Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Winemaking
2.3. Analytical Determinations
2.3.1. Determination of Biomass
2.3.2. Quantification of Ethanol Concentration
2.3.3. Determination of Reducing Sugars
2.3.4. Determination of °Brix
2.3.5. Determination of Kinetic Parameters
2.3.6. Fermentation Process Performance
2.4. Experimental Design
3. Results and Discussion
3.1. Behaviour of the Biomass Concentration of Saccharomyces Cerevisiae During Ultrasound-Assisted Fermentation in Three Isaño Genotypes
3.2. Ethanol Production Behaviour in Ultrasound-Assisted Fermentation of Three Isaño Genotypes
3.3. Behaviour of Reducing Sugars in the Ultrasound-Assisted Fermentation Process Evaluated in Three Isaño Genotypes
3.4. Behaviour of Soluble Solids in the Fermentation Process
3.5. Application of the Monod Kinetic Model Based on the °Brix Parameter in Ultrasound-Assisted Fermentation of Yeast
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aruquipa, R.; Trigo, R.; Bosque, H.; Mercado, G.; Condori, J. El Isaño (Tropaeolum uberosum) Un Cultivo de Consumo y Medicina Tradicional En Huatacana Para El Beneficio de La Población Boliviana. RIIARn 2017, 3, 146–151. [Google Scholar]
- Valle-Parra, M.; Pomboza-Tamaquiza, P.; Buenaño-Sánchez, M.; Guevara-Freire, D.; Chasi-Vizuete, P.; Vásquez, C.; Pérez-Salinas, M. Morphology, Phenology, Nutrients and Yield of Six Accessions of Tropaeolum tuberosum Ruiz y Pav (Mashua). Trop. Subtrop. Agroecosystem 2018, 21, 131–139. [Google Scholar] [CrossRef]
- Guevara-Freire, D.; Valle-Velástegui, L.; Barros-Rodríguez, M.; Vásquez, C.; Zurita-Vásquez, H.; Dobronski-Arcos, J.; Pomboza-Tamaquiza, P. Nutritional Composition and Bioactive Components of Mashua (Tropaeolum tuberosum Ruiz and Pavón). Trop. Subtrop. Agroecosystems 2018, 21, 53–68. [Google Scholar] [CrossRef]
- Benítez, L.; Pagán, M.J.; Martínez-Monzó, J.; García-Segovia, P. Propiedades Funcionales de Tuberculos Andinos de La Región Andina de Chimborazo (Ecuador): Una Revisión. Rev. Esp. Nutr. Comunitaria 2016, 22, 28–33. [Google Scholar]
- Campos, D.; Chirinos, R.; Gálvez Ranilla, L.; Pedreschi, R. Bioactive Potential of Andean Fruits, Seeds, and Tubers, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 84. [Google Scholar]
- Aguilar-Galvez, A.; Pedreschi, R.; Carpentier, S.; Chirinos, R.; García-Ríos, D.; Campos, D. Proteomic Analysis of Mashua (Tropaeolum tuberosum) Tubers Subjected to Postharvest Treatments. Food Chem. 2020, 305, 125485. [Google Scholar] [CrossRef]
- Apaza, L.; Tena, V.; Serban, A.M.; Alonso, M.J.; Rumbero, A. Alkamides from Tropaeolum tuberosum Inhibit Inflammatory Response Induced by TNF–α and NF–ΚB. J. Ethnopharmacol. 2019, 235, 199–205. [Google Scholar] [CrossRef]
- Apaza Ticona, L.N.; Tena Pérez, V.; Bermejo Benito, P. Local/Traditional Uses, Secondary Metabolites and Biological Activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol. 2020, 247, 112152. [Google Scholar]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic Compound Contents and Antioxidant Activity in Plants with Nutritional and/or Medicinal Properties from the Peruvian Andean Region. Ind. Crops Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- Ticona, L.A.; Sánchez, Á.R.; Gonzáles, Ó.O. Antimicrobial Compounds Isolated from Tropaeolum tuberosum. Nat. Prod. Res. 2020, 35, 4698–4702. [Google Scholar] [CrossRef]
