Predicting Organic Acid Variation in White Wine Malolactic Fermentation Using a Logistic Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Grapes’ Harvest and Vinification
2.2. Wine Characterization
2.3. Extraction of Volatile Compounds and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Variation in pH and Acidity During Fermentation
3.2. Variation in the Organic Acids During Malolactic Fermentation
3.3. Volatile Profile of Wines
Chemical Group | Aromatic Compound | ODT (mg/L) | Ch35new | CH35old | CINEnew | CINEold | Aromatic Description | Literature Reference |
---|---|---|---|---|---|---|---|---|
Esters | 2- phenylethyl acetate | 0.25 | 0.537 ± 0.038 b | 0.479 ± 0.031 b | 0.103 ± 0.012 a | 0.486 ± 0.022 b | rose, floral | [53] |
ethyl hexanoate | 0.005 | 1.305 ± 0.064 b | 1.100 ± 0.148 b | 0.235 ± 0.032 a | 1.347 ± 0.073 b | ripe banana | [53] | |
hexyl acetate | 1.50 | 0.156 ± 0.009 b | 0.214 ± 0.003 c | 0.037 ± 0.005 a | 0.251 ± 0.016 d | sweet, perfume | [54] | |
ethyl decanoate | 0.20 | 2.904 ± 0.048 d | 1.480 ± 0.014 b | 0.464 ± 0.019 a | 1.623 ± 0.006 c | grape, floral, soap | [54] | |
ethyl laurate | 1.50 | ND * | 0.165 ± 0.021 b | 0.049 ± 0.002 a | 0.237 ± 0.013 c | flowers, fruity | [55] | |
ethyl octanoate | 0.002 | 2.986 ± 0.033 d | 2.222 ± 0.065 b | 0.532 ± 0.117 a | 2.485 ± 0.073 c | pineapple, pear, floral | [56] | |
Terpenes | linalool | 0.025 | 0.170 ± 0.034 b | 0.158 ± 0.015 b | 0.038 ± 0.006 a | 0.200 ± 0.020 b | fruity, citric | [55] |
α-terpineol | 0.01 | 0.051 ± 0.001 b | 0.048 ± 0.004 b | 0.010 ± 0.001 a | 0.060 ± 0.004 c | tropical fruits | [57] | |
β-caryophyllene | 0.064 | ND | 0.056 ± 0.007 a | ND | 0.306 ± 0.051 b | pepper, spice | [58] | |
Higher alcohols | phenethyl alcohol | 10 | 9.609 ± 0.042 d | 7.934 ± 0.272 b | 1.996 ± 0.177 a | 8.820 ± 0.015 c | flowers, rose | [59] |
1-pentanol | 64 | 6.135 ± 0.335 a | ND | 7.220 ± 0.389 b | ND | sweet, balsamic | [54] |
Aromatic Compound | ODT (mg/L) | CH35new | CH35old | CINEnew | CINEold | Aromatic Description | Literature |
---|---|---|---|---|---|---|---|
Butanoic acid | 0.17 | 0.611 ± 0.022 b | 0.574 ± 0.013 b | 0.115 ± 0.007 a | 0.582 ± 0.043 b | cheese | [60] |
Hexanoic acid | 0.40 | 5.217 ± 0.027 c | 4.196 ± 0.331 b | 0.962 ± 0.092 a | 4.151 ± 0.235 b | sweaty, cheesy | [54] |
Octanoic acid | 0.50 | 2.220 ± 0.151 b | 7.779 ± 0.352 c | 1.495 ± 0.112 a | 7.483 ± 0.203 c | sweat, cheese | [59] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLF | Malolactic Fermentation |
O. oeni | Oenococcus oeni |
LAB | Lactic Acid Bacteria |
TA | Total Titratable Acidity |
VA | Volatile Acidity |
MA | Malic Acid |
LA | Lactic Acid |
CA | Citric Acid |
AA | Acetic Acid |
ODT | Odor Perception Threshold |
References
- Maicas, S. Advances in Wine Fermentation. Fermentation 2021, 7, 187. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Stasinou, V.; Tzamourani, A.; Kotseridis, Y.; Dimopoulou, M. Malolactic Fermentation—Theoretical Advances and Practical Considerations. Fermentation 2022, 8, 521. [Google Scholar] [CrossRef]
- Mendes Ferreira, A.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q. Malolactic fermentation in wine—Beyond deacidification. J. Appl. Microbiol. 2002, 92, 589–601. [Google Scholar] [CrossRef]
- Capozzi, V.; Tufariello, M.; De Simone, N.; Fragasso, M.; Grieco, F. Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. Fermentation 2021, 7, 24. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Bouloumpasi, E.; Zotou, A.; Loukou, Z. Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration. Food Chem. 2007, 101, 704–716. [Google Scholar] [CrossRef]
