Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Tea Wine Preparation
2.2. Detection of Volatile Aromas
2.3. Single-Factor Experiment
2.4. Electronic Setups and Signals Acquiring
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristic Aroma Analysis and Variety Selection of Green Tea Wine Fermentation Substrate
3.2. Optimization of Fermentation Process of Green Tea Wine
3.3. Comprehensive Analysis of Green Tea Wine Taste by Electronic Sensory System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, Y.; Zhou, X.; Zeng, L. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 3751–3767. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent advances in volatiles of teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital evaluation of aroma intensity and odor characteristics of tea with different types—Based on OAV-splitting method. Foods 2022, 11, 2204. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.H.; Li, Y.F.; Li, M.; Wang, Y.J.; Zhang, L.; Wan, X.C.; Yang, X.G. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zheng, T.T.; Zhao, M.M.; Gong, W.Y.; Wang, Q.M.; Yan, L.; Zhang, W.J. Characterization of key odor-active compounds in Sun-Dried black tea by sensory and instrumental-directed flavor analysis. Foods 2022, 22, 1740. [Google Scholar] [CrossRef]
- Guo, X.Y.; Ho, C.T.; Schwab, W.; Wan, X.C. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Nucci, D.; Abalsamo, A.; Acito, M.; Villarini, M.; Moretti, M.; Realdon, S. Green tea consumption and risk of breast cancer and recurrence—A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1886. [Google Scholar] [CrossRef]
- Tan, H.-L.; Ojukwu, M.; Lee, L.-X.; Easa, A.M. Quality characteristics of green Tea’s infusion as influenced by brands and types of brewing water. Heliyon 2023, 9, e12638. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Chen, D.-Q.; He, H.-F.; Huang, Y.-B.; Feng, Z.-H.; Chen, J.-X.; Wang, F.; Xu, Y.-Q.; Yin, J.-F. Impact of tea leaves categories on physicochemical, antioxidant, and sensorial profiles of tea wine. Front. Nutr. 2023, 10, 1110803. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Zhang, Z.; Jiang, J.; Gao, X.; Yue, P. Multiple responses optimization of instant dark tea production by submerged fermentation using response surface methodology. J. Food Sci. Technol. 2018, 55, 2579–2586. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, S.; Sun, Y. Measurement of catechin and gallic acid in tea wine with HPLC. Saudi J. Biol. Sci. 2020, 27, 214–221. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Jia, W.; Wen, B.; Liao, S.; Zhao, Y.; Tang, Q.; Li, K.; Hua, Y.; Yang, Y.; et al. Dynamic changes in the major chemical and volatile components during the “Ziyan” tea wine processing. LWT—Food Sci. Technol. 2023, 186, 115273. [Google Scholar] [CrossRef]
- Wang, R.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. Biotransformation of green tea (Camellia sinensis) by wine yeast Saccharomyces cerevisiae. J. Food Sci. 2020, 85, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Guo, C.; Guo, N.; Zhang, T.; Wang, Y.; Wang, Y.; Lin, X.; Wu, F.; Feng, Y.; Xing, G. Similarity Evaluation on the Compound TCM Formulation “Huoling Shengji Granule” and Its Placebo by Intelligent Sensory Evaluation Technologies and the Human Sensory Evaluation Method Based on Critical Quality Attributes. Evid.-Based Complement. Altern. Med. 2021, 2021, 6637326. [Google Scholar] [CrossRef]
- Rosa, A.R.D.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Xiao, Z.; Jiang, X.; Niu, Y. Study on the interaction of sweet protein (thaumatin) with key aroma compounds in passion fruit juice using electronic nose, ultraviolet spectrum, thermodynamics, and molecular docking. LWT—Food Sci. Technol. 2022, 162, 113463. [Google Scholar] [CrossRef]
