, X.; Wu, Q. Pseudomonas protegens FJKB0103 Isolated from Rhizosphere Exhibits Anti-Methicillin-Resistant Staphylococcus aureus Activity. Microorganisms 2022, 10, 315. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Xiong, Z.W.; Li, S.Y.; Yin, Y.; Xing, C.L.; Wen, Y.; Xu, J.; Liu, Q. Regulatory roles of RpoS in the biosynthesis of antibiotics 2,4-diacetyphloroglucinol and pyoluteorin of Pseudomonas protegens FD6. Front. Microbiol. 2022, 13, 993732. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Zhang, X.; Wang, P. Contrasting microbial mechanisms of soil priming effects induced by crop residues depend on nitrogen availability and temperature. Appl. Soil Ecol. 2021, 168, 104186. [Google Scholar] [CrossRef]
- Sun, Y.J.; Huerlimann, S.; Garner, E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat. Microbiol. 2023, 8, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tian, W.; Sun, S.; Chen, X.; Wang, H. Genomic and Proteomic Analysis of Pseudomonas aeruginosa Isolated from Industrial Wastewater to Assess Its Resistance to Antibiotics. Separations 2023, 10, 549. [Google Scholar] [CrossRef]
- Pearl Mizrahi, S.; Goyal, A.; Gore, J. Community interactions drive the evolution of antibiotic tolerance in bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2209043119. [Google Scholar] [CrossRef]
- Strotmann, U.; Durand, M.J.; Thouand, G.; Eberlein, C.; Heipieper, H.J.; Gartiser, S.; Pagga, U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl. Microbiol. Biotechnol. 2024, 108, 454. [Google Scholar] [CrossRef]
- Araujo, C.V.; Nascimento, R.B.; Oliveira, C.A.; Strotmann, U.J.; da Silva, E.M. The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camacari (BA, Brazil). Chemosphere 2005, 58, 1277–1281. [Google Scholar] [CrossRef]
- Sahebani, N.; Gholamrezaee, N. The biocontrol potential of Pseudomonas fluorescens CHA0 against root knot nematode (Meloidogyne javanica) is dependent on the plant species. Biol. Control 2021, 152, 104445. [Google Scholar] [CrossRef]
- Tang, S.; Yin, H.; Zhou, S.; Chen, S.; Peng, H.; Liu, Z.; Dang, Z. Simultaneous Cr(VI) removal and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium. Chemosphere 2016, 150, 24–32. [Google Scholar] [CrossRef]
Test Items | Results | Test Items | Results | |
---|---|---|---|---|
Gram staining | − | D-mannose | + | |
4 °C | + | Maltose | − | |
41 °C | − | Fructose | + | |
Gelatin liquefaction | + | Xylose | + | |
Voges-Proskauer test | − | D-cellobiose | − | |
Protease | + | Lactose | − | |
1% | + | Esterase | + | |
Halotolerance | 5% | + | Ethanol (C2H5OH) | − |
10% | − | Methyl red | − | |
H2O2 | + | Catalase | + | |
Citrate | + | Pectin | − | |
Acetate | − | pH = 6~8 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, Y.; Zhou, T.; Chen, Y.; Zhu, L.; He, G.; Chi, N.; Jia, S.; Luo, W.; Zhang, G. Screening and Application of Pseudomonas protegens from Municipal Sludge for the Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Contaminated Soil and Water. Fermentation 2025, 11, 547. https://doi.org/10.3390/fermentation11090547
Wu Y, Li Y, Zhou T, Chen Y, Zhu L, He G, Chi N, Jia S, Luo W, Zhang G. Screening and Application of Pseudomonas protegens from Municipal Sludge for the Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Contaminated Soil and Water. Fermentation. 2025; 11(9):547. https://doi.org/10.3390/fermentation11090547
Chicago/Turabian StyleWu, Yanting, Yuanping Li, Tianyun Zhou, Yaoning Chen, Li Zhu, Guowen He, Nianping Chi, Shunyao Jia, Wenqiang Luo, and Ganquan Zhang. 2025. "Screening and Application of Pseudomonas protegens from Municipal Sludge for the Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Contaminated Soil and Water" Fermentation 11, no. 9: 547. https://doi.org/10.3390/fermentation11090547
APA StyleWu, Y., Li, Y., Zhou, T., Chen, Y., Zhu, L., He, G., Chi, N., Jia, S., Luo, W., & Zhang, G. (2025). Screening and Application of Pseudomonas protegens from Municipal Sludge for the Degradation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) in Contaminated Soil and Water. Fermentation, 11(9), 547. https://doi.org/10.3390/fermentation11090547