Multi-Dimensional Analysis of Key Points in the Biological Activity, Chemical Synthesis and Biotransformation of Urolithin A
Abstract
1. Introduction
2. Biological Activities of Uro-A
2.1. Antioxidant
2.2. Anti-Inflammatory
2.3. Anticancer
2.4. Anti-Aging
3. Synthesis of Uro-A
3.1. Chemical Synthesis Pathway
3.2. Biotransformation Pathways
3.2.1. The Biological Metabolism Process of Uro-A
3.2.2. Urolithin A-Producing Microbial Strains
3.2.3. Metabolic Characteristics of Uro-A in Animals and Humans
4. Development and Application of Uro-A-Related Products
4.1. Products Directly Supplemented with Uro-A
4.2. Products in Which Uro-A Is Generated Through Conversion by Probiotics
4.3. Products Added with EA/ETs as Precursors
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Uro-A | Urolithin A |
| Uro-B | Urolithin B |
| ETs | Ellagitannins |
| EA | Ellagic Acid |
| Uro-M5 | Urolithin M5 |
| Uro-D | Urolithin D |
| Uro-M6 | Urolithin M6 |
| Uro-E | Urolithin E |
| Uro-M6R | Urolithin M6R |
| Uro-G | Urolithin G |
| Uro-C | Urolithin C |
| Uro-M7 | Urolithin M7 |
| Uro-M7R | Urolithin M7R |
| Uro-CR | Urolithin CR |
| Uro-AR | Urolithin AR |
| Iso-uro-A | Isourolithin A |
| ROS | Reactive Oxygen Species |
| PGE2 | Prostaglandin-E2 |
| COCs | Cumulus–Oocyte Complexes |
| UM | Urolithin Metabotypes |
| UM-A | Urolithin Metabotype A |
| UM-B | Urolithin Metabotype B |
| UM-0 | Urolithin Metabotype 0 |
References
- Doyle, B.; Griffiths, L.A. The Metabolism of Ellagic Acid in the Rat. Xenobiotica 1980, 10, 247–256. [Google Scholar] [CrossRef]
- Cerdá, B.; Tomás-Barberán, F.A.; Espín, J.C. Metabolism of Antioxidant and Chemopreventive Ellagitannins from Strawberries, Raspberries, Walnuts, and Oak-Aged Wine in Humans: Identification of Biomarkers and Individual Variability. J. Agric. Food Chem. 2005, 53, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, B.; Llorach, R.; Cerón, J.J.; Espín, J.C.; Tomás-Barberán, F.A. Evaluation of the Bioavailability and Metabolism in the Rat of Punicalagin, an Antioxidant Polyphenol from Pomegranate Juice. Eur. J. Nutr. 2003, 42, 18–28. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A Comprehensive Update on Their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef]
- Garcia-Muñoz, C.; Vaillant, F. Metabolic Fate of Ellagitannins: Implications for Health, and Research Perspectives for Innovative Functional Foods. Crit. Rev. Food Sci. Nutr. 2014, 54, 1584–1598. [Google Scholar] [CrossRef]
- D’Amico, D.; Olmer, M.; Fouassier, A.M.; Valdés, P.; Andreux, P.A.; Rinsch, C.; Lotz, M. Urolithin a Improves Mitochondrial Health, Reduces Cartilage Degeneration, and Alleviates Pain in Osteoarthritis. Aging Cell 2022, 21, e13662. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R. Urolithin a Nanoparticle Therapy for Cisplatin-Induced Acute Kidney Injury. Nephron 2023, 147, 3–5. [Google Scholar] [CrossRef]
- Liu, C.; Guo, H.; DaSilva, N.A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X.-H.; Chen, H.-D.; Seeram, N.P.; Ma, H. Pomegranate (Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Grainger, E.M.; Thomas-Ahner, J.M.; Hinton, A.; Gu, J.; Riedl, K.; Vodovotz, Y.; Abaza, R.; Schwartz, S.J.; Clinton, S.K. Dose-dependent Increases in Ellagitannin Metabolites as Biomarkers of Intake in Humans Consuming Standardized Black Raspberry Food Products Designed for Clinical Trials. Mol. Nutr. Food Res. 2020, 64, 1900800. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Interactions of Gut Microbiota with Dietary Polyphenols and Consequences to Human Health. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Haddad, E.H.; Gaban-Chong, N.; Oda, K.; Sabaté, J. Effect of a Walnut Meal on Postprandial Oxidative Stress and Antioxidants in Healthy Individuals. Nutr. J. 2014, 13, 4. [Google Scholar] [CrossRef]
- Ishimoto, H.; Shibata, M.; Myojin, Y.; Ito, H.; Sugimoto, Y.; Tai, A.; Hatano, T. In Vivo Anti-Inflammatory and Antioxidant Properties of Ellagitannin Metabolite Urolithin A. Bioorg. Med. Chem. Lett. 2011, 21, 5901–5904. [Google Scholar] [CrossRef]
