Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Blend of Exogenous Enzymes
2.2. Animals and Installation
2.3. Experimental Design and Diets
2.4. Productive Performance
2.5. Samples
2.6. Hemogram
2.7. Serum Biochemistry
2.8. Biomarkers in Rumen Fluid
2.9. Milk
2.9.1. Somatic Cell Composition and Count (SCC)
2.9.2. Fatty Acid Profile
2.10. Apparent Digestibility Coefficients
2.11. In Vitro Fermentation and Ammonia Nitrogen
2.12. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Milk Quality
3.3. Ruminal Environment
3.4. Digestibility Coefficient
3.5. Hematology and Serum Biochemistry
3.6. In Vitro Fermentation and Ammonia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontaneli, R.S.; Meinerz, G.R.; Fontaneli, R.S.; Santos, H.P.; Biazus, V.; Fávero, D.; Rebechi, I.A. A contribuição das forrageiras de inverno para a pecuária de leite. In Pecuária De Leite No Brasil: Cenários E Avanços Tecnológicos; Embrapa: Brasília, Brazil, 2016; pp. 239–253. [Google Scholar]
- Wilkinson, J.M.; Lee, M.R.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Radavelli, W.M.; Danieli, B.; Zotti, M.L.A.N.; Gomes, F.J.; Endres, M.I.; Schogor, A.L.B. Compost barns in Brazilian Subtropical region (Part 1): Facility, barn management and herd characteristics. Res. Soc. Dev. 2020, 9, e445985198. [Google Scholar] [CrossRef]
- Cardoso, F.C.; Kalscheur, K.F.; Drackley, J.K. Symposium review: Nutrition strategies for improved health, production, and fertility during the transition period. J. Dairy Sci. 2020, 103, 5684–5693. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Fasim, A.; More, V.S.; Shivaram, A.K.; More, S.S. Enzyme technology in value addition of dairy and milk production. In Value-Addition in Beverages Through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 77–96. [Google Scholar]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Simon, A.L.; Copetti, P.M.; Lago, R.V.; Vitt, M.G.; Nascimento, A.L.; e Silva, L.E.L.; Wagner, R.; Klein, B.; Martins, C.S.; Kozloski, G.V.; et al. Inclusion of exogenous enzymes in feedlot cattle diets: Impacts on physiology, rumen fermentation, digestibility and fatty acid profile in rumen and meat. Biotechnol. Rep. 2024, 41, e00824. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. J. Dairy Sci. 2005, 88, 2140–2153. [Google Scholar] [CrossRef] [PubMed]
- Tseu, R.J.; Paucar, L.L.C.; Perna, F., Jr.; Carvalho, R.F.; Nogueira, R.G.S.; Cassiano, E.C.O.; Rodrigues, P.H.M. Efeito de enzimas exógenas na digestibilidade de nutrientes e fermentação ruminal de vacas holandesas. Iran. J. Appl. Anim. Sci. 2022, 12, 447–459. [Google Scholar]