- Xia, Y.; Zha, M.; Liu, H.; Shuang, Q.; Chen, Y.; Yang, X. Novel Insight into the Formation of Odour—Active Compounds in Sea Buckthorn Wine and Distilled Liquor Based on GC–MS and E–Nose Analysis. Foods 2022, 11, 3273. [Google Scholar] [CrossRef]
- Wang, J.; Chang, M.; He, W.; Lu, X.; Fei, S.; Lu, G. Optimization of Electronic Nose Sensor Array for Tea Aroma Detecting based on Correlation Coefficient and Cluster Analysis. J. Chemosens. 2021, 9, 266. [Google Scholar] [CrossRef]
- Chen, J.; Lin, B.; Zheng, F.J.; Fang, X.C.; Ren, E.F.; Wu, F.F.; Verma, K.K.; Chen, G.L. Characterization of the Pure Black Tea Wine Fermentation Process by Electronic Nose and Tongue-Based Techniques with Nutritional Characteristics. ACS Omega 2023, 8, 12538–12547. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Pan, H.; Ding, L.; Ni, Z.; Wang, Y.; Zhou, J. Dynamical changes of volatile metabolites and identification of core fungi associated with aroma formation in Fu Brick tea during the fungal fermentation. LWT—Food Sci. Technol. 2024, 202, 116298. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, H.; Lan, T.; Liu, R.; Gao, T.; Yang, W.; Zhou, Y.; Ge, Q.; Fang, Y.; et al. Is overnight fresh juice drinkable? The shelf life prediction of non-industrial fresh watermelon juice based on the nutritional quality, microbial safety quality, and sensory quality. Food Nutr. Res. 2020, 64, 4237. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Wang, J. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for Quality Detection in Citrus Fruits. J. Food Sci. 2015, 80, S2296–S2304. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Z.; Zou, S.; Dong, L.; Lin, X.; Chen, Y.; Zhang, S.; Ji, C.; Liang, H. Chemical Composition and Flavor Characteristics of Cider Fermented with Saccharomyces cerevisiae and Non-Saccharomyces cerevisiae. Foods 2023, 12, 3565. [Google Scholar] [CrossRef]
- Huang, X.; Tang, Q.; Chen, C.; Li, Q.; Lin, H.; Bai, S.; Zhao, J.; Li, J.; Wang, K.; Zhu, M. Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). LWT 2023, 175, 114496. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.-Q.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Huang, Y.; Song, H.; Yang, P. Aroma identification and classification in 18 kinds of teas (Camellia sinensis) by sensory evaluation, HS-SPME-GC-IMS/GC × GC-MS, and chemometrics. Foods 2023, 12, 2433. [Google Scholar] [CrossRef]
- Phan, Q.; DuBois, A.; Osborne, J.; Tomasino, E. Effects of Yeast Product Addition and Fermentation Temperature on Lipid Composition, Taste and Mouthfeel Characteristics of Pinot Noir Wine. Horticulturae 2022, 8, 52. [Google Scholar] [CrossRef]
- Deed, R.C.; Fedrizzi, B.; Gardner, R.C. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines. J Agric. Food Chem. 2017, 65, 8902–8912. [Google Scholar] [CrossRef]
- Mu, Y.; Zeng, C.; Qiu, R.; Yang, J.; Zhang, H.; Song, J.; Yuan, J.; Sun, J.; Kang, S. Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS. Metabolites 2023, 13, 998. [Google Scholar] [CrossRef]
- Indarti, K.; Apriani, E.F.; Wibowo, A.E.; Simanjuntak, P. Antioxidant Activity of Ethanolic Extract and Various Fractions from Green Tea (Camellia sinensis L.) Leaves. Pharmacogn. J. 2019, 11, 771–776. [Google Scholar] [CrossRef]
- López-Aguilar, R.; Zuleta-Prada, H.; Hernández-Montes, A.; Herbert-Pucheta, J.E. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Q.; Liu, S.; Hong, P.; Zhou, C.; Zhong, S. Characterization of the effect of different cooking methods on volatile compounds in fish cakes using a combination of GC-MS and GC-IMS. Food Chem. X 2024, 22, 101291. [Google Scholar] [CrossRef] [PubMed]
- Halouska, S.; Fenton, R.J.; Barletta, R.G.; Powers, R. Predicting the in vivo mechanism of action for drug leads using NMR metabolomics. ACS Chem. Biol. 2012, 7, 166–171. [Google Scholar] [CrossRef]