- Massaga, C.; Paul, L.; Kwiyukwa, L.P.; Vianney, J.-M.; Chacha, M.; Raymond, J. Computational Analysis of Urolithin a as a Potential Compound for Anti-Inflammatory, Antioxidant, and Neurodegenerative Pathways. Free Radic. Biol. Med. 2025, 227, 508–520. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Choya-Foces, C.; Hugo, M.; López, V. The Metabolite Urolithin-a Ameliorates Oxidative Stress in Neuro-2a Cells, Becoming a Potential Neuroprotective Agent. Antioxidants 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Li, P.; Ding, W.; Gao, Y. Urolithin a Improves Myocardial Ischemia–Reperfusion Injury by Attenuating Oxidative Stress and Ferroptosis through Nrf2 Pathway. Int. Immunopharmacol. 2024, 143, 113394. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wu, Y.; Lu, D.; Pang, J.; Hu, J.; Zhang, X.; Wang, Z.; Zhang, G.; Wang, J. Polyphenol-Rich Diet Mediates Interplay between Macrophage-Neutrophil and Gut Microbiota to Alleviate Intestinal Inflammation. Cell Death Dis. 2023, 14, 656. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Larrosa, M.; Tomás-Barberán, F.A.; Dolara, P.; Espín, J.C. NF-κB-Dependent Anti-Inflammatory Activity of Urolithins, Gut Microbiota Ellagic Acid-Derived Metabolites, in Human Colonic Fibroblasts. Br. J. Nutr. 2010, 104, 503–512. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Xu, G.; Li, Z.; Lu, C.; Shen, Y. Synthesis of Urolithin Derivatives and Their Anti-Inflammatory Activity. Biochem. Biophys. Res. Commun. 2024, 704, 149711. [Google Scholar] [CrossRef]
- Du, Y.; Chen, X.; Kajiwara, S.; Orihara, K. Effect of Urolithin a on the Improvement of Circadian Rhythm Dysregulation in Intestinal Barrier Induced by Inflammation. Nutrients 2024, 16, 2263. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; Tomé-Carneiro, J.; Bellesia, A.; Tomás-Barberán, F.A.; Espín, J.C. The Ellagic Acid-Derived Gut Microbiota Metabolite, Urolithin a, Potentiates the Anticancer Effects of 5-Fluorouracil Chemotherapy on Human Colon Cancer Cells. Food Funct. 2015, 6, 1460–1469. [Google Scholar] [CrossRef]
- Mohammed Saleem, Y.I.; Albassam, H.; Selim, M. Urolithin a Induces Prostate Cancer Cell Death in P53-Dependent and in P53-Independent Manner. Eur. J. Nutr. 2020, 59, 1607–1618. [Google Scholar] [CrossRef]
- Dellafiora, L.; Milioli, M.; Falco, A.; Interlandi, M.; Mohamed, A.; Frotscher, M.; Riccardi, B.; Puccini, P.; Rio, D.D.; Galaverna, G.; et al. A Hybrid In Silico/In Vitro Target Fishing Study to Mine Novel Targets of Urolithin a and B: A Step towards a Better Comprehension of Their Estrogenicity. Mol. Nutr. Food Res. 2020, 64, e2000289. [Google Scholar] [CrossRef]
- Adams, L.S.; Zhang, Y.; Seeram, N.P.; Heber, D.; Chen, S. Pomegranate Ellagitannin–Derived Compounds Exhibit Antiproliferative and Antiaromatase Activity in Breast Cancer Cells in Vitro. Cancer Prev. Res. 2010, 3, 108–113. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Miguel, V.; Merino, G.; Lucas, R.; Morales, J.C.; Tomás-Barberán, F.; Álvarez, A.I.; Espín, J.C. The Gut Microbiota Ellagic Acid-Derived Metabolite Urolithin a and Its Sulfate Conjugate Are Substrates for the Drug Efflux Transporter Breast Cancer Resistance Protein (ABCG2/BCRP). J. Agric. Food Chem. 2013, 61, 4352–4359. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Li, J.; Liu, S.; An, J.; Wang, D.; Hu, F.; Qiu, C.; Cui, M. Inhibition of Glioblastoma Progression by Urolithin a in Vitro and in Vivo by Regulating Sirt1-FOXO1 Axis via ERK/AKT Signaling Pathways. Neoplasma 2022, 69, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Totiger, T.M.; Srinivasan, S.; Jala, V.R.; Lamichhane, P.; Dosch, A.R.; Gaidarski, A.A.; Joshi, C.; Rangappa, S.; Castellanos, J.; Vemula, P.K.; et al. Urolithin a, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer. Mol. Cancer Ther. 2019, 18, 301–311. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhou, B.; Jin, L.; Yu, H.; Liu, L.; Liu, Y.; Qin, C.; Xie, S.; Zhu, F. In Vitro Antioxidant and Antiproliferative Effects of Ellagic Acid and Its Colonic Metabolite, Urolithins, on Human Bladder Cancer T24 Cells. Food Chem. Toxicol. 2013, 59, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Liberal, J. Urolithins Impair Cell Proliferation, Arrest the Cell Cycle and Induce Apoptosis in UMUC3 Bladder Cancer Cells. Investig. New Drugs 2017, 35, 671–681. [Google Scholar] [CrossRef]
- Alauddin, M.; Okumura, T.; Rajaxavier, J.; Khozooei, S.; Pöschel, S.; Takeda, S.; Singh, Y.; Brucker, S.Y.; Wallwiener, D.; Koch, A.; et al. Gut Bacterial Metabolite Urolithin a Decreases Actin Polymerization and Migration in Cancer Cells. Mol. Nutr. Food Res. 2020, 64, e1900390. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Rader, J.S.; Aguilera-Barrantes, I.; Wang, L. Preventive Effects by Black raspberries of Endometrial Carcinoma Initiation and Promotion Induced by a High-fat Diet. Mol. Nutr. Food Res. 2019, 63, e1900013. [Google Scholar] [CrossRef] [PubMed]