- Bugoni, M.; Takiya, C.S.; Grigoletto, N.T.; Júnior, P.C.V.; Nunes, A.T.; Chesini, R.G.; da Silva, G.G.; Durman, T.; Pettigrew, J.E.; Rennó, F.P. Feeding amylolytic and proteolytic exogenous enzymes: Effects on nutrient digestibility, ruminal fermentation, and performance in dairy cows. J. Dairy Sci. 2023, 106, 3192–3202. [Google Scholar] [CrossRef]
- NASEM—National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, Eighth Revised ed.; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos E Biológicos, 3rd ed.; UFV: Viçosa, Brazil, 2002; 235p. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1997. [Google Scholar]
- Komarek, R.J.; Gardner, R.M.; Buchanan, C.M.; Gedon, S. Biodegradation of radiolabeled cellulose acetate and cellulose propionate. J. Appl. Polym. Sci. 1993, 50, 1739–1746. [Google Scholar] [CrossRef]
- Senger, C.C.; Kozloski, G.V.; Sanchez, L.M.B.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- de Vitt, M.G.; Signor, M.H.; Corrêa, N.G.; Breancini, M.; Wolschick, G.J.; Klein, B.; Silva, L.E.L.; Wagner, R.; Jung, C.T.K.; Kozloski, G.V.; et al. Combination of Phytoactives in the Diet of Lactating Jersey Cows: Effects on Productive Efficiency, Milk Composition and Quality, Ruminal Environment, and Animal Health. Animals 2024, 14, 2518. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar] [PubMed]
- Visentainer, J.V.; Franco, M.R.B. Fatty Acids in Oils and Fats: Identification and Quantification; Varela: São Paulo, Brazil, 2006. [Google Scholar]
- Cochran, R.C.; Adams, D.C.; Wallace, J.D.; Galyean, M.L. Predicting Digestibility of Different Diets with Internal Markers: Evaluation of Four Potential Markers. J. Anim. Sci. 1986, 63, 1476–1483. [Google Scholar] [CrossRef]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Tagliapietra, F.; Cattani, M.; Hansen, H.H.; Hindrichsen, I.K.; Bailoni, L.; Schiavon, S. Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Anim. Feed Sci. Technol. 2011, 170, 182–191. [Google Scholar] [CrossRef]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- National Research Council—NRC. Nutrient Requirements of Dairy Cattle; National Academy of Sciences: Washington, DC, USA, 2001.
- Gado, H.M.; Salem, A.Z.M.; Robinson, P.H.; Hassan, M. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol. 2009, 154, 36–46. [Google Scholar] [CrossRef]
- Sucu, E.; Nayeri, A.; Sanz-Fernandez, M.V.; Upah, N.C.; Baumgard, L.H. The effects of supplemental protease enzymes on production variables in lactating Holstein cows. Ital. J. Anim. Sci. 2014, 13, 3186. [Google Scholar] [CrossRef]
