Yeast for the Production of Biochemicals and Biofuels
Conflicts of Interest
List of Contributions
- Liu, J.; Sun, S.; Sun, Y.; Liu, D.; Kang, J.; Ye, Z.; Song, G.; Ge, J. Effect of Short-Chain Fatty Acids on the Yield of 2,3-Butanediol by Saccharomyces cerevisiae W141: The Synergistic Effect of Acetic Acid and Dissolved Oxygen. Fermentation 2023, 9, 236. https://doi.org/10.3390/fermentation9030236.
- Ao, G.; Sun, S.; Liu, L.; Guo, Y.; Tu, X.; Ge, J.; Ping, W. Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions. Fermentation 2023, 9, 694. https://doi.org/10.3390/fermentation9070694.
- Liu, J.; Yao, G.; Wan, X.; Wang, F.; Han, P.; Bao, S.; Wang, K.; Song, T.; Jiang, H. Highly Efficient Biosynthesis of γ-Bisabolene with a New Sesquiterpene Synthase AcTPS5 by Dual Cytoplasmic-Peroxisomal Engineering in Saccharomyces cerevisiae. Fermentation 2023, 9, 779. https://doi.org/10.3390/fermentation9090779.
- Chen, J.; Gui, L.; Chen, B.; Sun, Y.; Zhao, Y.; Lu, F.; Li, M. Improving Expression of Pepsinogen A from Homo sapiens in Aspergillus niger by Using a Multi-Copy Gene Knock-in Strategy. Fermentation 2023, 9, 538. https://doi.org/10.3390/fermentation9060538.
- Zeng, Y.; Wang, R.; Liang, J.; Zhang, H.; Yi, J.; Liu, Z. Strategies for Recovery, Purification and Quantification of Torularhodin Produced by Rhodotorula mucilaginosa Using Different Carbon Sources. Fermentation 2023, 9, 846. https://doi.org/10.3390/fermentation9090846.
- Ahuja, V.; Arora, A.; Chauhan, S.; Thakur, S.; Jeyaseelan, C.; Paul, D. Yeast-Mediated Biomass Valorization for Biofuel Production: A Literature Review. Fermentation 2023, 9, 784. https://doi.org/10.3390/fermentation9090784.
- Zhang, H.; Zhang, P.; Wu, T.; Ruan, H. Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges. Fermentation 2023, 9, 709. https://doi.org/10.3390/fermentation9080709.
References
- Paul, D.; Bohacz, J.; Bhatia, S.K. Editorial: Biowaste valorization utilizing microbial systems. Front. Microbiol. 2023, 14, 1213598. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef] [PubMed]
- Aidonojie, P.A.; Ukhurebor, K.E.; Oaihimire, I.E.; Ngonso, B.F.; Egielewa, P.E.; Akinsehinde, B.O.; Kusuma, H.S.; Darmokoesoemo, H. Bioenergy revamping and complimenting the global environmental legal framework on the reduction of waste materials: A facile review. Heliyon 2023, 6, e12860. [Google Scholar] [CrossRef] [PubMed]
- Parasar, D.P.; Ramakrishnan, E.; Kabilan, S.; Kotoky, J.; Sarma, H.K. Characterization of β-cryptoxanthin and other carotenoid derivatives from Rhodotorula taiwanensis, a novel yeast isolated from traditional starter culture of Assam. Chem. Biodivers. 2020, 17, e2000198. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, N.; Peng, B.; Haslinger, K. Design and engineering of artificial biosynthetic pathways-where do we stand and where do we go? FEBS Lett. 2023, 597, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Chen, H.; Tang, X.; Yang, Q.; Zhang, H.; Chen, Y.Q.; Chen, W. Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. J. Biotechnol. 2021, 325, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Magdouli, S.; Guedri, T.; Tarek, R.; Brar, S.K.; Blais, J.F. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Deeba, F.; Kiran Kumar, K.; Ali Wani, S.; Singh, A.; Sharma, J.; Gaur, N.A. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. Bioresour. Technol. 2022, 351, 127067. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, D. Yeast for the Production of Biochemicals and Biofuels. Fermentation 2024, 10, 451. https://doi.org/10.3390/fermentation10090451
Paul D. Yeast for the Production of Biochemicals and Biofuels. Fermentation. 2024; 10(9):451. https://doi.org/10.3390/fermentation10090451
Chicago/Turabian StylePaul, Debarati. 2024. "Yeast for the Production of Biochemicals and Biofuels" Fermentation 10, no. 9: 451. https://doi.org/10.3390/fermentation10090451
APA StylePaul, D. (2024). Yeast for the Production of Biochemicals and Biofuels. Fermentation, 10(9), 451. https://doi.org/10.3390/fermentation10090451