- Remadevi, V.; Jaikumar, V.S.; Vini, R.; Krishnendhu, B.; Azeez, J.M.; Sundaram, S.; Sreeja, S. Urolithin a, Induces Apoptosis and Autophagy Crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 Pathway. Phytomedicine 2024, 130, 155721. [Google Scholar] [CrossRef]
- Tian, M.; Zhao, L.; Lan, Y.; Li, C.; Ling, Y.; Zhou, B. Design, Synthesis and Biological Evaluation of Novel Urolithin Derivatives Targeting Liver Cancer Cells. J. Enzym. Inhib. Med. Chem. 2025, 40, 2490707. [Google Scholar] [CrossRef]
- Cheng, F.; Dou, J.; Zhang, Y.; Wang, X.; Wei, H.; Zhang, Z.; Cao, Y.; Wu, Z. Urolithin a Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway. OncoTargets Ther. 2021, 14, 3199–3208. [Google Scholar] [CrossRef]
- Li, M.; Cui, H.; Deng, H.; Deng, Y.; Yin, S.; Li, T.; Yuan, T. Urolithin a Promotes the Degradation of TMSB10 to Deformation F-Actin in Non-Small-Cell Lung Cancer. Phytomedicine 2024, 135, 156109. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, L.; Su, P.; Yu, T.; Ma, Z.; Liu, Y.; Yu, J. Urolithin a Suppresses Tumor Progression and Induces Autophagy in Gastric Cancer via the PI3K/Akt/mTOR Pathway. Drug Dev. Res. 2023, 84, 172–184. [Google Scholar] [CrossRef]
- Qiao, Y.; Xia, Q.; Cao, X.; Xu, J.; Qiao, Z.; Wu, L.; Chen, Z.; Yang, L.; Lu, X. Urolithin a Exerts Anti-Tumor Effects on Gastric Cancer via Activating Autophagy-Hippo Axis and Modulating the Gut Microbiota. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 6633–6645. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.M.; Shait Mohammed, M.R.; Alghamdi, R.A.; Ahmad, A.; Zamzami, M.A.; Choudhry, H.; Khan, M.I. Urolithin a and B Alter Cellular Metabolism and Induce Metabolites Associated with Apoptosis in Leukemic Cells. Int. J. Mol. Sci. 2021, 22, 5465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, S.; Mao, B.; Zhang, Q.; Zhao, J.; Tang, X.; Chen, W. Urolithin a Produced by Novel Microbial Fermentation Possesses Anti-Aging Effects by Improving Mitophagy and Reducing Reactive Oxygen Species in Caenorhabditis elegans. J. Agric. Food Chem. 2023, 71, 6348–6357. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Loygorri, J.I.; Villarejo-Zori, B.; Viedma-Poyatos, Á.; Zapata-Muñoz, J.; Benítez-Fernández, R.; Frutos-Lisón, M.D.; Tomás-Barberán, F.A.; Espín, J.C.; Area-Gómez, E.; Gomez-Duran, A.; et al. Mitophagy Curtails Cytosolic mtDNA-Dependent Activation of cGAS/STING Inflammation during Aging. Nat. Commun. 2024, 15, 830. [Google Scholar] [CrossRef]
- Kim, K.B.; Lee, S.; Kim, J.H. Neuroprotective Effects of Urolithin A on H2 O2 -Induced Oxidative Stress-Mediated Apoptosis in SK-N-MC Cells. Nutr. Res. Pract. 2020, 14, 3. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin a Induces Mitophagy and Prolongs Lifespan in C. elegans and Increases Muscle Function in Rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef]
- Fonseca, É.; Marques, C.C.; Pimenta, J.; Jorge, J.; Baptista, M.C.; Gonçalves, A.C.; Pereira, R.M.L.N. Anti-Aging Effect of Urolithin a on Bovine Oocytes In Vitro. Animals 2021, 11, 2048. [Google Scholar] [CrossRef]
- Ito, H.; Iguchi, A.; Hatano, T. Identification of Urinary and Intestinal Bacterial Metabolites of Ellagitannin Geraniin in Rats. J. Agric. Food Chem. 2008, 56, 393–400. [Google Scholar] [CrossRef]
- Cozza, G.; Gianoncelli, A.; Bonvini, P.; Zorzi, E.; Pasquale, R.; Rosolen, A.; Pinna, L.A.; Meggio, F.; Zagotto, G.; Moro, S. Urolithin as a Converging Scaffold Linking Ellagic Acid and Coumarin Analogues: Design of Potent Protein Kinase CK2 Inhibitors. ChemMedChem 2011, 6, 2273–2286. [Google Scholar] [CrossRef] [PubMed]
- Nealmongkol, P.; Tangdenpaisal, K.; Sitthimonchai, S.; Ruchirawat, S.; Thasana, N. Cu(I)-Mediated Lactone Formation in Subcritical Water: A Benign Synthesis of Benzopyranones and Urolithins A–C. Tetrahedron 2013, 69, 9277–9283. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, J.; Yan, L.; Yang, L.; Sun, L.; Shi, L.; Ma, C.; Liu, Y. Urolithin C, a Gut Metabolite of Ellagic Acid, Induces Apoptosis in PC12 Cells through a Mitochondria-Mediated Pathway. RSC Adv. 2017, 7, 17254–17263. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Hong, J.; Yu, J.; Zhang, J.; Mo, F. Oxidant-Free C(Sp2)–H Functionalization/C–O Bond Formation: A Kolbe Oxidative Cyclization Process. J. Org. Chem. 2018, 83, 3200–3207. [Google Scholar] [CrossRef]
- Wolfgang, S.; George, Y.; Alexander, T.; Zhixing, S.; Christopher, G. Process-Scale Synthesis of Urolithin A. U.S. Patent 201,916,287,347A, 27 February 2019. Available online: https://www.patentstar.com.cn/Search/Detail_EN?PNE=aFHAZIEF7CEA9HECBFEA9EGB9AIF9GBGDEIA7AEAGFAA9GBA (accessed on 10 October 2025).