- Dobranić, V.; Njari, B.; Samardžija, M.; Mioković, B.; Resanović, R. The influence of the season on the chemical composition and the somatic cell count of bulk tank cow’s milk. Vet. Arh. 2008, 78, 235–242. [Google Scholar]
- Rodríguez-Bermúdez, R.; Fouz, R.; Rico, M.; Camino, F.; Souza, T.K.; Miranda, M.; Diéguez, F.J. Factors affecting fatty acid composition of Holstein cow’s milk. Animals 2023, 13, 574. [Google Scholar] [CrossRef]
- MacGibbon, A.K.H.; Taylor, M.W. Composition and structure of bovine milk lipids. In Advanced Dairy Chemistry: Lipids; Fox, P.F., McSweeney, P.L.H., Eds.; Kluwer Academic/Plenum: Dordrecht, The Netherlands, 2006; Volume 2. [Google Scholar]
- Urrutia, N.L.; Harvatine, K.J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef]
- Shi, H.; Guo, P.; Zhou, J.; Wang, Z.; He, M.; Shi, L.; Huang, X.; Guo, P.; Guo, Z.; Zhang, Y.; et al. Exogenous fibrolytic enzymes promoted energy and nitrogen utilization and decreased CH4 emission per unit dry matter intake of tan sheep grazed a typical steppe by enhancing nutrient digestibility on China loess plateau. J. Anim. Sci. 2023, 101, skad112. [Google Scholar] [CrossRef]
- Hassen, A.; Gemeda, B.S.; Selzer, K.; Nel, T.; Salem, A.Z.M.; Elghandour, M.M.M.Y.; Akanmu, A.M. Role of Exogenous Enzymes in Feed Digestibility and Reducing the Emission Intensity of Enteric Methane Production in Ruminants. In Exogenous Enzymes as Feed Additives in Ruminants; Springer: Berlin/Heidelberg, Germany, 2023; pp. 77–102. [Google Scholar]
- Zaman, M.; Heng, L.; Müller, C. Methane Production in Ruminant Animals. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options Using Nuclear and Related Techniques; Zaman, M., Heng, L., Müller, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Benedeti, P.D.B.; Fonseca, M.A.; Shenkoru, T.; Marcondes, M.I.; Paula, E.M.D.; Silva, L.G.D.; Faciola, A.P. Does partial replacement of corn with glycerin in beef cattle diets affect in vitro ruminal fermentation, gas production kinetic, and enteric greenhouse gas emissions? PLoS ONE 2018, 13, e0199577. [Google Scholar] [CrossRef]
- Patra, A.K. Urea/Ammonia Metabolism in the Rumen and Toxicity in Ruminants. In Rumen Microbiology: From Evolution to Revolution; Puniya, A., Singh, R., Kamra, D., Eds.; Springer: New Delhi, India, 2015. [Google Scholar]
Variables, % | Silage in Individual Feeders | Basal Concentrate in Individual Feeders | Pelletized Concentrate—Robot | Oat and Ryegrass Pasture | Tifton Hay | PMR |
---|---|---|---|---|---|---|
Dry matter | 25.9 | 91 | 88.2 | 14.3 | 86.9 | 41.5 |
