Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Conditioning
2.2. Fungal Strain and Inoculum Preparation
2.3. Solid-State Culture and Crude Enzyme Extract
2.4. Analytical Methods
2.4.1. β-Glucosidase Activity Measurement
2.4.2. Reducing Sugars and Total Hydrolyzable Phenolics Quantification
2.4.3. HPLC-ESI-MS Methodology
2.4.4. In Vitro Digestibility Assay
2.4.5. Statistical Analysis
3. Results and Discussion
3.1. Enzyme Production
3.2. Bioactive Compounds Released
3.3. Digestibility Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
U/L | Unit per liter |
g/L | gram per liter |
U/g | Unit per gram |
μL | Microliter |
M | Molar |
HPLC-ESI-MS | High Performance Liquid Chromatography–Electrospray Ionization–Mass Spectrometry |
GH1 | Glycoside Hydrolases 1 |
NaNO3 | Sodium nitrate |
KH2PO4 | Potassium dihydrogen phosphate |
KCl | Potassium chloride |
MgSO4 | Magnesium sulfate |
Na2CO3 | Sodium Carbonate |
DNS | Dinitrosalicylicacid |
NaCl | Sodium chloride |
Na2S | Sodium sulfide |
CaCl2 | Calcium chloride |
SD | Standard Deviation |
ANOVA | Analysis of Variance |
ATCC | American Type Culture Collection |
IVDMD | In Vitro Dry Matter Digestibility |
pNPG | p-nitrophenyl-β-glucopyranoside |
References
- De León-Zapata, M.A.; Pastrana-Castro, L.; Rua-Rodríguez, M.L.; Alvarez-Pérez, O.B.; Rodríguez-Herrera, R.; Aguilar, C.N. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi. Food Chem. 2016, 198, 62–67. [Google Scholar] [CrossRef]
- Estell, R.E.; Anderson, D.M.; James, D.K. Defoliation of Flourensia cernua (tarbush) with high-density mixed-species stocking. J. Arid Environ. 2016, 130, 62–67. [Google Scholar] [CrossRef]
- De León-Zapata, M.A.; Pastrana-Castro, L.; Barbosa-Pereira, L.; Rua-Rodríguez, M.; Ventura, J.; Salinas, T.; Rodríguez, R.; Aguilar, C.N. Effect of Flourensia cernua Bioactive Compounds on Stability of an Oil-in-Water (O/W) Emulsion. Biointerface Res. Appl. Chem. 2021, 11, 13997–14006. [Google Scholar] [CrossRef]
- Castellanos-Perez, E.; Valencia-Castro, M.; Quiñones-Vera, J. Goats and the Need for Range Management in Mexico. Rangelands 2002, 24, 24–27. [Google Scholar] [CrossRef]
- García-Monjaras, S.; Santos-Díaz, R.E.; Flores-Najera, M.J.; Cuevas-Reyes, V.; Meza-Herrera, C.A.; Mellado, M.; Chay-Canul, A.J.; Rosales-Nieto, C.A. Diet selected by goats on xerophytic shrubland with different milk yield potential. J. Arid Environ. 2021, 186, 104429. [Google Scholar] [CrossRef]
- Salma, A.H.; Ayman, A.H.; Mona, M.M.Y.; Barbabosa-Pliego, A.; Mellado, M.; Salem, A.Z.M. Dietary Anti-nutritional Factors and Their Roles in Livestock Nutrition. Sustain. Agric. Rev. 2022, 57, 131–174. [Google Scholar]
- Morrone, J.J.A.; Fernández, R.; Jesús, A. Biogeographic unitsin the Chihuahuan Desert: Implications for regionalization and area nomenclature. Rev. Mex. Biodivers. 2022, 93, 933907. [Google Scholar]
- Estell, R.E.; Fredrickson, E.L.; James, D.K. Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua. Biochem. Syst. Ecol. 2016, 65, 108–114. [Google Scholar] [CrossRef]
- Linares-Braham, A.; Palomo-Ligas, L.; Nery-Flores, S.D. Bioactive Compounds and Pharmacological Potential of Hojasen (Flourensia cernua): A Mini review. Plant Sci. Today 2023, 10, 304–312. [Google Scholar] [CrossRef]
- Ventura, J.; Belmares, R.; Aguilera-Carbo, A.; Gutiérrez-Sanchez, G.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal biodegradation of tannins from creosote bush (Larrea tridentata) and tar bush (Flourensia cernua) for gallic and ellagic acid production. Food Technol. Biotechnol. 2008, 46, 213–217. [Google Scholar]
- Alvarez-Pérez, O.B.; Ventura-Sobrevilla, J.M.; Ascacio-Valdés, J.A.; Rojas, R.; Verma, D.K.; Aguilar, C.N. Valorization of Flourensia cernua DC as source of antioxidants and antifungal bioactives. Ind. Crops Prod. 2020, 152, 112422. [Google Scholar] [CrossRef]