- Ma, X.; Zhang, C.; Li, W.; Wu, Q.; Hu, X. A Synthesis Method of Urolithin A. C.N. Patent 202,010,944,874.8, 24 November 2020. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=8FBA9EID5ADA9FEA9HBA9IDCDDIA9HDFCIHA9DAC9AIG9FAA (accessed on 10 October 2025).
- Gao, L. Research on the Synthesis Process of Several Steroid Targets and Urolithin A. Master’s Thesis, Hunan University, Changsha, China, 2022. (In Chinese). [Google Scholar] [CrossRef]
- Zhang, M. Screening of Strains for Converting Ellagitannin to Produce Urolithin and Study on Its Anti-Aging Effect. Master’s Thesis, Jiangnan University, Wuxi, China, 2024. (In Chinese). [Google Scholar] [CrossRef]
- Iglesias-Aguirre, C.E.; García-Villalba, R.; Beltrán, D.; Frutos-Lisón, M.D.; Espín, J.C.; Tomás-Barberán, F.A.; Selma, M.V. Gut Bacteria Involved in Ellagic Acid Metabolism to Yield Human Urolithin Metabotypes Revealed. J. Agric. Food Chem. 2023, 71, 4029–4035. [Google Scholar] [CrossRef]
- Chen, P.; Tu, J.; Li, Q.; Zhou, B. Study on catabolic effects of intestinal microbiota on pomegranate peel tannins. Chin. Tradit. Herb. Drugs 2019, 50, 3396–3402. [Google Scholar]
- Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the Rescue of “Old” Metabolites to Understand a “New” Concept: Metabotypes as a Nexus among Phenolic Metabolism, Microbiota Dysbiosis, and Host Health Status. Mol. Nutr. Food Res. 2017, 61, 1500901. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, N.; Wang, J.; Tan, B. A Review of the Bioactivity and Gut Health Benefits of Ellagic Acid and Its Metabolites, Urolithins. Food Sci. 2022, 43, 275–284. [Google Scholar]
- Gaya, P.; Peirotén, Á.; Medina, M.; Álvarez, I.; Landete, J.M. Bifidobacterium pseudocatenulatum INIA P815: The First Bacterium Able to Produce Urolithins a and B from Ellagic Acid. J. Funct. Foods 2018, 45, 95–99. [Google Scholar] [CrossRef]
- Mi, H.; Liu, S.; Hai, Y.; Yang, G.; Lu, J.; He, F.; Zhao, Y.; Xia, M.; Hou, X.; Fang, Y. Lactococcus garvieae FUA009, a Novel Intestinal Bacterium Capable of Producing the Bioactive Metabolite Urolithin a from Ellagic Acid. Foods 2022, 11, 2621. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, S.; Yang, G.; Hou, X.; Mi, H. Lactococcus grucii FUA009 and Its Method for Producing Urolithin A. C.N. Patent 202,210,972,288.3, 21 March 2025. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=9AIB9HFD6AEA9IBC9IGG9GGDEGGA9HBG9FHF8FBAEIFA9HBH (accessed on 10 October 2025).
- Liu, Q.; Liu, S.; Ye, Q.; Hou, X.; Yang, G.; Lu, J.; Hai, Y.; Shen, J.; Fang, Y. A Novel Streptococcus thermophilus FUA329 Isolated from Human Breast Milk Capable of Producing Urolithin a from Ellagic Acid. Foods 2022, 11, 3280. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, S.; Yang, G.; Hou, X.; Liu, Y.; Ye, Q. Streptococcus thermophilus FUA329 and Its Method for Fermentation to Produce urolithin A. C.N. Patent 202,211,224,627.6, 2 April 2024. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=9CGB7FCA9FHF9IDE9HCB9HHG9CHC8FBA9DHFADIA3BAA9IBH (accessed on 10 October 2025).
- Mao, B.; Zhang, M.; Tang, X.; Zhang, Q.; Cui, X.; Yang, B.; Zhao, J.; Chen, W. A Strain of Lactobacillus plantarum that Can Transform Ellagitannin to Regulate Mitophagy and Its Application. C.N. Patent 202,211,408,005.9, 27 October 2023. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=9CHC9IIH9GDC9GHG5DBA4BCA9HDF7HAA9DCE4AEA3ADA9GBD (accessed on 10 October 2025).
