Isolation, Purification and In Vitro Characterization of a Newly Isolated Alkalophilic Phytase Produced by the Halophile Cobetia marina Strain 439 for Use as Animal Food Supplement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Phytase-Producing Bacteria
2.2. Phytase Assay and Protein Determination
2.3. Partial Purification of Phytase
2.4. Molecular Weight Determination
2.5. Zymogram Assay
2.6. Characterization of Phytase Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Screening of Phytase Secretion
3.2. Cultivation of Cobetia marina Strain 439
3.3. Purification of Phytase
3.4. Molecular Weight Determination and Zymogram Analysis
3.5. Characterization of Purified Phytase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, J.; Sapna; Singh, B. Characteristics and Biotechnological Applications of Bacterial Phytases. Process Biochem. 2016, 51, 159–169. [Google Scholar] [CrossRef]
- Urgessa, O.E.; Koyamo, R.; Dinka, H.; Tefese, K.; Gemeda, M.T. Review on Desirable Microbial Phytases as a Poultry Feed Additive: Their Sources, Production, Enzymatic Evaluation, Market Size, and Regulation. Int. J. Microbiol. 2024, 1, 9400374. [Google Scholar] [CrossRef] [PubMed]
- Rizwanuddin, S.; Kumar, V.; Singh, P.; Naik, B.; Mishra, S.; Chauhan, M.; Saris, P.E.J.; Verma, A.; Kumar, V. Insight into Phytase-Producing Microorganisms for Phytate Solubilization and Soil Sustainability. Front. Microbiol. 2023, 14, 1127249. [Google Scholar] [CrossRef] [PubMed]
- García-López, A.M.; Delgado, A.; Plassard, C. Kinetics of phytate adsorption and response of phosphorus forms initially present in alkaline soils. Geoderma 2024, 443, 116800. [Google Scholar] [CrossRef]
- Joudaki, H.; Aria, N.; Moravej, R.; Rezaei Yazdi, M.; Emami-Karvani, Z.; Hamblin, M.R. Microbial phytases: Properties and applications in the food industry. Curr. Microbiol. 2023, 80, 374. [Google Scholar] [CrossRef]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A review of phytic acid sources, obtention, and applications. Food Rev. Int. 2023, 39, 73–92. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Singh, P.K. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poult. Sci. J. 2008, 64, 553–580. [Google Scholar] [CrossRef]
- Mukhametzyanova, A.D.; Akhmetova, A.I.; Sharipova, M.R. Microorganisms as Phytase Producers. Microbiology 2012, 81, 267–275. [Google Scholar] [CrossRef]
- Konietzny, U.; Greiner, R. Bacterial Phytase: Potential Application, in Vivo Function and Regulation of Its Synthesis. Braz. J. Microbiol. 2004, 35, 11–18. [Google Scholar] [CrossRef]
- Rao, D.E.C.S.; Rao, K.V.; Reddy, T.P.; Reddy, V.D. Molecular Characterization, Physicochemical Properties, Known and Potential Applications of Phytases: An Overview. Crit. Rev. Biotechnol. 2009, 29, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yong, X.; Zhao, Z.; Dolce, V.; Li, Y.; Curcio, R. Research Status of Bacillus Phytase. 3 Biotech 2021, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Rizwanuddin, S.; Kumar, V.; Naik, B.; Singh, P.; Mishra, S.; Rustagi, S.; Kumar, V. Microbial Phytase: Their Sources, Production, and Role in the Enhancement of Nutritional Aspects of Food and Feed Additives. J. Agric. Food Res. 2023, 12, 100559. [Google Scholar] [CrossRef]
- Esakkiraj, P.; Sandoval, G.; Sankaralingam, S.; Immanuel, G.; Palavesam, A. Preliminary Optimization of Solid-State Phytase Production by Moderately Halophilic Pseudomonas AP-MSU 2 Isolated from Fish Intestine. Ann. Microbiol. 2010, 60, 461–468. [Google Scholar] [CrossRef]