- Apaza, T.L.; Peña-Rojas, G.; Andía-Ayme, V.; Durán, B.; Rumbero, A. Anti-Glycative and Anti-Inflammatory Effects of Macamides Isolated from Tropaeolum tuberosum in Skin Cells. Nat. Prod. Res. 2022, 1, 1–25. [Google Scholar]
- Pacheco, M.T.; Escribano-Bailón, M.T.; Moreno, F.J.; Villamiel, M.; Dueñas, M. Determination by HPLC-DAD-ESI/MSn of Phenolic Compounds in Andean Tubers Grown in Ecuador. J. Food Compos. Anal. 2019, 84, 103258. [Google Scholar] [CrossRef]
- Flores Mamani, E.; Apaza Ticona, J.; Calsina Ponce, W.C.; Quille Calizaya, G.; Huanca Rojas, F.; Coloma Paxi, A.; Inquilla Mamani, J.; Huata Panca, P.; Zayra Churata, A. Conocimiento Ancestral En La Curación de La Próstata a Base de Isaño (Tropaeolum tuberosum Ruiz y Pavón). Idesia 2020, 38, 7–16. [Google Scholar] [CrossRef]
- Vásconez-Barrera, F.; Oleas-López, J.; Bonilla-Lucero, M.; Benítez-Santillán, L. Homemade Bread Made with Mashua and Wheat Flour: Added Value to the Raw Material and Nutritional Contribution to the Health of Children and Adults. Surv. Fish. Sci. 2023, 10, 348–358. [Google Scholar]
- González, M.; Georgina, M.; Georgina, M. Determining the Nutritional Value of Sausages Made with Llama and Alpaca Meat with the Addition of Goose Flour and Mashua. ESPOCH Congr. Ecuadorian J. S.T.E.A.M. 2022, 2, 52–67. [Google Scholar] [CrossRef]
- Velásquez-barreto, F.F.; Ramírez Tixe, E.; Chuquilín Goicochea, R.; Aliaga-barrera, I. Optimization of the Functional Properties of a Drink Based on Tubers of Purple Mashua (Tropaeolum tuberosum Ruíz y Pavón). Agroindustrial Sci. 2020, 10, 63–70. [Google Scholar] [CrossRef]
- Valcárcel-Yamani, B.; Rondán-Sanabria, G.G.; Finardi-Filho, F. The Physical, Chemical and Functional Characterization of Starches from Andean Tubers: Oca (Oxalis tuberosa Molina), Olluco (Ullucus tuberosus Caldas) and Mashua (Tropaeolum tuberosum Ruiz & Pavón). Brazilian J. Pharm. Sci. 2013, 49, 453–464. [Google Scholar]
- Ferreyra, M.M.; Schvab, M.d.C.; Gerard, L.M.; Zapata, L.M.; Davies, C.V.; Hours, R.A. Alcoholic Fermentation of Orange Juice with S. Cerevisiae. Cienc. Docencia Tecnol. 2009, 39, 143–158. [Google Scholar]
- Ronquillo, A.; Lazcano, V.; Pérez, I.; Cabrera, S.; Lazcano, M. Elaboracion y Caracterización de Vino de Frutas e Infusión de Hierbas. Investig. Desarro. Cienc. Tecnol. Aliment. 2016, 1, 366–371. [Google Scholar]
- Oré, F.; De la Cruz, R.; Montalvo, J.; Muñoz, K. Evaluation of the Acceptability and Alcohol Content of Goose Wine (Oxalis tuberosa) of Five Varieties. J. Agro-Industry Sci. 2019, 1, 39–43. [Google Scholar] [CrossRef]
- Das, S.R.; Basak, N. Enhancing Biohydrogen Production by Optimization of Waste Potato Concentration in Dark and Photo Fermentation. J. Clean. Prod. 2025, 494, 145000. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.A.; Wang, T.T. Effect of Ultrasound Irradiation on the Evolution of Color Properties and Major Phenolic Compounds in Wine during Storage. Food Chem. 2017, 234, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Galván-D’Alessandro, L.; Carciochi, R.A. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review. Fermentation 2018, 4, 1. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Zhang, Y.; Zhang, A.; Gai, L.; Niu, D. Potential Applications of Pulsed Electric Field in the Fermented Wine Industry. Front. Nutr. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Yu, Z.; Su, Y.; Zhang, Y.; Zhu, P.; Mei, Z.; Zhou, X.; Yu, H. Potential Use of Ultrasound to Promote Fermentation, Maturation, and Properties of Fermented Foods: A Review. Food Chem. 2021, 357, 129805. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Tirado-Gallegos, J.M.; Sanchez-Vega, R.; Huerta-Jimenez, M.; Ashokkumar, M.; Alarcon-Rojo, A.D. Recent Advances in the Application of Ultrasound in Dairy Products: Effect on Functional, Physical, Chemical, Microbiological and Sensory Properties. Ultrason. Sonochem. 2021, 73, 105467. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Salameh, D.; Maroun, R.G.; Louka, N.; Vorobiev, E. Ultrasound-Assisted Fermentation for Cider Production from Lebanese Apples. Ultrason. Sonochem. 2020, 63, 104952. [Google Scholar] [CrossRef]
- Pulidindi, I.; Gedanken, A.; Schwarz, R.; Sendersky, E. Mild Sonication Accelerates Ethanol Production by Yeast Fermentation. Energy Fuels 2012, 26, 2352–2356. [Google Scholar]
- Choi, E.J.; Ahn, H.; Kim, M.; Han, H.; Kim, W.J. Effect of Ultrasonication on Fermentation Kinetics of Beer Using Six-Row Barley Cultivated in Korea. J. Inst. Brew. 2015, 121, 510–517. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, F.; Wang, Y.; Dai, C.; Xing, Z.; Dabbour, M.; Mintah, B.; He, R.; Ma, H. Fermentation of Saccharomyces Cerevisiae in a One Liter Flask Coupled with an External Circulation Ultrasonic Irradiation Slot: Influence of Ultrasonic Mode and Frequency on the Bacterial Growth and Metabolism Yield. Ultrason. Sonochem. 2019, 54, 39–47. [Google Scholar] [CrossRef]
- Klomklieng, W.; Prateepasen, A. Using Low-Power Ultrasonic for Enhancing Saccharomyces Cerevisiae M30 Productivity for Ethanol Producing from Molasses. Int. Proc. Chem. Biol. Environ. Eng. 2011, 9, 234–239. [Google Scholar]
- Sanaei Nasab, S.; Tahmouzi, S.; Feizollahi, E.; Mollakhalili-Meybodi, N. Impacts of Novel Non-Thermal Processing (NTP) on Anti-Nutritional Compounds of Food Grains and Seeds. Food Control 2024, 162, 110469. [Google Scholar] [CrossRef]
- Nnaemeka, I.C.; Egbuna Samuel, O.; Onoh Maxwell, I.; Christain, A.O.; Chinelo S, O. Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production. J. Bioresour. Bioprod. 2021, 6, 45–64. [Google Scholar] [CrossRef]
- Flores-Mendoza, L.; Osorio-Lorenzo, P.V.; Pérez-San Juan, A.R.; Sánchez-Rosas, D.L.; Rodríguez-Puertos, T. Elaboración de Una Bebida Fermentada Tipo Cerveza Artesanal a Base de Malta Adicionada Con Tallo de Maíz (Zea mays) y Mexale. Rev. Cient. Pakamuros 2019, 3, 59–67. [Google Scholar]
- Montañez, L.J.B. Cuantificación de Azúcares Reductores Del Sustrato En Residuos de Piña Con El Método Del Ácido 3,5-Dinitrosalicílico. Fund. Univ. Am. 2020, 13, 57–66. [Google Scholar]
- Santos, R.T.S.; Biasoto, A.C.T.; Rybka, A.C.P.; Castro, C.D.P.C.; Aidar, S.T.; Borges, G.S.C.; Silva, F.L.H. Physicochemical Characterization, Bioactive Compounds, in Vitro Antioxidant Activity, Sensory Profile and Consumer Acceptability of Fermented Alcoholic Beverage Obtained from Caatinga Passion Fruit (Passiflora cincinnata Mast.). Lwt 2021, 148, 111714. [Google Scholar] [CrossRef]