- Cui, S.; Tang, X.; Zhang, M.; Mao, B.; Zhang, Q.; Yang, B.; Zhao, J.; Chen, W. A Strain of Lactobacillus plantarum and Its Application in the Production of Urolithin A. C.N. Patent 202,211,409,720.4, 28 November 2023. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=8CEA2ACA9BIC9DFB6CDA9HCB9EED9HIG9FAFADHAAHIA9IGF (accessed on 10 October 2025).
- Tang, X.; Zhang, M.; Mao, B.; Zhang, Q.; Liu, X.; Cui, S.; Zhao, J.; Chen, W. A Strain of Lactobacillus plantarum that Can Produce urolithin A for Anti-Aging and Its Application. C.N. Patent 202,211,404,309.8, 12 March 2024. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=5CBA9GEB9GBA9IAB9IHH9EEA9AID9FHD9EGF9FED9FIE9BDE (accessed on 10 October 2025).
- Fang, Y.; Hua, Z.; Liu, S.; Mu, S.; Zhang, G.; Bian, Y. A Fermentation of Lactobacillus mucovelus FUA033 and Its Application. C.N. Patent 202,311,455,048.7, 2 February 2024. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=9IBC9CHA9HFF9CIE9EFB9HFE6ACA9EEE9BHE9CIB6CAA9AFE (accessed on 10 October 2025).
- Liu, S.; Fang, Y.; Yang, G.; Hou, X.; Lu, J.; Zhang, X. Method and Application of Enterococcus faecium FUA027 and Its Production of Urolithin A. C.N. Patent 202,211,134,634.7, 28 March 2025. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=8ECA7AHA9EHE9HGG7GAA9CHB9FGD9FHGAGHABEIACIIAAIFA (accessed on 10 October 2025).
- Wei, Q.; Sun, J. Application of a Lactobacillus plantarum in the Fermentation of Urolithin A. C.N. Patent 202,411,686,018.1, 7 January 2025. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=9FEC3ADA5BCA9BFB6BEA7GAA9CBAADGAADIA8EEA7DDAGIHA (accessed on 10 October 2025).
- Huang, W.; Cao, Q.; Liu, Y.; Zhang, J. Application of Lepista sordida in the Production of Urolithin A. C.N. Patent 202,411,542,180.6, 21 March 2025. Available online: https://www.patentstar.com.cn/Search/Detail?ANE=4BBA7HAA7AFA9GAB5AEA6DCA9GCE9HEG9IDE9DGB9GBG8CGA (accessed on 10 October 2025).
- Cerdá, B.; Cerón, J.J.; Tomás-Barberán, F.A.; Espín, J.C. Repeated Oral Administration of High Doses of the Pomegranate Ellagitannin Punicalagin to Rats for 37 Days Is Not Toxic. J. Agric. Food Chem. 2003, 51, 3493–3501. [Google Scholar] [CrossRef]
- Azorín-Ortuño, M.; Urbán, C.; Cerón, J.J.; Tecles, F.; Gil-Izquierdo, A.; Pallarés, F.J.; Tomás-Barberán, F.A.; Espín, J.C. Safety Evaluation of an Oak-Flavored Milk Powder Containing Ellagitannins upon Oral Administration in the Rat. J. Agric. Food Chem. 2008, 56, 2857–2865. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian Pig as a Model to Clarify Obscure Points in the Bioavailability and Metabolism of Ellagitannins in Humans. J. Agric. Food Chem. 2007, 55, 10476–10485. [Google Scholar] [CrossRef]
- González-Barrio, R.; Truchado, P.; García-Villalba, R.; Hervás, G.; Frutos, P.; Espín, J.C.; Tomás-Barberán, F.A. Metabolism of Oak Leaf Ellagitannins and Urolithin Production in Beef Cattle. J. Agric. Food Chem. 2012, 60, 3068–3077. [Google Scholar] [CrossRef]
- Cerdá, B.; Periago, P.; Espín, J.C.; Tomás-Barberán, F.A. Identification of Urolithin a as a Metabolite Produced by Human Colon Microflora from Ellagic Acid and Related Compounds. J. Agric. Food Chem. 2005, 53, 5571–5576. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hooft, J.J.J.; De Vos, R.C.H.; Mihaleva, V.; Bino, R.J.; Ridder, L.; De Roo, N.; Jacobs, D.M.; Van Duynhoven, J.P.M.; Vervoort, J. Structural Elucidation and Quantification of Phenolic Conjugates Present in Human Urine after Tea Intake. Anal. Chem. 2012, 84, 7263–7271. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Jilma-Stohlawetz, P.; Rios, J.; Hingorani, L.; Derendorf, H. Absorption, Metabolism, and Antioxidant Effects of Pomegranate (Punica Granatum L.) Polyphenols after Ingestion of a Standardized Extract in Healthy Human Volunteers. J. Agric. Food Chem. 2006, 54, 8956–8961. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Lee, R.-P.; Huang, J.; Thames, G.; Korn, M.; Ben-Nissan, D.; Heber, D.; Li, Z. Pomegranate Juice Alters the Microbiota in Breast Milk and Infant Stool: A Pilot Study. Food Funct. 2022, 13, 5680–5689. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Villalba, R.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagic Acid Metabolism by Human Gut Microbiota: Consistent Observation of Three Urolithin Phenotypes in Intervention Trials, Independent of Food Source, Age, and Health Status. J. Agric. Food Chem. 2014, 62, 6535–6538. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Gao, Z.; Song, Y.; Shen, Y. Urolithins and Intestinal Health. Drug Discov. Ther. 2022, 16, 105–111. [Google Scholar] [CrossRef]
