A Comparative Study on the Antioxidative Activity and Phenolic Content of Fresh and Black (Fermented) Allium Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials and Processing of Samples
2.3. Preparation of Methanolic Extracts from Fresh and Fermented Allium Species
2.4. Determination of Total Phenolic Content
2.5. Determination of Total Antioxidant Capacity
2.5.1. DPPH Free Radical Scavenging Activity
2.5.2. ABTS Radical Cation Scavenging Activity
2.6. Determination of the pH
2.7. Statistical Analysis
3. Results
3.1. Physical Changes and pH
3.2. Changes in Total Phenolic Substance Content
3.3. Changes in Antioxidant Activity Values
3.3.1. DPPH
3.3.2. ABTS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Ekşi, G.; Özkan, A.M.G.; Koyuncu, M. Garlic and onions: An eastern tale. J. Ethnopharmacol. 2020, 253, 112675. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. JFDA 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Kang, D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: A review. Molecules 2017, 22, 919. [Google Scholar] [CrossRef]
- Qiu, Z.; Lu, X.; Li, N.; Zhang, M.; Qiao, X. Characterization of garlic endophytes isolated from the black garlic processing. MicrobiologyOpen 2018, 7, e00547. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, N.; Lu, X.; Zheng, Z.; Zhang, M.; Qiao, X. Characterization of microbial community structure and metabolic potential using Illumina MiSeq platform during the black garlic processing. Food Res. Int. 2018, 106, 428–438. [Google Scholar] [CrossRef]
- Yang, P.; Song, H.; Wang, L.; Jing, H. Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. J. Agric. Food Chem. 2019, 67, 7926–7934. [Google Scholar] [CrossRef]
- Cavagnaro, P.F.; Camargo, A.; Galmarini, C.R.; Simon, P.W. Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J. Agric. Food Chem. 2007, 55, 1280–1288. [Google Scholar] [CrossRef]
- Cavagnaro, P.F.; Sance, M.M.; Galmarini, C.R. Effect of heating on onion (Allium cepa L.) antiplatelet activity and pungency sensory perception. Food Sci. Technol. Int. 2007, 13, 447–453. [Google Scholar] [CrossRef]
- Hansen, E.A.; Folts, J.D.; Goldman, I.L. Steam-cooking rapidly destroys and reverses onion-induced antiplatelet activity. Nutr. J. 2012, 11, 76. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef]
- Sharma, K.; Ko, E.Y.; Assefa, A.D.; Ha, S.; Nile, S.H.; Lee, E.T.; Park, S.W. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. JFDA 2015, 23, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Medina, M.A.; Pérez-Aparicio, J.; Moreno-Rojas, R.; Merinas-Amo, T. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem. 2016, 199, 135–139. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, M.; Liu, R.; Gao, Y.; Xu, M.; Zhang, M. Evaluation of alliin, saccharide contents and antioxidant activities of black garlic during thermal processing. J. Food Biochem. 2015, 39, 39–47. [Google Scholar] [CrossRef]
- Chang, T.C.; Jang, H.D. Optimization of aging time for improved antioxidant activity and bacteriostatic capacity of fresh and black garlic. Appl. Sci. 2021, 11, 2377. [Google Scholar] [CrossRef]
- Najman, K.; Sadowska, A.; Hallmann, E. Influence of thermal processing on the bioactive, antioxidant, and physicochemical properties of conventional and organic agriculture black garlic (Allium sativum L.). Appl. Sci. 2020, 10, 8638. [Google Scholar] [CrossRef]
- Toledano Medina, M.Á.; Merinas-Amo, T.; Fernández-Bedmar, Z.; Font, R.; Del Río-Celestino, M.; Pérez-Aparicio, J.; Moreno-Rojas, R. Physicochemical characterization and biological activities of black and white garlic: In vivo and in vitro assays. Foods 2019, 8, 220. [Google Scholar] [CrossRef]
- Moreno-Ortega, A.; Pereira-Caro, G.; Ordóñez, J.L.; Muñoz-Redondo, J.M.; Moreno-Rojas, R.; Pérez-Aparicio, J.; Moreno-Rojas, J.M. Changes in the antioxidant activity and metabolite profile of three onion varieties during the elaboration of ‘black onion’. Food Chem. 2020, 311, 125958. [Google Scholar] [CrossRef]
- Cheng, A.; Chen, X.; Jin, Q.; Wang, W.; Shi, J.; Liu, Y. Comparison of phenolic content and antioxidant capacity of red and yellow onions. Czech J. Food Sci. 2013, 31, 501–508. [Google Scholar] [CrossRef]
- Soto, V.C.; Gonzalez, R.E.; Sance, M.M.; Galmarini, C.R. Organosulfur and phenolic content of garlic (Allium sativum L.) and onion (Allium cepa L.) and its relationship with antioxidant activity. VII Int. Symp. Edible Alliaceae 2015, 1143, 277–290. [Google Scholar] [CrossRef]
- Bouhenni, H.; Doukani, K.; Hanganu, D.; Olah, N.K.; Şekeroğlu, N.; Gezici, S. Analysis of bioactive compounds and antioxidant activities of cultivated garlic (Allium sativum L.) and red onion (Allium cepa L.) in Algeria. JAEFS 2021, 5, 550–560. [Google Scholar] [CrossRef]
- Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Najman, K.; Drzewiecki, J.; Trakhtenberg, S. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 2008, 56, 4418–4426. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2018, 27, 219–225. [Google Scholar] [CrossRef]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition analysis and antioxidant properties of black garlic extract. JFDA 2017, 25, 340–349. [Google Scholar] [CrossRef]
- Kandemirli, F.; İçli, N.; Bakır, T.K.; Nazlı, B.; Aydın, S. The investigation of the effect of freezing pretreatment on properties of black garlic produced from Kastamonu garlic. Food Health 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Supapvanich, S.; Kaewthong, P.; Takeungwongtrakul, S. Impact of steaming pretreatment process on characteristics and antioxidant activities of black garlic (Allium sativum L.). JFST 2021, 58, 1869–1876. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, O.J.; Gweon, O.C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods. 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Saplonţai-Pop, A.; Moţ, A.; Moldovan, M.; Oprean, R.; Silaghi-Dumitrescu, R.; Orășan, O.; Ionescu, C. Testing antiplatelet and antioxidant activity of the extract of seven varieties of Allium cepa L. Open Life Sci. 2015, 10, 89–98. [Google Scholar] [CrossRef]
- Benkeblia, N. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz. Arch. Biol. Technol. 2005, 48, 753–759. [Google Scholar] [CrossRef]
- Kim, J.H.; Nam, S.H.; Rico, C.W.; Kang, M.Y. A comparative study on the antioxidative and anti-allergic activities of fresh and aged black garlic extracts. IJFST 2012, 47, 1176–1182. [Google Scholar] [CrossRef]
- Lee, Y.M.; Gweon, O.C.; Seo, Y.J.; Im, J.; Kang, M.J.; Kim, M.J.; Kim, J.I. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr. Res. Pract. 2009, 3, 156–161. [Google Scholar] [CrossRef]
- Sato, E.; Kohno, M.; Hamano, H.; Niwano, Y. Increased anti-oxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum. Nutr. 2006, 61, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Casas, L.; Lage-Yusty, M.; López-Hernández, J. Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. J. Agric. Food Chem. 2017, 65, 10804–10811. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT Food Sci. Technol. 2012, 46, 532–535. [Google Scholar] [CrossRef]
- Kim, J.S. Antioxidant activity of various soluble melanoidins isolated from black garlic after different thermal processing steps. Prev. Nutr. Food Sci. 2020, 25, 301. [Google Scholar] [CrossRef]
- Nakagawa, K.; Maeda, H.; Yamaya, Y.; Tonosaki, Y. Maillard reaction intermediates and related phytochemicals in black garlic determined by EPR and HPLC analyses. Molecules 2020, 25, 4578. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Y.; Zhang, M. Evaluation on the physicochemical and digestive properties of melanoidin from black garlic and their antioxidant activities in vitro. Food Chem. 2021, 340, 127934. [Google Scholar] [CrossRef]
- Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Biological activities of Maillard reaction products (MRPs) in a sugar–amino acid model system. Food Chem. 2011, 126, 221–227. [Google Scholar] [CrossRef]
WO (Mean ± SD) | RO (Mean ± SD) | YO (Mean ± SD) | G (Mean ± SD) | ||
---|---|---|---|---|---|
TPC | Fresh | 2.85 ± 0.12 a | 7.13 ± 0.48 c | 3.44 ± 0.17 a | 5.27 ± 0.18 b |
Fermented | 4.12 ± 0.23 a | 10.46 ± 0.6 c | 7.51 ± 0.56 b | 16.66 ± 0.48 d | |
p+ | 0.024 | 0.011 | 0.004 | <0.001 | |
DPPH | Fresh | 5.51 ± 0.21 a | 11.2 ± 0.50 d | 6.74 ± 0.12 b | 10.1 ± 0.33 c |
Fermented | 11.74 ± 0.58 a | 18.9 ± 0.81 b | 11.22 ± 0.44 a | 35.64 ± 1.13 c | |
p+ | 0.003 | 0.004 | 0.004 | <0.001 | |
ABTS | Fresh | 7.97 ± 0.23 a | 24.61 ± 0.69 c | 8.79 ± 0.29 a | 19.69 ± 0.49 b |
Fermented | 16.26 ± 0.66 a | 31.9 ± 1.09 b | 19.29 ± 0.72 a | 51.35 ± 1.94 c | |
p+ | 0.003 | <0.001 | <0.001 | <0.001 | |
pH | Fresh | 5.04 ± 0.03 b | 4.85 ± 0.04 a | 4.91 ± 0.06 a | 5.26 ± 0.05 c |
Fermented | 3.87 ± 0.03 a | 3.80 ± 0.02 a | 3.83 ± 0.03 a | 4.13 ± 0.23 b | |
p+ | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ülger, T.G.; Çakıroğlu, F.P. A Comparative Study on the Antioxidative Activity and Phenolic Content of Fresh and Black (Fermented) Allium Vegetables. Fermentation 2024, 10, 486. https://doi.org/10.3390/fermentation10090486
Ülger TG, Çakıroğlu FP. A Comparative Study on the Antioxidative Activity and Phenolic Content of Fresh and Black (Fermented) Allium Vegetables. Fermentation. 2024; 10(9):486. https://doi.org/10.3390/fermentation10090486
Chicago/Turabian StyleÜlger, Taha Gökmen, and Funda Pınar Çakıroğlu. 2024. "A Comparative Study on the Antioxidative Activity and Phenolic Content of Fresh and Black (Fermented) Allium Vegetables" Fermentation 10, no. 9: 486. https://doi.org/10.3390/fermentation10090486
APA StyleÜlger, T. G., & Çakıroğlu, F. P. (2024). A Comparative Study on the Antioxidative Activity and Phenolic Content of Fresh and Black (Fermented) Allium Vegetables. Fermentation, 10(9), 486. https://doi.org/10.3390/fermentation10090486