Crude protein | 9.8 | 16.6 | 20.4 | 17.3 | 11.7 | 14.6 |
Eter extract | 2.9 | 2.2 | 4.4 | 2.6 | 1.56 | 3.54 |
Ash | 3.8 | 7.1 | 6.8 | 9.5 | 6.88 | 7.09 |
NDF | 40.4 | - | 20 | 56.4 | 75.1 | 30.7 |
ADF | 19.3 | - | 9.1 | 22.3 | 35.3 | 12.1 |
Variables | T-0 | T-80 | T-160 | SEM | C1 2 | C2 2 | C3 2 |
---|---|---|---|---|---|---|---|
Milk production, kg/cow/day | |||||||
d 0 * | 17.3 | 17.0 | 17.1 | 0.11 | 0.95 | 0.93 | 0.96 |
d 1–14 | 17.5 | 18.3 | 18.1 | 0.10 | 0.12 | 0.32 | 0.45 |
d 15–84 | 17.2 | 17.6 | 18.0 | 0.11 | 0.05 | 0.72 | 0.04 |
d 1–84 | 17.3 | 17.5 | 18.1 | 0.11 | 0.05 | 0.74 | 0.11 |
Milk production, 4%FCM 1 | |||||||
d 15–84 | 17.8 | 17.9 | 19.1 | 0.10 | 0.45 | 0.82 | 0.02 |
Feed intake, kg DM/day | |||||||
d 15–84 | 15.2 | 15.2 | 15.2 | 0.03 | 0.94 | 0.95 | 0.96 |
Feed efficiency, kg/kg | |||||||
d 15–84 | 1.17 | 1.17 | 1.25 | 0.01 | 0.49 | 0.78 | 0.05 |
Variables | T-0 | T-80 | T-160 | SEM | C1 1 | C2 1 | C3 1 |
---|---|---|---|---|---|---|---|
Fat 2 (g/100 g) | 4.27 | 4.12 | 4.39 | 0.05 | 0.82 | 0.57 | 0.94 |
Protein 2 (g/100 g) | 3.68 | 3.71 | 3.76 | 0.03 | 0.25 | 0.46 | 0.05 |
Lactose 2 (g/100 g) | 4.7 | 4.62 | 4.69 | 0.05 | 0.85 | 0.87 | 0.91 |
Total solids 2 (g/100 g) | 12.6 | 12.4 | 12.8 | 0.15 | 0.89 | 0.78 | 0.91 |
Urea 2 (mg/dL) | 14.5 | 15.0 | 15.7 | 0.51 | 0.22 | 0.83 | 0.56 |
Urea/protein ratio | 3.94 | 4.04 | 4.17 | 0.04 | 0.21 | 0.65 | 0.15 |
SCC 2 (×1000/mL) | 67.6 | 160 | 102 | 24.1 | 0.31 | 0.24 | 0.43 |
Fatty acid, % | |||||||
C4:0 (Butyric) | 0.51 | 0.58 | 0.60 | 0.02 | 0.05 | 0.28 | 0.16 |
C6:0 (Caproic) | 0.90 | 0.87 | 0.96 | 0.02 | 0.95 | 0.91 | 0.88 |
C8:0 (Caprylic) | 0.83 | 0.83 | 0.87 | 0.01 | 0.52 | 0.92 | 0.31 |
C10:0 (Capric) | 2.64 | 2.68 | 2.71 | 0.05 | 0.24 | 0.86 | 0.63 |
C11:0 (Undecanoic) | 0.23 | 0.24 | 0.25 | 0.01 | 0.77 | 0.85 | 0.69 |
C12:0 (Lauric) | 3.57 | 3.67 | 3.70 | 0.08 | 0.55 | 0.64 | 0.57 |
C14:0 (Myristic) | 12.3 | 12.5 | 12.9 | 0.12 | 0.81 | 0.89 | 0.83 |
C14:1 (Myristoleic) | 0.62 | 0.72 | 0.67 | 0.02 | 0.12 | 0.23 | 0.35 |
C15:0 (Pentadecanoic) | 1.19 | 1.20 | 1.20 | 0.02 | 0.96 | 0.97 | 0.96 |
C16:0 (Palmitic) | 35.5 | 36.8 | 36.9 | 0.34 | 0.05 | 0.35 | 0.28 |
C16:1 (Palmitoleic) | 1.05 | 1.20 | 1.03 | 0.04 | 0.72 | 0.31 | 0.97 |
C17:0 (Heptadecanoic) | 0.51 | 0.51 | 0.50 | 0.01 | 0.98 | 0.99 | 0.98 |
C17:1 (cis-10-Heptadecenoic) | 0.14 | 0.15 | 0.15 | 0.00 | 0.97 | 0.97 | 0.98 |
C18:0 (Stearic) | 15.4 | 14.3 | 14.0 | 0.26 | 0.05 | 0.15 | 0.09 |
C18:1n9t (Elaidic) | 2.04 | 1.77 | 1.91 | 0.08 | 0.82 | 0.25 | 0.83 |
C18:1n9c (Oleic) | 18.9 | 18.6 | 17.9 | 0.31 | 0.88 | 0.93 | 0.62 |