- Godse, R.; Bawane, H.; Tripathi, J.; Kulkarni, R. Unconventional β-glucosidases: A promising biocatalyst for industrial biotechnology. Appl. Biochem. Biotechnol. 2021, 193, 2993–3016. [Google Scholar] [CrossRef]
- Lopez-Trujillo, J.; Medina-Morales, M.A.; Sanchez-Flores, A.; Arevalo, C.; Ascacio-Valdes, J.A.; Mellado, M.; Aguilar, C.N.; Aguilera-Carbo, A.F. Solid bioprocess of tarbush (Flourensia cernua) leaves for β-glucosidase production by Aspergillus niger: Initial approach to fiber–glycoside interaction for enzyme induction. 3 Biotech 2017, 7, 271. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, M.; Sun, Q.; Ma, J.; Xia, A.; Huang, Y.; Zhu, X.; Liao, Q. Elucidation of the interaction effects of cellulose, hemicellulose and lignin during degradative solvent extraction of lignocellulosic biomass. Fuel 2022, 327, 125–141. [Google Scholar] [CrossRef]
- Jasso de Rodríguez, D.; Hernández-Castillo, D.; Angulo-Sánchez, J.L.; Rodríguez-García, R.; Villarreal Quintanilla, J.A.; Lira-Saldivar, R.H. Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 2007, 25, 111–116. [Google Scholar] [CrossRef]
- Nishida, V.S.; de Oliveira, R.F.; Brugnari, T.; Correa, R.C.G.; Peralta, R.A.; Castoldi, R.; de Souza, C.G.M.; Bracht, A.; Peralta, R.M. Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process. Int. J. Biol. Macromol. 2018, 111, 1206–1213. [Google Scholar] [CrossRef]
- Magwaza, B.; Amobonye, A.; Pillai, S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024, 225, 49–67. [Google Scholar] [CrossRef]
- Ahmed, A.; Nasim, F.; Batool, K.; Bibi, A. Microbial β-Glucosidase: Sources, Production and Applications. J. Appl. Environ. Microbiol. 2017, 5, 31–46. [Google Scholar] [CrossRef]
- Mól, P.C.G.; Júnior, J.C.Q.; Veríssimo, L.A.A.; Boscolo, M.; Gomes, E.; Minim, L.A.; Da Silva, R. β-glucosidase: An overview on immobilization and some aspects of structure, function, applications and cost. Process Biochem. 2023, 130, 26–39. [Google Scholar] [CrossRef]
- Shuai, S.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Huang, Z.; Yu, J.; Mao, X.; Yan, H.; He, J. Effect of fermented rapeseed meal on growth performance, nutrient digestibility, and intestinal health in growing pigs. Anim. Nutr. 2023, 15, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Villas-Bôas, S.G.; Esposito, E.; Mitchell, D.A. Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Technol. 2002, 98, 1–12. [Google Scholar] [CrossRef]
- Graminha, E.B.N.; Goncalves, A.Z.L.; Pirota, R.D.P.B.; Balsalobre, M.A.A.; Da Silva, R.; Gomes, E. Enzyme production by solid-state fermentation: Application to animal nutrition. Anim. Feed Sci. Technol. 2008, 144, 1–22. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 2016, 86, 656–669. [Google Scholar] [CrossRef]
- Izábal-Carvajal, A.L.; Sepúlveda, L.; Chávez-González, M.L.; Torres-León, C.; Aguilar, C.N.; Ascacio-Valdés, J.A. Extraction of Bioactive Compounds via Solid-State Fermentation Using Aspergillus niger GH1 and Saccharomyces cerevisiae from Pomegranate Peel. Waste 2023, 1, 806–814. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzynska-Janiszewska, A.; Baczkowicz, M. Aspergillus oryzae (Koji Mold) and Neurospora Intermedia (Oncom Mold) Application for Flaxseed Oil Cake Processing. LWT 2020, 131, 109651. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochem. 2003, 39, 367–379. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef]
- Martins, E.H.; Ratuchne, A.; De Oliveira Machado, G.; Knob, A. Canola meal as a promising source of fermentable sugars: Potential of the Penicillium glabrum crude extract for biomass hydrolysis. Biocatal. Agric. Biotechnol. 2020, 27, 101713. [Google Scholar] [CrossRef]
- Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6, 3. [Google Scholar] [CrossRef]
- Paventi, G.; Di Martino, C.; Coppola, F.; Iorizzo, M. β-Glucosidase Activity of Lactiplantibacillus plantarum: A Key Player in Food Fermentation and Human Health. Foods 2025, 14, 1451. [Google Scholar] [CrossRef]
- Bhatia, Y.; Mishra, S.; Bisaria, V.S. Microbial β-Glucosidases: Cloning, Properties, and Applications. Crit. Rev. Biotechnol. 2002, 22, 375–407. [Google Scholar] [CrossRef]
- Das Neves, C.A.; De Menezes, L.H.S.; Soares, G.A.; Dos Santos Reis, N.; Tavares, I.M.C.; Franco, M.; De Oliveira, J.R. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers. Biorefin. 2020, 12, 3133–3144. [Google Scholar] [CrossRef]
- Dina, S.; Thankamani, V. Optimization of cellulase production from Aspergillus flavipes by submerged and solid state fermentation. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e4754. [Google Scholar] [CrossRef]
- El-Ghonemy, D.H. Optimization of extracellular ethanol-tolerant b-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: Purification and biochemical characterization for biofuel preparation. J. Genet. Eng. Biotechnol. 2021, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Ezeilo, U.R.; Wahab, R.A.; Huyop, F.; David, E.E.; Tin, L.C. Solid-state valorization of raw oil palm leaves by novel fungi Trichoderma asperellum UC1 and Rhizopus oryzae UC2 for sustainable production of cellulase and xylanase. J. Chem. Technol. Biotechnol. 2022, 97, 520–533. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef]
- Lu, X.; Sun, J.; Nimtz, M.; Wissing, J.; Zeng, A.; Rinas, U. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb. Cell Fact. 2010, 20, 9–23. [Google Scholar] [CrossRef]
- Ascacio-Valdés, J.A.; Buenrostro, J.J.; De la Cruz, R.; Sepúlveda, L.; Aguilera-Carbó, A.F.; Prado, A.; Contreras, J.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal biodegradation of pomegranate ellagitannins. J. Basic Microbiol. 2014, 54, 28–34. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; González-Hernández, M.D.; Rojas, R.; Paz-González, A.D.; Rivera, G.; Luna-Sosa, B.; Martínez-Ávila, G.C.G. Essential Oil and Polyphenolic Compounds of Flourensia cernua Leaves: Chemical Profiling and Functional Properties. Agronomy 2022, 12, 2274. [Google Scholar] [CrossRef]
- Castillo-Reyes, F.; León-Juárez, E.D.; Nery-Flores, S.D.; Flores-Gallegos, A.C.; Campos-Muzquiz, L.G.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R. Polyphenols extraction from creosote bush, tarbush, and soursop using ultrasound-microwave and their effect against Alternaria alternata and Fusarium solani. Rev. Mex. Fitopatol. 2022, 40, 349. [Google Scholar] [CrossRef]
- Ganchev, D. Antisporulation Action of Tarbush Plant (Flourensia cernua) Towards Conidiospores of Plant Pathogens. J. Sustain. Agric. 2022, 6, 81–84. [Google Scholar] [CrossRef]
- Ruiz-Martínez, J.; Aguirre-Joya, J.A.; Rojas, R.; Vicente, A.; Aguilar-González, M.A.; Rodríguez-Herrera, R.; Aguilar, C.N. Recubrimiento comestible de cera de candelilla con bioactivos de Flourensia cernua para prolongar la calidad de los frutos de tomate. Alimentos 2020, 9, 1303. [Google Scholar]
- Ri, J.; Lee, H.; Choi, R.; Sim, M.; Choi, M.; Kwon, E.; Won, K.; Kim, M.; Lee, M. Anti-obesity and anti-hepatosteatosis effects of dietary scopoletin in high-fat diet fed mice. J. Funct. Foods 2016, 25, 433–446. [Google Scholar]
- Jang, J.H.; Park, J.E.; Han, J.S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. Eur. J. Pharmacol. 2018, 834, 152–156. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Banerjee, K.; Mandal, M. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol. 2015, 5, 153–162. [Google Scholar] [CrossRef]