- Onofre, C. Efecto Del Proceso de Fermentación Alcohólica de La Chicha de Quinua (Chenopodium quinoa Willd) Sobre Su Contenido de Antioxidante, Vitaminas y Minerales. Licentiate Thesis, Universidad Nacional de San Agustin, Arequipa, Peru, 2018. [Google Scholar]
- Englezos, V.; Cravero, F.; Torchio, F.; Rantsiou, K.; Ortiz-Julien, A.; Lambri, M.; Gerbi, V.; Rolle, L.; Cocolin, L. Oxygen Availability and Strain Combination Modulate Yeast Growth Dynamics in Mixed Culture Fermentations of Grape Must with Starmerella Bacillaris and Saccharomyces Cerevisiae. Food Microbiol. 2018, 69, 179–188. [Google Scholar] [CrossRef]
- Campos, D.; Aguilar-Galvez, A.; García-Ríos, D.; Chirinos, R.; Limaymanta, E.; Pedreschi, R. Postharvest Storage and Cooking Techniques Affect the Stability of Glucosinolates and Myrosinase Activity of Andean Mashua Tubers (Tropaeolum tuberosum). Int. J. Food Sci. Technol. 2019, 54, 2387–2395. [Google Scholar] [CrossRef]
- Paula, P.; Bel, A.; Jurado, R.; Encarna, G. Combining High-Power Ultrasound and Enological Enzymes during Winemaking to Improve the Chromatic Characteristics of Red Wine. LWT 2022, 156, 113032. [Google Scholar]
- Klomklieng, W.; Prateepasen, A. Molasses Fermentation to Ethanol by Saccharomycescerevisiae M30 Using Low Ultrasonic Frequency Stimulation. KKU Res. J. 2012, 17, 950–957. [Google Scholar]
- Cao, S.; Hu, Z.; Pang, B. Optimization of Postharvest Ultrasonic Treatment of Strawberry Fruit. Postharvest Biol. Technol. 2010, 55, 150–153. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of Ultrasound on Microbial Growth and Enzyme Activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ren, W.; Xiang, J.; Dabbour, M.; Kumah Mintah, B.; Li, Y.; Ma, H. Fermentation of Saccharomyces Cerevisiae in a 7.5 L Ultrasound-Enhanced Fermenter: Effect of Sonication Conditions on Ethanol Production, Intracellular Ca2+ Concentration and Key Regulating Enzyme Activity in Glycolysis. Ultrason. Sonochem. 2021, 76, 105624. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Zhou, L.; Li, B.; Xu, Z. Effect of Ultrasound Treatment Conditions on Saccharomyces Cerevisiae by Response Surface Methodology. Microb. Pathog. 2017, 111, 497–502. [Google Scholar] [CrossRef]
- Beltran, A.; Mera, J. Elaboracion Del Tuberculo Mashua (Tropaeolum tuberosum) Troceada En Miel y Determinacion de La Capacidad Antioxidante. Wild 2014, 2007–2010. [Google Scholar]
- Apaza, R.M.; Atencio, Y.J. Tecnología Para La Elaboración de Una Cerveza Artesanal Tipo Ale, Con Sustitutción Parcial de Malta (Horden vulgare) Por Guiñapo de Maiz Morado (Zea mays); Universidad Nacional de San Agustin: Arequipa, Peru, 2017. [Google Scholar]
- Llacsa, J.D.; Cucho, A. Cinética de Fermentación de La Chicha de Quinua Evaluado En Tres Variedades de Quinua (Chenopodium quinoa Willd.). Licentiate Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2019. [Google Scholar]
- Pari, E. Cinética de Conversión de Los Carbohidratos Presentes En La Cáscara de Plátano (Musa cavendishi) Para La Obtención de Etanol. Licentiate Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2013. [Google Scholar]