C18:2n6c (Linoleic) | 2.02 | 1.93 | 1.92 | 0.03 | 0.33 | 0.56 | 0.61 |
C20:0 (Arachidic) | 0.22 | 0.21 | 0.20 | 0.00 | 0.97 | 0.98 | 0.94 |
C20:1n9 (cis-11-Eicosenoic) | 0.09 | 0.10 | 0.07 | 0.01 | 0.95 | 0.97 | 0.91 |
C18:3n3 (a-Linolenic) | 0.38 | 0.38 | 0.36 | 0.01 | 0.66 | 0.98 | 0.84 |
C21:0 (Henicosanoic) | 0.41 | 0.39 | 0.38 | 0.02 | 0.49 | 0.56 | 0.51 |
C22:0 (Behenic) | 0.10 | 0.10 | 0.09 | 0.00 | 0.98 | 0.99 | 0.98 |
C20:3n6 (cis-8,11,14-Eicosatrienoic) | 0.07 | 0.06 | 0.06 | 0.00 | 0.81 | 0.87 | 0.86 |
C20:4n6 (Arachidonic) | 0.06 | 0.05 | 0.05 | 0.00 | 0.98 | 0.96 | 0.96 |
C20:5n3 (cis-5,8,11,14,17-Eicosapentaenoic) | 0.06 | 0.05 | 0.05 | 0.00 | 0.98 | 0.98 | 0.97 |
∑ Saturated fatty acids (SFA) | 74.4 | 74.9 | 75.3 | 0.37 | 0.86 | 0.94 | 0.65 |
∑ Unsaturated fatty acids (UFA) | 25.4 | 25.1 | 24.2 | 0.29 | 0.44 | 0.89 | 0.18 |
∑ Monounsaturated fatty acids (MUFA) | 20.8 | 20.8 | 19.9 | 0.26 | 0.78 | 0.96 | 0.35 |
∑ Polyunsaturated fatty acids (PUFA) | 2.58 | 2.46 | 2.44 | 0.04 | 0.86 | 0.89 | 0.87 |
UFA/SFA | 0.34 | 0.33 | 0.32 | 0.01 | 0.94 | 0.95 | 0.91 |
Variables | T-0 | T-80 | T-160 | SEM | C1 1 | C2 1 | C3 1 |
---|---|---|---|---|---|---|---|
VFAs in ruminal liquid | |||||||
Total VFAs (mmol/L) | 92.1 | 97.3 | 110.2 | 1.52 | 0.01 | 0.05 | 0.01 |
Acetic acid (mmol/L) | 58.2 | 61.9 | 69.8 | 1.12 | 0.09 | 0.21 | 0.03 |
Propionic acid (mmol/L) | 17.6 | 19.2 | 20.9 | 0.54 | 0.26 | 0.38 | 0.05 |
Butyric acid (mmol/L) | 13.7 | 13.5 | 16.3 | 0.21 | 0.75 | 0.94 | 0.02 |
Isovaleic acid (mmol/L) | 1.11 | 1.34 | 1.58 | 0.04 | 0.05 | 0.18 | 0.01 |
Valeric acid (mmol/L) | 1.37 | 1.27 | 1.42 | 0.07 | 0.89 | 0.39 | 0.83 |
Acetic/propionic (mmol/L) | 3.30 | 3.22 | 3.33 | 0.03 | 0.94 | 0.82 | 0.92 |
Apparent digestibility coefficient | |||||||
Dry matter | 0.74 | 0.78 | 0.81 | 0.06 | 0.15 | 0.52 | 0.05 |
Organic matter | 0.76 | 0.79 | 0.82 | 0.06 | 0.22 | 0.61 | 0.08 |
Crude protein | 0.70 | 0.77 | 0.83 | 0.05 | 0.05 | 0.22 | 0.01 |
NDF | 0.63 | 0.67 | 0.78 | 0.09 | 0.43 | 0.82 | 0.12 |
ADF | 0.61 | 0.66 | 0.73 | 0.08 | 0.63 | 0.79 | 0.15 |
EE | 0.75 | 0.79 | 0.81 | 0.06 | 0.58 | 0.84 | 0.32 |
Variables | T-0 | T-80 | T-160 | SEM | C1 1 | C2 1 | C3 1 |
---|---|---|---|---|---|---|---|
Hemogram | |||||||
Erythrocytes (×106 µL) | 5.42 | 5.03 | 5.15 | 0.12 | 0.35 | 0.29 | 0.58 |
Hemoglobin (g/dL) | 9.59 | 9.44 | 9.45 | 0.17 | 0.87 | 0.82 | 0.82 |
Hematocrit (%) | 26.2 | 25.7 | 25.9 | 0.52 | 0.46 | 0.59 | 0.63 |
Leukocytes (×103 µL) | 6.25 | 7.04 | 6.50 | 0.24 | 0.51 | 0.45 | 0.79 |
Lymphocytes (×103 µL) | 3.58 | 4.21 | 3.90 | 0.21 | 0.32 | 0.48 | 0.67 |