- Romo-Vaquero, M.; Cortés-Martín, A.; Loria-Kohen, V.; Ramírez-de-Molina, A.; García-Mantrana, I.; Collado, M.C.; Espín, J.C.; Selma, M.V. Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications. Mol. Nutr. Food Res. 2019, 63, 1800958. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Aguirre, C.E.; González-Sarrías, A.; Cortés-Martín, A.; Romo-Vaquero, M.; Osuna-Galisteo, L.; Cerón, J.J.; Espín, J.C.; Selma, M.V. In Vivo Administration of Gut Bacterial Consortia Replicates Urolithin Metabotypes a and B in a Non-Urolithin-Producing Rat Model. Food Funct. 2023, 14, 2657–2667. [Google Scholar] [CrossRef] [PubMed]
- García-Mantrana, I.; Calatayud, M.; Romo-Vaquero, M.; Espín, J.C.; Selma, M.V.; Collado, M.C. Urolithin Metabotypes Can Determine the Modulation of Gut Microbiota in Healthy Individuals by Tracking Walnuts Consumption over Three Days. Nutrients 2019, 11, 2483. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; Colmenarejo, G.; Selma, M.V.; Espín, J.C. Genetic Polymorphisms, Mediterranean Diet and Microbiota-Associated Urolithin Metabotypes Can Predict Obesity in Childhood-Adolescence. Sci. Rep. 2020, 10, 7850. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; García-Villalba, R.; González-Sarrías, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramírez-de-Molina, A.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. The Gut Microbiota Urolithin Metabotypes Revisited: The Human Metabolism of Ellagic Acid Is Mainly Determined by Aging. Food Funct. 2018, 9, 4100–4106. [Google Scholar] [CrossRef]
- Xian, W.; Yang, S.; Deng, Y.; Yang, Y.; Chen, C.; Li, W.; Yang, R. Distribution of Urolithins Metabotypes in Healthy Chinese Youth: Difference in Gut Microbiota and Predicted Metabolic Pathways. J. Agric. Food Chem. 2021, 69, 13055–13065. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; Romo-Vaquero, M.; García-Mantrana, I.; Rodríguez-Varela, A.; Collado, M.C.; Espín, J.C.; Selma, M.V. Urolithin Metabotypes Can Anticipate the Different Restoration of the Gut Microbiota and Anthropometric Profiles during the First Year Postpartum. Nutrients 2019, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Kling Bäckhed, H.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Sandalova, E.; Li, H.; Guan, L.; Raj, S.; Lim, T.; Tian, E.; Kennedy, B.; Maier, A. Testing the Amount of Nicotinamide Mononucleotide and Urolithin a as Compared to the Label Claim. Geroscience 2024, 46, 5075–5083. [Google Scholar] [CrossRef]
- Wang, S.; Chang, W.; Hsu, C.; Su, N. Antimelanogenic Effect of Urolithin a and Urolithin B, the Colonic Metabolites of Ellagic Acid, in B16 Melanoma Cells. J. Agric. Food Chem. 2017, 65, 6870–6876. [Google Scholar] [CrossRef]
- Liu, W.; Yan, F.; Xu, Z.; Chen, Q.; Ren, J.; Wang, Q.; Chen, L.; Ying, J.; Liu, Z.; Zhao, J.; et al. Urolithin a Protects Human Dermal Fibroblasts from UVA-Induced Photoaging through NRF2 Activation and Mitophagy. J. Photochem. Photobiol. B 2022, 232, 112462. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Zhang, Z.; Qiu, L.; Ding, S.; Xue, J.; Zhao, G.; Li, J. Antiaging Effects of Urolithin a on Replicative Senescent Human Skin Fibroblasts. Rejuvenation Res. 2019, 22, 191–200. [Google Scholar] [CrossRef]
- Lan, Y. Study on Fermentation Pross and Flavor and Antioxidant Quality of Pomegranate Wing and Pomegranate Lactic Acid Drink. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Y4WXQ1XfpS7dX8rUadtAq5A_Wt3J8cc8mL4ET6Jt45-iCK7IzS6wspta4TIYHTNtXv1kQQGmW5Z6giG4nnEw41FYiQ-g6Ds7HOXFvoeug5R7gYajyFESqB1lamOTOK1x1zSH-vDZkxS5OtDENVVk2ELsIECzHayd-neOz0n2BD8DrU5Lz8UjN_w_LmBYKhL_&uniplatform=NZKPT&language=CHS (accessed on 10 October 2025). (In Chinese).