- Dokuzparmak, E.; Sirin, Y.; Cakmak, U.; Saglam Ertunga, N. Purification and Characterization of a Novel Thermostable Phytase from the Thermophilic Geobacillus Sp. TF16. Int. J. Food Prop. 2017, 20, 1104–1116. [Google Scholar] [CrossRef]
- Vohra, A.; Satyanarayana, T. Purification and Characterization of a Thermostable and Acid-Stable Phytase from Pichia anomala. World J. Microbiol. Biotechnol. 2002, 18, 687–691. [Google Scholar] [CrossRef]
- Sanni, D.M.; Lawal, O.T.; Enujiugha, V.N. Purification and Characterization of Phytase from Aspergillus Fumigatus Isolated from African Giant Snail (Achatina Fulica). Biocatal. Agric. Biotechnol. 2019, 17, 225–232. [Google Scholar] [CrossRef]
- Zhou, Y.; Anoopkumar, A.N.; Tarafdar, A.; Madhavan, A.; Binoop, M.; Lakshmi, N.M.; Arun, K.B.; Sindhu, R.; Binod, P.; Sirohi, R.; et al. Microbial Engineering for the Production and Application of Phytases to the Treatment of the Toxic Pollutants: A Review. Environ. Pollut. 2022, 308, 119703. [Google Scholar] [CrossRef]
- Jorquera, M.; Martínez, O.; Maruyama, F.; Marschner, P.; De La Luz Mora, M. Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes Environ. 2008, 23, 182–191. [Google Scholar] [CrossRef]
- Chaudhari, H.G.; Wardah, Z.H.; Prajapati, V.; Raol, G. Halozymes: Sources, catalytic mechanisms, and potential applications in industries. In Extremozymes and Their Industrial Application; Academic Press: Cambridge, MA, USA, 2022; pp. 279–287. [Google Scholar] [CrossRef]
- Ruginescu, R.; Gomoiu, I.; Popescu, O.; Cojoc, R.; Neagu, S.; Lucaci, I.; Enache, M. Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in brackish, saline and hypersaline lakes of Romania. Microorganisms 2020, 8, 1903. [Google Scholar] [CrossRef] [PubMed]
- Rathakrishnan, D.; Gopalan, A.K. Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environ. Chall. 2022, 6, 100426. [Google Scholar] [CrossRef]
- Boyadzhieva, I.; Radchenkova, N.; Atanasova, N.; Poli, A.; Finore, I.; Kambourova, M. Isolation and characterization of a thermostable pectinase by Anoxybacillus gonensis strain 357. CR Acad. Bulg. Sci. 2021, 74, 1757–1766. [Google Scholar] [CrossRef]
- Nedashkovskaya, O.; Balabanova, L.; Otstavnykh, N.; Zhukova, N.; Detkova, E.; Seitkalieva, A.; Bystritskaya, E.; Noskova, Y.; Tekutyeva, L.; Isaeva, M. In-Depth Genome Characterization and Pan-Genome Analysis of Strain KMM 296, a Producer of Highly Active Alkaline Phosphatase; Proposal for the Reclassification of Cobetia litoralis and Cobetia pacifica as the Later Heterotypic Synonyms of Cobetia Amphilec. Biomolecules 2024, 14, 196. [Google Scholar] [CrossRef]
- Balabanova, L.A.; Golotin, V.A.; Kovalchuk, S.N.; Babii, A.V.; Shevchenko, L.S.; Son, O.M.; Rasskazov, V.A. The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853). Russ. J. Mar. Biol. 2016, 42, 106–109. [Google Scholar] [CrossRef]
- Boyadzhieva, I.; Tomova, I.; Radchenkova, N.; Kambourova, M.; Poli, A.; Vasileva-Tonkova, E. Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact. Microbiol. 2018, 87, 519–528. [Google Scholar] [CrossRef]
- Palla, M.; Cristani, C.; Giovannetti, M.; Agnolucci, M. Identification and Characterization of Lactic Acid Bacteria and Yeasts of PDO Tuscan Bread Sourdough by Culture Dependent and Independent Methods. Int. J. Food Microbiol. 2017, 250, 19–26. [Google Scholar] [CrossRef]