- Moreira, L.; Milheiro, J.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Exploring factors influencing the levels of biogenic amines in wine and microbiological strategies for controlling their occurrence in winemaking. Food Res. Int. 2024, 190, 114558. [Google Scholar] [CrossRef]
- Wüthrich, B. Allergic and intolerance reactions to wine. Allergol. Sel. 2018, 2, 80–88. [Google Scholar] [CrossRef]
- Paraskevopoulos, Y. Optimization of the management conditions of malolactic fermentation in red wines of the Nemea region. Electron. J. Sci. Technol. 2008, 3. [Google Scholar]
- Lonvaud-Funel, A. Biogenic amines in wines: Role of lactic acid bacteria. FEMS Microbiol. Lett. 2001, 199, 9–13. [Google Scholar] [CrossRef]
- Davis, C.R.; Wibowo, D.; Eschenbruch, R.; Lee, T.H.; Fleet, G.H. Practical Implications of Malolactic Fermentation: A Review. Am. J. Enol. Vitic. 1985, 36, 290. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on risk based control of biogenic amine formation in fermented foods-European Food Safety Authority Panel on Biological Hazards (BIOHAZ). EFSA J. 2011, 9, 2393–2486. [Google Scholar] [CrossRef]
- Guerrini, S.; Mangani, S.; Granchi, L.; Vincenzini, M. Biogenic amine production by Oenococcus oeni. Curr. Microbiol. 2002, 44, 374–378. [Google Scholar] [CrossRef]
- Vargas-Luna, C.; Godoy, L.; Benavides, S.; Ceppi de Lecco, C.; Urtubia, A.; Franco, W. Screening and Selection of Native Lactic Acid Bacteria Isolated from Chilean Grapes. Foods 2025, 14, 143. [Google Scholar] [CrossRef]
- Sablayrolles, J.M. Control of alcoholic fermentation in winemaking: Current situation and prospect. Food Res. Int. 2009, 42, 418–424. [Google Scholar] [CrossRef]
- Cano-López, M.; Pardo-Minguez, F.; López-Roca, J.M.; Gómez-Plaza, E. Chromatic characteristics and anthocyanin profile of a micro-oxygenated red wine after oak or bottle maturation. Eur. Food Res. Technol. 2007, 225, 127–132. [Google Scholar] [CrossRef]
- Anli, R.E.; Cavuldak, Ö.A. A review of microoxygenation application in wine. J. Inst. Brew. 2012, 118, 368–385. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Lapeña, A.C.; Escudero, A.; Astrain, J.; Baron, C.; Pardo, I.; Polo, L.; Ferrer, S.; Cacho, J.; Ferreira, V. Effect of micro-oxygenation on the evolution of aromatic compounds in wines: Malolactic fermentation and ageing in wood. LWT Food Sci. Technol. 2009, 42, 391–401. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, Z.; Li, Z.; Liu, Y.; Liu, Y.; Song, Y.; Qin, Y. Dynamic changes in dissolved oxygen concentration, microbial communities, and volatile compounds during industrial oak-barrel fermentation of Sauvignon Blanc wine. Food Res. Int. 2024, 197, 115250. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Costello, P.J.; Chambers, P.J. Emerging trends in the application of malolactic fermentation. Aust. J. Grape Wine Res. 2015, 21, 663–669. [Google Scholar] [CrossRef]
- Lerm, E.; Engelbrecht, L.; Du Toit, M. Malolactic fermentation: The ABC’s of MLF. S. Afr. J. Enol. Vitic. 2010, 31, 186–212. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Iorizzo, M.; Testa, B.; Succi, M.; Tremonte, P.; Sorrentino, E.; Di Renzo, M.; Strollo, D.; Coppola, R. Inoculum Strategies and Performances of Malolactic Starter Lactobacillus plantarum M10: Impact on Chemical and Sensorial Characteristics of Fiano Wine. Microorganisms 2020, 8, 516. [Google Scholar] [CrossRef]
- Ripper, M. Die schweflige Säure im Weine und deren Bestimmung. (Mitteilungen aus Schmitt’s Laboratorium, [Untersuchungs- Amt, chemische Versuchsstation und hygienisches Institut] zu Wiesbaden.). J. Für Prakt. Chem. 1892, 46, 428–473. [Google Scholar] [CrossRef]
- ISO 12099:2017; Animal Feeding Stuffs, Cereals and Milled Cereal Products. Guidelines for the Application of Near-Infrared Spectrometry. International Organization for Standardization: London, UK, 2017.