- Seeram, N.P.; Zhang, Y.; McKeever, R.; Henning, S.M.; Lee, R.; Suchard, M.A.; Li, Z.; Chen, S.; Thames, G.; Zerlin, A.; et al. Pomegranate Juice and Extracts Provide Similar Levels of Plasma and Urinary Ellagitannin Metabolites in Human Subjects. J. Med. Food. 2008, 11, 390–394. [Google Scholar] [CrossRef]
- Mosele, J.I.; Gosalbes, M.; Macià, A.; Rubió, L.; Vázquez-Castellanos, J.F.; Jiménez Hernández, N.; Moya, A.; Latorre, A.; Motilva, M. Effect of Daily Intake of Pomegranate Juice on Fecal Microbiota and Feces Metabolites from Healthy Volunteers. Mol. Nutr. Food Res. 2015, 59, 1942–1953. [Google Scholar] [CrossRef]
- Liu, H.; Birk, J.W.; Provatas, A.A.; Vaziri, H.; Fan, N.; Rosenberg, D.W.; Gharaibeh, R.Z.; Jobin, C. Correlation between Intestinal Microbiota and Urolithin Metabolism in a Human Walnut Dietary Intervention. BMC Microbiol. 2024, 24, 476. [Google Scholar] [CrossRef]

| Synthesis Method | Synthetic Route | Uro-A Yield | Cost- Effectiveness | Environmental Friendliness | Reference |
|---|---|---|---|---|---|
| Copper catalytic two-step method | ![]() | 42% | Moderate cost, moderate yield. | Moderate (AlCl3 corrosive, Cu2+ heavy metal) | [43] |
| Copper catalytic four-step method | ![]() | — | High cost, low efficiency. | Poor (hazardous reagents, large waste) | [44] |
| Subcritical water-copper method | ![]() | 15% | High cost, low yield. | Poor (IBr/DCM pollution, low atom economy) | [45] |
| Copper catalytic three-step method | ![]() | 25% | Moderate cost, low-moderate yield. | Moderate (Br2, AlCl3, Cu2+ impact) | [46] |
| Palladium-catalyzed three-step method | ![]() | — | High cost, yield unreported. | Moderate (precious metals, HFIO solvent) | [47] |
| Copper-catalyzed acid reduction method | ![]() | — | Moderate cost, yield unreported. | Moderate (50%NaOH/Cu2+ disposal) | [48] |
| Palladium-catalyzed five-step method | ![]() | (1) 63% (2) 98% (3) 99% | Very high cost, high step yields → total cost remains high. | Moderate (precious metals, multi-step waste; high step yields partly offset) | [49] |
| NBS-copper catalyzed method | ![]() | 86% | Low to moderate cost, high yield → high efficiency. | Relatively good (NBS safer than Br2, high atom economy) | [50] |
| Strain Name | Colony Characteristics | Source | Screening Methods | Identification Techniques | Fermentation Conditions | Reference |
|---|---|---|---|---|---|---|
| Bifidobacterium pseudocatenulatum INIA P815 | Round, convex, with regular edges, smooth and moist surface, creamy white to pale grayish white, and a diameter of approximately 1.5–2.0 mm. | Intestinal contents | Fecal samples from humans producing Uro-A and B → after dilution, inoculated separately onto RCM, BHI, WC, MRS, and GM17 agar plates → strains + ellagic acid → the strain that produce Uro-A and B | HPLC, HPLC -MS/MS, 16S rRNA. | BHI Anaerobic Basal Broth Medium, 0.1% seed culture inoculum size, pH 7.4, 37 °C, anaerobic culture for 5 d. | [56] |
| Lactococcus garvieae FUA009 | Circular, milky white and translucent, with a moist surface, regular edges, no halo, a central protrusion, a diameter of 0.5–1.0 mm, and easy to pick. | Intestinal contents | Fecal samples from volunteers verified to produce UroA → dilution plating → strains + ellagic acid → the Uro-A- producing strain. | HPLC, HPLC -MS/MS, morphological identification, physiological and biochemical Identification, 16S rRNA. | ABB Anaerobic Basal Broth Medium, 2% seed culture inoculum size, pH 7.0, 37 °C, anaerobic culture for 48 h. | [57,58] |
| Streptococcus thermophilus FUA329 | The colonies are circular, milky white and translucent, with a moist surface, regular edges, no halo, a central protrusion, and a diameter of 0.5–1.0 mm, and easy to pick. | Human breast milk | Breast milk + ellagic acid → Uro-A-producing breast milk → dilution plating → strains + ellagic acid → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, physiological and biochemical Identification, 16S rRNA. | ABB Anaerobic Basal Broth Medium, 2% seed culture inoculum size, pH 7.0, 37 °C, anaerobic culture for 48 h. | [59,60] |
| Lactobacillus plantarum CCFM1286 | Convex, white, smooth, and circular, with a diameter of approximately 2–3 mm. | The Feces of healthy people | Obtain enzyme sequences that may catalyze the conversion of ETs to Uro-A from NCBI → Perform NCBI-Blast alignment of these enzyme sequences against a local genomic database, and screen out strains with similarity ≥ 70% and coverage ≥ 30% → In vitro fermentation of strains with ETs → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, 16S rRNA. | BHI Liquid Medium, 2% seed culture inoculum size, pH 7.0, 37 °C, aerobic culture for 48 h. | [61] |