- Jasso de Rodríguez, D.; Torres-Moreno, H.; López-Romero, J.C.; Vidal-Gutiérrez, M.; Villarreal-Quintanilla, J.Á.; Carrillo-Lomelí, D.A. Antioxidant, anti-inflammatory, and antiproliferative activities of Flourensia spp. Biocatal. Agric. Biotechnol. 2023, 47, 102552. [Google Scholar] [CrossRef]
- Bitner, B.F.; Ray, J.D.; Kener, K.B.; Herring, J.A.; Tueller, J.A.; Johnson, D.K.; Tellez, C.M.; Fausnacht, D.W.; Allen, M.E.; Thomson, A.H.; et al. Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. J. Nutr. Biochem. 2018, 62, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, K.; Zhang, X.; Yang, C.; Li, X. 4-Hydroxybenzoic acid (4-HBA) enhances the sensitivity of human breast cancer cells to adriamycin as a specific HDAC6 inhibitor by promoting HIPK2/P53 pathway. Biochem. Biophys. Res. Commun. 2018, 504, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Yeon, J.; Lee, J.; Hyun, H.; Hahm, D.; Cheon, S.; Lee, S.; Seo, G.; Jung, K.; Sung, K. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorg. Med. Chem. Lett. 2017, 27, 3076–3080. [Google Scholar] [CrossRef] [PubMed]
- Rasheeda, K.; Bharathy, H.; Fathima, N.N. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen. Int. J. Biol. Macromol. 2018, 113, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, E.; Szucs, C.; Farkas, A.; Szuhaj, M.; Maroti, G.; Bagi, Z.; Rakhely, G.; Kovacs, K.L. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J. Biotechnol. 2022, 360, 160–170. [Google Scholar] [CrossRef]
- Srivastava, N.; Rathour, R.; Jha, S.; Pandey, K.; Srivastava, M.; Thakur, V.K.; Sengar, R.S.; Gupta, V.K.; Mazumder, P.B.; Khan, A.F. Microbial beta glucosidase enzymes: Recent advances in biomass conversation for biofuels application. Biomolecules 2019, 9, 220. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Chen, Q.; Zhang, Y.F.; Chen, D.D.; Yi, X.N.; Chen, D.S.; Cheng, X.P.; Li, M.; Wang, H.Y.; Chen, K.Q.; et al. Improving the catalytic activity of b-glucosidase from Coniophora puteana via semi-rational design for efficient biomass cellulose degradation. Enzym. Microb. Technol. 2023, 164, 110188. [Google Scholar] [CrossRef]
- Singh, N.; Sithole, B.; Govinden, R. Screening for cellulases and preliminary optimisation of glucose tolerant b-glucosidase production and characterization. Mycology 2023, 14, 91–107. [Google Scholar] [CrossRef]
- Chauve, H.; Mathis, H.; Huc, D.; Casanave, D.; Monot, F.; Lopes, N. Comparative kinetic analysis of two fungal b-glucosidases. Biotechnol. Biofuels 2010, 3, 3. [Google Scholar] [CrossRef]
- Da Costa, S.G.; Pereira, O.L.; Teixeira-Ferreira, A.; Valente, R.H.; De Rezende, S.T.; Guimaraes, V.M.; Genta, F.A. Penicillium citrinum UFV1 β-glucosidases: Purification, characterization, and application for biomass saccharification. Biotechnol. Biofuels 2018, 11, 226. [Google Scholar] [CrossRef]
- Sakita, G.Z.; Bompadre, T.F.V.; Dineshkumar, D.; Lima, P.d.M.T.; Filho, A.L.A.; Campioni, T.S.; Neto, P.d.O.; Neto, H.B.; Louvandini, H.; Abdalla, A.L. Fibrolytic enzymes improving in vitro rumen degradability of tropical forages. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1267–1276. [Google Scholar] [CrossRef]
- Pech-Cervantes, A.A.; Muhammad, I.; Ogunade, I.M.; Jiang, Y.; Kim, D.H.; Gonzalez, C.F.; Adesogan, A.T. Exogenous fibrolytic enzymes and recombinant bacterial expansis synergistically improve hydrolysis and in vitro digestibility of Bermuda grasshaylage. J. Dairy Sci. 2019, 102, 8059–8073. [Google Scholar] [CrossRef]
- Putri, E.M.; Zain, M.; Warly, L.; Hermon, H. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World 2021, 14, 640–648. [Google Scholar] [CrossRef]