Granulocytes (×103 µL) | 1.58 | 1.71 | 1.55 | 0.14 | 0.84 | 0.77 | 0.91 |
Monocyte (×103 µL) | 1.08 | 1.10 | 1.03 | 0.25 | 0.92 | 0.87 | 0.85 |
Biochemistry | |||||||
Albumin (g/dL) | 3.16 | 2.99 | 3.17 | 0.08 | 0.85 | 0.68 | 0.93 |
Cholesterol (mg/dL) | 160 | 161 | 151 | 3.21 | 0.79 | 0.93 | 0.22 |
Glucose (mg/dL) | 71.3 | 69.7 | 70.0 | 1.05 | 0.96 | 0.95 | 0.97 |
Uric acid (mg/dL) | 1.70 | 1.93 | 1.96 | 0.07 | 0.16 | 0.24 | 0.21 |
Total protein (g/dL) | 7.32 | 7.52 | 7.19 | 0.26 | 0.54 | 0.62 | 0.73 |
Urea (mg/dL) | 39.7 | 37.6 | 38.3 | 1.25 | 0.72 | 0.78 | 0.87 |
Globulin (g/dL) | 4.15 | 4.53 | 4.02 | 0.21 | 0.76 | 0.66 | 0.81 |
Variables | T-0 | T-80 | T-160 | SEM | C1 1 | C2 1 | C3 1 |
---|---|---|---|---|---|---|---|
Total gas production, mL/g DM | |||||||
24 h | 163.9 | 143.9 | 132 | 4.59 | 0.01 | 0.04 | 0.01 |
48 h | 181.2 | 166.0 | 147.5 | 5.56 | 0.01 | 0.02 | 0.01 |
pH | 6.45 | 6.49 | 6.47 | 0.01 | 0.86 | 0.89 | 0.92 |
Metabolizable energy, MJ/kg DM | 7.51 | 7.70 | 7.19 | 0.23 | 0.57 | 0.65 | 0.43 |
Digestibility of OM, g/kg DM | 643.6 | 633.2 | 628.1 | 8.65 | 0.04 | 0.32 | 0.05 |
NH3-N, mg/dL | 26.2 | 27.1 | 19.9 | 1.94 | 0.71 | 0.94 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitt, M.G.d.; Brunetto, A.L.R.; Leal, K.W.; Deolindo, G.L.; Corrêa, N.G.; Silva, L.E.L.e.; Wagner, R.; Hamerski, M.E.P.; Kozloski, G.V.; de Jesus da Silva, M.; et al. Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health. Fermentation 2025, 11, 495. https://doi.org/10.3390/fermentation11090495
Vitt MGd, Brunetto ALR, Leal KW, Deolindo GL, Corrêa NG, Silva LELe, Wagner R, Hamerski MEP, Kozloski GV, de Jesus da Silva M, et al. Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health. Fermentation. 2025; 11(9):495. https://doi.org/10.3390/fermentation11090495
Chicago/Turabian StyleVitt, Maksuel Gatto de, Andrei Lucas Rebelatto Brunetto, Karoline Wagner Leal, Guilherme Luiz Deolindo, Natalia Gemelli Corrêa, Luiz Eduardo Lobo e Silva, Roger Wagner, Maria Eduarda Pieniz Hamerski, Gilberto Vilmar Kozloski, Melânia de Jesus da Silva, and et al. 2025. "Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health" Fermentation 11, no. 9: 495. https://doi.org/10.3390/fermentation11090495
APA StyleVitt, M. G. d., Brunetto, A. L. R., Leal, K. W., Deolindo, G. L., Corrêa, N. G., Silva, L. E. L. e., Wagner, R., Hamerski, M. E. P., Kozloski, G. V., de Jesus da Silva, M., Cagliari, A. R., Del Bianco Benedeti, P., & Silva, A. S. d. (2025). Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health. Fermentation, 11(9), 495. https://doi.org/10.3390/fermentation11090495