| Lactobacillus plantarum CCFM1290 | Convex, white, smooth, and circular, with a diameter of approximately 3 mm. | The Feces of healthy people | Obtain enzyme sequences that may catalyze the conversion of ETs to Uro-A from NCBI → Perform BLAST alignment of these enzyme sequences against a local genomic database, and screen out strains with similarity ≥ 70% and coverage ≥ 30% → In vitro fermentation of strains with ETs → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, 16S rRNA. | BHI Liquid Medium, 2% seed culture inoculum size, pH 7.0, 37 °C, aerobic culture for 48 h. | [62] |
| Lactobacillus plantarum CCFM1291 | Convex, white, smooth, and circular, with a diameter of approximately 3 mm. | The Feces of healthy people | Strain Bank of the Food Biotechnology Center, Jiangnan University (source: fecal samples from healthy humans)-edible strains + ellagitannins → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, 16S rRNA. | MRS Liquid Medium, 2–4% seed culture inoculum size, pH 6.2, 37 °C, aerobic culture for 48 h. | [63] |
| Limosilactobacillus fermentum FUA033 | Milky white, opaque, and circular (with a diameter of 1–2 mm), featuring regular and neat edges, a convex center, a bright surface, and a moist texture that is easy to pick. | Intestinal contents | 20 healthy adult volunteers (age: 22–27 years old) + 0.7 g raw walnuts/kg body weight → fecal + ellagic acid → dilution plating → colonies + ellagic acid → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, physiological and biochemical Identification, 16S rRNA. | Wilkins–Chalgren Anaerobe Broth, 2% seed culture inoculum size, pH 7.1, 37 °C, anaerobic culture for 48 h. | [64] |
| Enterococcus faecium FUA027 | Circular, milky white, with a moist surface, regular edges, no halo, a central protrusion, a diameter of 0.1–0.5 mm, and easy to pick. | Intestinal contents | 7 volunteers with no history of gastrointestinal diseases (age: 22–27 years old) + 0.7 g raw walnuts/kg body weight → fecal + ellagic acid → dilution plating → colonies + ellagic acid → the Uro-A-producing strain. | HPLC, HPLC -MS/MS, morphological identification, physiological and biochemical Identification, 16S rRNA. | ABB Anaerobic Basal Broth Medium, 2% seed culture inoculum size, pH 6.8, 37 °C, anaerobic culture for 48 h. | [65] |
| Lactobacillus plantarum CCTCCAB 2013128 | Convex, white, smooth, and circular, with a diameter of approximately 3 mm. | China Center for Type Culture Collection | Various strains from the Culture Collection Center → Strain activation → Seed culture + EA → Strains with a high Uro-A conversion rate. | HPLC, HPLC -MS/MS, morphological identification. | The medium consists of: 4 g rice flour, 1 g yeast extract, 1 g molasses, 1.2 g sodium acetate, 0.02 g copper sulfate, 0.05 g magnesium sulfate, 2 g malt flour, 0.5 g dipotassium hydrogen phosphate; with a 1.5% seed culture inoculum size, pH 7.1, 37 °C, aerobic culture for 80 h. | [66] |
| Lepista sordida | Radially spreading hyphae, pale purple (hyphae), spherical mycelial pellets. | Institute of Microbiology, Chinese Academy of Sciences | Edible and medicinal fungi existing in the laboratory → fungal activation → seed culture + EA → the Uro-A-producing fungi. | HPLC, HPLC -MS/MS. | CYM Liquid Medium, 10% inoculum size, pH6.0–6.5, 25 °C, shaking, aerobic fermentation for 9–17 days. | [67] |
| Test Subject | Food Source | Detection Site | Uro-A Form | Reference |
|---|---|---|---|---|
| Mouse | Pomegranate | Kidney, liver | Uro-A glucuronide | [68] |
| Pig | Oak-flavored milk powder | Plasma | Uro-A glucuronide | [69] |
| Urine, intestinal contents | Uro-A | |||
| Fresh acorns | Bile, intestinal lumen, gastrointestinal tissue | Uro-A glucuronide | [70] | |
| Urine, intestinal contents | Uro-A | |||
| Bull | Hay and oak leaves | Gastric juice | Uro-A glucuronide | [71] |
| Blood | Uro-A glucuronide | |||
| Urine, intestinal contents | Uro-A glucuronide | |||
| Adult | Walnut | Intestinal contents | Uro-A | [72] |
| Black tea | Urine | Uro-A | [73] | |
| Pomegranate extract | Blood | Uro-A | [74] | |
| Infant | Pomegranate juice | Urine, intestinal contents | Uro-A glucuronide | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Gao, L.; Ju, Z.; Zhang, L. Multi-Dimensional Analysis of Key Points in the Biological Activity, Chemical Synthesis and Biotransformation of Urolithin A. Fermentation 2025, 11, 603. https://doi.org/10.3390/fermentation11110603
Sun Z, Gao L, Ju Z, Zhang L. Multi-Dimensional Analysis of Key Points in the Biological Activity, Chemical Synthesis and Biotransformation of Urolithin A. Fermentation. 2025; 11(11):603. https://doi.org/10.3390/fermentation11110603
Chicago/Turabian StyleSun, Zhimei, Lili Gao, Zhibo Ju, and Lihua Zhang. 2025. "Multi-Dimensional Analysis of Key Points in the Biological Activity, Chemical Synthesis and Biotransformation of Urolithin A" Fermentation 11, no. 11: 603. https://doi.org/10.3390/fermentation11110603
APA StyleSun, Z., Gao, L., Ju, Z., & Zhang, L. (2025). Multi-Dimensional Analysis of Key Points in the Biological Activity, Chemical Synthesis and Biotransformation of Urolithin A. Fermentation, 11(11), 603. https://doi.org/10.3390/fermentation11110603