- Bae, H.D.; Yanke, L.J.; Cheng, K.J.; Selinger, L.B. A Novel Staining Method for Detecting Phytase Activity. J. Microbiol. Methods 1999, 39, 17–22. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Whitaker, J.R. Determination of Molecular Weights of Proteins by Gel Filtration of Sephadex. Anal. Chem. 1963, 35, 1950–1953. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Suh, H.J.; Kim, J.M. Purification and Properties of Extracellular Phytase from Bacillus Sp. KHU-10. J. Protein Chem. 2001, 20, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Greiner, R.; Farouk, A.E. Purification and Characterization of a Bacterial Phytase Whose Properties Make It Exceptionally Useful as a Feed Supplement. Protein J. 2007, 26, 467–474. [Google Scholar] [CrossRef]
- Kim, Y.O.; Kim, H.K.; Bae, K.S.; Yu, J.H.; Oh, T.K. Purification and Properties of a Thermostable Phytase from Bacillus Sp. DS11. Enzym. Microb. Technol. 1998, 22, 2–7. [Google Scholar] [CrossRef]
- Trivedi, S.; Husain, I.; Sharma, A. Purification and Characterization of Phytase from Bacillus subtilis P6: Evaluation for Probiotic Potential for Possible Application in Animal Feed. Food Front. 2022, 3, 194–205. [Google Scholar] [CrossRef]
- Yamada, K.; Minoda, Y.; Yamamoto, S. Phytase from Aspergillus terreus Part I. Production, Purification and Some General Properties of the Enzyme. Agric. Biol. Chem. 1968, 32, 1275–1282. [Google Scholar]
- Gibson, D.M. Production of Extracellular Phytase from Aspergillus ficuum on Starch Media. Biotechnol. Lett. 1987, 9, 305–310. [Google Scholar] [CrossRef]
- In, M.J.; Seo, S.W.; Kim, D.C.; Oh, N.S. Purification and Biochemical Properties of an Extracellular Acid Phytase Produced by the Saccharomyces cerevisiae CY Strain. Process Biochem. 2009, 44, 122–126. [Google Scholar] [CrossRef]
- Escobin-Mopera, L.; Ohtani, M.; Sekiguchi, S.; Sone, T.; Abe, A.; Tanaka, M.; Meevootisom, V.; Asano, K. Purification and Characterization of Phytase from Klebsiella pneumoniae 9-3B. J. Biosci. Bioeng. 2012, 113, 562–567. [Google Scholar] [CrossRef]
- Gupta, M.; Choudhury, B.; Navani, N.K. Production and Characterization of an Organic Solvent Activated Protease from Haloalkaliphilic Bacterium Halobiforma Sp. Strain BNMIITR. Heliyon 2024, 10, e25084. [Google Scholar] [CrossRef]
- De Angelis, M.; Gallo, G.; Corbo, M.R.; McSweeney, P.L.H.; Faccia, M.; Giovine, M.; Gobbetti, M. Phytase Activity in Sourdough Lactic Acid Bacteria: Purification and Characterization of a Phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87, 259–270. [Google Scholar] [CrossRef]
- Parhamfar, M.; Badoei-dalfard, A.; Khaleghi, M.; Hassanshahian, M. Purification and Characterization of an Acidic, Thermophilic Phytase from a Newly Isolated Geobacillus stearothermophilus Strain DM12. Prog. Biol. Sci. 2015, 5, 61–73. [Google Scholar]
- Ibrahim, A.M.H.; Quick, J.S.; Kaya, R.; Grandgirard, J.; Poinsot, D.; Krespi, L.; Nénon, J.P.; Cortesero, A.M.; Islam, A.U.; Chhabra, A.K.; et al. Evaluation of Spring Wheat Genotypes for Heat Tolerance Using Cell Membrane Thermostability. Crop Pasture Sci. 2017, 2, 291–296. [Google Scholar]
- Sano, K.; Fukuhara, H.; Nakamura, Y. Phytase of the Yeast Arxula adeninivorans. Biotechnol. Lett. 1999, 21, 33–38. [Google Scholar] [CrossRef]