- Lenti, L.; Nartea, A.; Orhotohwo, O.L.; Pacetti, D.; Fiorini, D. Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine. Molecules 2022, 27, 8195. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, L.; Xiao, S.; Chen, Z.; Sarsaiya, S.; Zhang, S.; ShangGuan, Y.; Liu, H.; Xu, D. Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb.f. using a callus suspension culture. PLoS ONE 2020, 15, e0220084. [Google Scholar] [CrossRef]
- Fleet, G.H.; Heard, G.M. Yeast-Growth during Fermentation. In Wine, Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic: Lausanne, Switerland, 1993; pp. 27–54. [Google Scholar]
- Guzzo, J.; Jobin, M.-P.; Diviès, C. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol. Lett. 1998, 160, 43–47. [Google Scholar] [CrossRef]
- Henick-Kling, T. Malolactic fermentation. In Wine, Microbiology and Biotechnology; Fleet, G.H., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 289–326. [Google Scholar]
- Volschenk, H.; Vuuren, H.; Viljoen-Bloom, M. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef]
- Lucio, O.; Pardo, I.; Krieger-Weber, S.; Heras, J.M.; Ferrer, S. Selection of Lactobacillus strains to induce biological acidification in low acidity wines. LWT 2016, 73, 334–341. [Google Scholar] [CrossRef]
- Bartowsky, E.J. Oenococcus oeni and malolactic fermentation—Moving into the molecular arena. Aust. J. Grape Wine Res. 2005, 11, 174–187. [Google Scholar] [CrossRef]
- Eicher, C.; Coulon, J.; Favier, M.; Alexandre, H.; Reguant, C.; Grandvalet, C. Citrate metabolism in lactic acid bacteria: Is there a beneficial effect for Oenococcus oeni in wine? Front. Microbiol. 2023, 14, 1283220. [Google Scholar] [CrossRef]
- Lorentzen, M.P.G.; Lucas, P.M. Distribution of Oenococcus oeni populations in natural habitats. Appl. Microbiol. Biotechnol. 2019, 103, 2937–2945. [Google Scholar] [CrossRef]
- Popescu-Mitroi, I.; Radu, D.; Stoica, F. The study of glycerol metabolism in the malolactic fermentation of red wines. Rom. Biotechnol. Lett. 2014, 19, 9019–9027. [Google Scholar]
- McDaniel, M.; Henderson, L.A.; Watson, B.T.; Heatherbell, D. Sensory Panel Training and Screening for Descriptive Analysis of the Aroma of Pinot Noir Wine Fermented by Several Strains of Malolactic Bacteria. In Descriptive Sensory Analysis in Practice; Wiley: Hoboken, NJ, USA, 2004; pp. 351–369. [Google Scholar]
- Davis, C.R.; Wibowo, D.J.; Lee, T.H.; Fleet, G.H. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH. Appl. Environ. Microbiol. 1986, 51, 539–545. [Google Scholar] [CrossRef]
- Izquierdo-Cañas, P.M.; Mena-Morales, A.; García-Romero, E. Malolactic fermentation before or during wine aging in barrels. LWT—Food Sci. Technol. 2016, 66, 468–474. [Google Scholar] [CrossRef]
- Malherbe, S.; Bauer, F.; Du Toit, M. Understanding Problem Fermentations—A Review. S. Afr. J. Enol. Vitic. 2007, 28, 169–186. [Google Scholar] [CrossRef]
- Hornsey, I.S. The Yeast and Fermentation. In The Chemistry and Biology of Winemaking; Hornsey, I.S., Ed.; The Royal Society of Chemistry: London, UK, 2007; pp. 114–238. [Google Scholar]
- Ferrari, G. Influence of must nitrogen composition on wine and spirit quality and relation with aromatic composition and defects—A review. J. Int. Des Sci. De La Vigne Vin 2002, 36, 1–10. [Google Scholar] [CrossRef]
- Knoll, C.; Fritsch, S.; Schnell, S.; Grossmann, M.; Krieger-Weber, S.; du Toit, M.; Rauhut, D. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma. World J. Microbiol. Biotechnol. 2012, 28, 1143–1153. [Google Scholar] [CrossRef]
- Siebert, T.E.; Barker, A.; Pearson, W.; Barter, S.R.; de Barros Lopes, M.A.; Darriet, P.; Herderich, M.J.; Francis, I.L. Volatile Compounds Related to ‘Stone Fruit’ Aroma Attributes in Viognier and Chardonnay Wines. J. Agric. Food Chem. 2018, 66, 2838–2850. [Google Scholar] [CrossRef]
- Qu, J.; Chen, X.; Wang, X.; He, S.; Tao, Y.; Jin, G. Esters and higher alcohols regulation to enhance wine fruity aroma based on oxidation-reduction potential. LWT 2024, 200, 116165. [Google Scholar] [CrossRef]