- Yang, Y.; Ren, W.; Xu, H.; Cheng, L.; Dapaah, M.F.; He, R.; Ma, H. Incorporating Transcriptomic-Metabolomic Analysis Reveal the Effect of Ultrasound on Ethanol Production in Saccharomyces Cerevisiae. Ultrason. Sonochem. 2021, 79, 105791. [Google Scholar] [CrossRef]
Amount of Ethanol | Concentration (g/L) |
---|---|
0 mL/50 mL | 0 |
0.5 mL/50 mL | 0.5518 |
1.0 mL/50 mL | 1.1034 |
1.5 mL/50 mL | 1.6552 |
2.0 mL/50 mL | 2.2069 |
2.5 mL/50 mL | 2.7587 |
3.0 mL/50 mL | 3.3104 |
Experiment N° | Isaño Genotype | Power (W) |
---|---|---|
1 | Yellow | 0 |
2 | Yellow | 100 |
3 | Yellow | 200 |
4 | Yellow | 300 |
5 | Yellow-purple | 0 |
6 | Yellow-purple | 100 |
7 | Yellow-purple | 200 |
8 | Yellow-purple | 300 |
9 | Purple | 0 |
10 | Purple | 100 |
11 | Purple | 200 |
12 | Purple | 300 |
Power of Ultrasound | μmax (h−1) | Ks (g/L) | Yx/s | Yp/s |
---|---|---|---|---|
Yellow genotype | ||||
0 W (Control) | 0.007 ± 0.004 b | 13.829 ± 11.115 a | 8.91 × 105 ± 3.85 × 104 a | 0.741 ± 0.012 a |
100 W | 0.029 ± 0.013 a | 43.130 ± 43.698 a | 7.37 × 105 ± 8.04 × 103 bc | 0.797 ± 0.041 a |
200 W | 0.007 ± 0.004 b | 10.928 ± 13.538 a | 6.92 × 105 ± 2.72 × 104 c | 0.751 ± 0.057 a |
300 W | 0.006 ± 0.003 b | 10.036 ± 14.116 a | 7.71 × 105 ± 1.10 × 104 b | 0.762 ± 0.051 a |
Yellow genotype with purple eyes | ||||
0 W (Control) | 0.017 ± 0.001 a | 30.773 ± 13.535 a | 8.94 × 105 ± 2.45 × 104 a | 0.736 ± 0.056 a |
100 W | 0.211 ± 0.257 a | 279.88 ± 365.26 a | 7.16 × 105 ± 7.93 × 103 d | 0.807 ± 0.044 a |
200 W | 0.110 ± 0.128 a | 157.38 ± 150.15 a | 7.68 × 105 ± 1.61 × 104 c | 0.754 ± 0.008 a |
300 W | 0.167 ± 0.190 a | 240.41 ± 288.28 a | 8.43 × 105 ± 1.60 × 104 b | 0.805 ± 0.019 a |
Purple genotype | ||||
0 W (Control) | 0.028 ± 0.007 a | 27.801 ± 9.927 a | 9.84 × 105 ± 6.81 × 103 a | 0.749 ± 0.005 b |
100 W | 0.015 ± 0.001 a | 16.088 ± 20.360 a | 7.87 × 105 ± 3.53 × 103 b | 0.899 ± 0.016 a |
200 W | 0.038 ± 0.008 a | 44.400 ± 29.197 a | 8.17 × 105 ± 1.18 × 103 b | 0.793 ± 0.031 b |
300 W | 0.064 ± 0.059 a | 74.833 ± 79.340 a | 7.60 × 105 ± 8.79 × 104 b | 0.766 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coloma, A.; Mamani-Mamani, M.; Valencia-Sullca, C.; Mamani Paredes, J.; Callo, H.; Rafael, N.C.; Calsina Ponce, W.C.; Alvarado, U. Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation 2025, 11, 268. https://doi.org/10.3390/fermentation11050268
Coloma A, Mamani-Mamani M, Valencia-Sullca C, Mamani Paredes J, Callo H, Rafael NC, Calsina Ponce WC, Alvarado U. Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation. 2025; 11(5):268. https://doi.org/10.3390/fermentation11050268
Chicago/Turabian StyleColoma, Alejandro, Maria Mamani-Mamani, Cristina Valencia-Sullca, Javier Mamani Paredes, Herbert Callo, Nancy Curasi Rafael, Wilber Cesar Calsina Ponce, and Ulises Alvarado. 2025. "Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum)" Fermentation 11, no. 5: 268. https://doi.org/10.3390/fermentation11050268
APA StyleColoma, A., Mamani-Mamani, M., Valencia-Sullca, C., Mamani Paredes, J., Callo, H., Rafael, N. C., Calsina Ponce, W. C., & Alvarado, U. (2025). Ultrasound-Assisted Kinetics of Alcoholic Fermentation at Varying Power Levels for the Production of Isaño Wine (Tropaeolum tuberosum). Fermentation, 11(5), 268. https://doi.org/10.3390/fermentation11050268