- Yu, P.; Chen, Y. Purification and Characterization of a Novel Neutral and Heat-Tolerant Phytase from a Newly Isolated Strain Bacillus nealsonii ZJ0702. BMC Biotechnol. 2013, 13, 78. [Google Scholar] [CrossRef]
- Demirkan, E.; Sevgi, T.; Akcakoca, D.; Ersoy, F. Bacillus megaterium EBD 9-1 Suşundan Yeni Bir Fitazın Kısmen Saflaştırılması, Karakterizasyonu ve Buğday Kepeğini Parçalama Çalışmaları. Turk. J. Biochem. 2017, 42, 329–337. [Google Scholar] [CrossRef]
- Nie, X.; Chen, S.; Zhang, X.X.; Dai, B.Y.; Qian, L.C. Effects of Neutral Phytase on Growth Performance and Phosphorus Utilization in Crucian Carp (Carassius auratus). J. Zhejiang Univ. Sci. B 2017, 18, 886–896. [Google Scholar] [CrossRef]
- Quan, C.S.; Fan, S.D.; Zhang, L.H.; Wang, Y.J.; Ohta, Y. Purification and Properties of a Phytase from Candida krusei WZ-001. J. Biosci. Bioeng. 2002, 94, 419–425. [Google Scholar] [CrossRef]
- Demir, Y.; Şenol Kotan, M.; Dikbaş, N.; Beydemir, Ş. Phytase from Weissella halotolerans: Purification, Partial Characterisation and the Effect of Some Metals. Int. J. Food Prop. 2017, 20, 2127–2137. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Dong, X.F.; Wang, Z.H.; Zhang, Q.; Wang, H.X.; Tong, J.M. Purification, Characterization, and Cloning of a Novel Phytase with Low PH Optimum and Strong Proteolysis Resistance from Aspergillus Ficuum NTG-23. Bioresour. Technol. 2010, 101, 4125–4131. [Google Scholar] [CrossRef]
Purification Step | Total Activity (U) | Total Protein (mg) | Specific Activity (U/mg) | Purification Fold | Purification Yield (%) |
---|---|---|---|---|---|
Crude enzyme | 5250 | 350 | 15 | 1 | 100 |
Ultrafiltration (10 kDa) | 4520 | 90 | 50 | 3.3 | 86 |
DEAE Sepharose | 3600 | 30 | 120 | 8 | 68 |
Gel filtration (Sephadex G-75) | 1820 | 7 | 260 | 17 | 35 |
Substrate | Relative Activity, % |
---|---|
Glucose-6-phosphate | 13 ± 1.2 |
Fructose-1,6-diphosphate | 18 ± 1.5 |
pNPP | 9 ± 1.0 |
AMP | 15 ± 1.7 |
ADP | 10 ± 0.5 |
ATP | 11 ± 0.7 |
Na-phytate | 100 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyadzhieva, I.; Berberov, K.; Atanasova, N.; Krumov, N.; Kabaivanova, L. Isolation, Purification and In Vitro Characterization of a Newly Isolated Alkalophilic Phytase Produced by the Halophile Cobetia marina Strain 439 for Use as Animal Food Supplement. Fermentation 2025, 11, 39. https://doi.org/10.3390/fermentation11010039
Boyadzhieva I, Berberov K, Atanasova N, Krumov N, Kabaivanova L. Isolation, Purification and In Vitro Characterization of a Newly Isolated Alkalophilic Phytase Produced by the Halophile Cobetia marina Strain 439 for Use as Animal Food Supplement. Fermentation. 2025; 11(1):39. https://doi.org/10.3390/fermentation11010039
Chicago/Turabian StyleBoyadzhieva, Ivanka, Kaloyan Berberov, Nikolina Atanasova, Nikolay Krumov, and Lyudmila Kabaivanova. 2025. "Isolation, Purification and In Vitro Characterization of a Newly Isolated Alkalophilic Phytase Produced by the Halophile Cobetia marina Strain 439 for Use as Animal Food Supplement" Fermentation 11, no. 1: 39. https://doi.org/10.3390/fermentation11010039
APA StyleBoyadzhieva, I., Berberov, K., Atanasova, N., Krumov, N., & Kabaivanova, L. (2025). Isolation, Purification and In Vitro Characterization of a Newly Isolated Alkalophilic Phytase Produced by the Halophile Cobetia marina Strain 439 for Use as Animal Food Supplement. Fermentation, 11(1), 39. https://doi.org/10.3390/fermentation11010039