- Celik, Z.D.; Cabaroglu, T.; Krieger-Weber, S. Impact of malolactic fermentation on the volatile composition of Turkish Kalecik karası red wines. J. Inst. Brew. 2019, 125, 92–99. [Google Scholar] [CrossRef]
- Billet, K.; Thibon, C.; Badet, M.L.; Wirgot, N.; Noret, L.; Nikolantonaki, M.; Gougeon, R.D. White wines aged in barrels with controlled tannin potential exhibit correlated long-term oxidative stability in bottle. Food Chem. X 2024, 24, 101907. [Google Scholar] [CrossRef]
- Ashrafi, B.; Rashidipour, M.; Gholami, E.; Sattari, E.; Marzban, A.; Kheirandish, F.; Khaksarian, M.; Taherikalani, M.; Soroush, S. Investigation of the phytochemicals and bioactivity potential of essential oil from Nepeta curvidens Boiss. & Balansa. S. Afr. J. Bot. 2020, 135, 109–116. [Google Scholar] [CrossRef]
- Shi, X.; Liu, Y.; Ma, Q.; Wang, J.; Luo, J.; Suo, R.; Sun, J. Effects of low temperature on the dynamics of volatile compounds and their correlation with the microbial succession during the fermentation of Longyan wine. LWT 2022, 154, 112661. [Google Scholar] [CrossRef]
- Knoll, C.; Fritsch, S.; Schnell, S.; Grossmann, M.; Rauhut, D.; du Toit, M. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT Food Sci. Technol. 2011, 44, 2077–2086. [Google Scholar] [CrossRef]
- Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. Eur. Food Res. Technol. 2018, 244, 245–258. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Costello, P. The chemistry of malolactic fermentation. In Malolactic Fermentation in Wine; Morenzoni, R., Specht, K.S., Eds.; Lallemand Inc.: Montreal, QC, Canada, 2005; pp. 4:1–4:11. [Google Scholar]
- Izquierdo Cañas, P.M.; García Romero, E.; Gómez Alonso, S.; Palop Herreros, M.L.L. Changes in the aromatic composition of Tempranillo wines during spontaneous malolactic fermentation. J. Food Compos. Anal. 2008, 21, 724–730. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agric. 2011, 91, 1855–1862. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the loess plateau region of china. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef]
- Bayram, M.; Kayalar, M. White wines from Narince grapes: Impact of two different grape provenances on phenolic and volatile composition. OENO One 2018, 52, 81–92. [Google Scholar] [CrossRef]
- Chigo-Hernandez, M.M.; Tomasino, E. Aroma Perception of Limonene, Linalool and α-Terpineol Combinations in Pinot Gris Wine. Foods 2023, 12, 2389. [Google Scholar] [CrossRef] [PubMed]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Cabaroglu, T.; Canbas, A.; Erten, H.; Nurgel, C.; Lepoutre, J.P.; Gunata, Z. Volatile composition of red wine from cv. Kalecik Karasι grown in central Anatolia. Food Chem. 2004, 85, 207–213. [Google Scholar] [CrossRef]
- de Revel, G.; Martin, N.; Pripis-Nicolau, L.; Lonvaud-Funel, A.; Bertrand, A. Contribution to the Knowledge of Malolactic Fermentation Influence on Wine Aroma. J. Agric. Food Chem. 1999, 47, 4003–4008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampatea, A.; Skendi, A.; Manoledaki, M.; Bouloumpasi, E. Predicting Organic Acid Variation in White Wine Malolactic Fermentation Using a Logistic Model. Fermentation 2025, 11, 288. https://doi.org/10.3390/fermentation11050288
Karampatea A, Skendi A, Manoledaki M, Bouloumpasi E. Predicting Organic Acid Variation in White Wine Malolactic Fermentation Using a Logistic Model. Fermentation. 2025; 11(5):288. https://doi.org/10.3390/fermentation11050288
Chicago/Turabian StyleKarampatea, Aikaterini, Adriana Skendi, Maria Manoledaki, and Elisavet Bouloumpasi. 2025. "Predicting Organic Acid Variation in White Wine Malolactic Fermentation Using a Logistic Model" Fermentation 11, no. 5: 288. https://doi.org/10.3390/fermentation11050288
APA StyleKarampatea, A., Skendi, A., Manoledaki, M., & Bouloumpasi, E. (2025). Predicting Organic Acid Variation in White Wine Malolactic Fermentation Using a Logistic Model. Fermentation, 11(5), 288. https://doi.org/10.3390/fermentation11050288