- Hati, S.; Ningtyas, D.W.; Khanuja, J.K.; Prakash, S. β-Glucosidase from almonds and yoghurt cultures in the biotransformation of isoflavones in soy milk. Food Biosci. 2020, 34, 100542. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, X.; Li, T.; Guo, H.; Chang, R.; Liu, J.; Liu, Q.; Hao, H.; Huang, T.; Chen, W.; et al. Quantification of isoflavone glycosides and aglycones in rat plasma by LC-MS/MS: Troubleshooting of interference from food and its application to pharmacokinetic study of Semen sojae Praeparatum extract. J. Pharm. Biomed. Anal. 2018, 161, 444–454. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Hong, D. A simple method for beta-glucosidase immobilization and its application in soybean isoflavone glycosides hydrolysis. Biotechnol. Bioprocess Eng. 2018, 23, 39–48. [Google Scholar] [CrossRef]
- Rana, V.; Rana, D. Role of microorganisms in lignocellulosic biodegradation. In Renewable Biofuels; Springer Briefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2017; pp. 19–67. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Agrawal, K.; Verma, P. Current perspective on production and applications of microbial cellulases: A review. Bioresour. Bioprocess. 2021, 8, 95. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J.A.; Huerta-Ochoa, S.; Aguilar, C.N.; Prado-Barragán, L.A. Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem. 2017, 62, 16–23. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Guo, Q.; Deng, W.; Du, G.; Li, R. Isolation of the termostable β-glucosidase-secreting strain Bacillus altitudinis JYY-02 and its application in the production of gardenia blue. Microbiol. Spectr. 2022, 10, e0153522. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xia, X.; Wang, Z.; Wang, Y.; Dai, Y.; Yin, L.; Xu, Z.; Zhou, J. Cloning and expression of Lactobacillus brevis b-glucosidase and its effect on the aroma of strawberry wine. J. Food Process. Preserv. 2023, 46, e16368. [Google Scholar] [CrossRef]
- Chen, Z.; Meng, T.; Li, Z.; Liu, P.; Wang, Y.; He, N.; Liang, D. Characterization of a beta-glucosidase from Bacillus licheniformis and its effect on bioflocculant degradation. AMB Express 2017, 7, 197. [Google Scholar] [CrossRef] [PubMed]
Compound | Name | Retention Time (min) | m/z | Family |
---|---|---|---|---|
a | Scopoletin | 3.976 | 191 | Hydroxycoumarins |
b | Luteolin 7-O-rutinoside | 28.152 | 593.1 | Flavones |
c | Apigenin arabinoside–glucoside | 30.18 | 563.1 | Flavones |
d | Homovanillic acid 4-O-sulfate | 36.628 | 261 | Metabolite |
e | Hydroxybenzoic acid 4-O-glucoside | 44.202 | 299 | Hydroxybenzoic acid |
f | Cirsimaritin | 48.632 | 313 | Methoxyflavones |
g | Vanillic acid 4-sulfate | 49.513 | 247.1 | Metabolite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Trujillo, J.; Ascacio-Valdés, J.A.; Mellado-Bosque, M.; Aguilar, C.N.; Aguilera-Carbó, A.F.; Medina-Morales, M.Á. Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility. Fermentation 2025, 11, 433. https://doi.org/10.3390/fermentation11080433
López-Trujillo J, Ascacio-Valdés JA, Mellado-Bosque M, Aguilar CN, Aguilera-Carbó AF, Medina-Morales MÁ. Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility. Fermentation. 2025; 11(8):433. https://doi.org/10.3390/fermentation11080433
Chicago/Turabian StyleLópez-Trujillo, Juan, Juan Alberto Ascacio-Valdés, Miguel Mellado-Bosque, Cristóbal N. Aguilar, Antonio Francisco Aguilera-Carbó, and Miguel Á. Medina-Morales. 2025. "Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility" Fermentation 11, no. 8: 433. https://doi.org/10.3390/fermentation11080433
APA StyleLópez-Trujillo, J., Ascacio-Valdés, J. A., Mellado-Bosque, M., Aguilar, C. N., Aguilera-Carbó, A. F., & Medina-Morales, M. Á. (2025). Valorization of Flourensia cernua Foliage Through a Multiproduct Fungal Solid-State Bioprocess and Its Effect on In Vitro Digestibility. Fermentation, 11(8), 433. https://doi.org/10.3390/fermentation11080433