- Kontkanen, D.; Inglis, D.L.; Pickering, G.J.; Reynolds, A. Impact of yeast inoculation methods for Icewine fermentation on yeast growth, fermentation time, yeast metabolite production and sensory profiles of Vidal Icewine. Am. J. Enol. Viticult. 2004, 55, 363–370. [Google Scholar] [CrossRef]
- Santa-Bell, E.; Kovacs, N.K.; Alács, B.; Molnar, Z.; Hornyánszky, G. Immobilization of Phenylalanine Ammonia-lyase via EDTA Based Metal Chelate Complexes—Optimization and Prospects. Period. Polytech. Chem. Eng. 2021, 65, 308–319. [Google Scholar] [CrossRef]
- Tang, F.; Cai, W.; Shan, C.; Guo, Z.; Hou, Q.; Zhang, Z.; Dong, Y. Dynamic changes in quality of jujube wine during fermentation. J. Food Process. Preserv. 2020, 44, e14704. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wen, J.; An, K.; Wu, J.; Yu, Y.; Zou, B.; Guo, M. A comparative study of aromatic characterization of Yingde Black Tea infusions in different steeping temperatures. LWT 2021, 143, 110860. [Google Scholar] [CrossRef]
- Yin, P.; Kong, Y.; Liu, P.; Wang, J.; Zhu, Y.; Wang, G.; Sun, M.; Chen, Y.; Guo, G.; Liu, Z. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci. Technol. 2022, 129, 221–232. [Google Scholar] [CrossRef]
- Chen, G.L.; Zheng, F.J.; Dong, W.B.; Wu, C.Q.; Lin, B.; Xu, S.S. Aroma components of eight black teas from Hezhou. J. South. Agricult. 2018, 49, 2532–2538. [Google Scholar]
- Chen, G.L.; Zheng, F.J.; Lin, B.; Xu, S.S.; Wu, C.Q.; Dong, W.B. Comparison and Analysis of Characteristic Aroma Components of 6 Main Green Teas in Hezhou. Sci. Technol. Food Ind. 2019, 40, 246–255. [Google Scholar]
- Su, P.; Kang, H.; Peng, Q.; Wicaksono, W.A.; Berg, G.; Liu, Z.; Ma, J.; Zhang, D.; Cernava, T.; Liu, Y. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat. Commun. 2024, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D’Archivio, A.A. HSSPME/GC–MS volatile fraction determination and chemometrics for the discrimination of typical Italian Pecorino cheeses. Microchem. J. 2021, 165, 106133. [Google Scholar] [CrossRef]
Tea Samples | Variety Name | Scientific Name | Remarks |
---|---|---|---|
Kaishan white tea 1 (CS1) | Baimao Tea | Camellia sinensis var. pubilimba Hung T. Chang | Kaishan white tea 1 and 2 picked in April. Kaishan white tea 2 is a single bud. Kaishan white tea 3 picked in May |
Kaishan white tea 2 (CS2) | |||
Kaishan white tea 3 (CS3) | |||
Xiangbolü 2 (CS4) | Xiangbolü 2 | Xiangbolü 2 | - |
Baihaozao 1 (CS5) | Baihaozao | C. sinensis var. Baihaozao | Baihaozao 1 for spring tea, 2 for summer tea. |
Baihaozao 2 (CS6) | |||
Yuanxiaolü (CS7) | Yuanxiaolü | - | Bred by systematic selection. |
Mingshan 131 (CS8) | Mingshan 131 | - | Single-plant selection. |
Wuniu Zao (CS9) | Wuniu Zao | - | Single-plant selection. |
Compounds | Relative Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CS1 | CS2 | CS3 | CS4 | CS5 | CS6 | CS7 | CS8 | CS9 | |
Alcohol | 16.594 ± 0.812 | 17.397 ± 0.856 | 12.601 ± 0.699 | 20.393 ± 0.67 | 21.688 ± 1.277 | 15.102 ± 0.687 | 17.497 ± 1.169 | 19.863 ± 0.972 | 19.68 ± 1.026 |
Isobutanol | - | - | 0.637 ± 0.226 | 0.707 ± 0.137 | 1.081 ± 0.309 | 0.324 ± 0.185 | 0.792 ± 0.315 | 0.797 ± 0.199 | 0.760 ± 0.212 |
Pent-1-en-3-ol | 1.854 ± 0.091 | 1.654 ± 0.081 | 1.502 ± 0.083 | 2.406 ± 0.077 | 2.104 ± 0.124 | 1.696 ± 0.077 | 1.784 ± 0.119 | 1.561 ± 0.076 | 1.942 ± 0.101 |
3-Methylbutan-1-ol | 3.468 ± 0.17 | 3.432 ± 0.169 | 3.742 ± 0.208 | 4.294 ± 0.137 | 5.252 ± 0.309 | 3.683 ± 0.167 | 4.714 ± 0.315 | 3.601 ± 0.176 | 4.067 ± 0.212 |
Pentanol | 1.277 ± 0.062 | 1.056 ± 0.052 | 1.025 ± 0.057 | 1.079 ± 0.051 | 0.968 ± 0.057 | 0.770 ± 0.035 | 1.087 ± 0.073 | 1.364 ± 0.067 | 1.032 ± 0.054 |
cis-2-Penten-1-ol | 1.334 ± 0.065 | 1.082 ± 0.053 | 1.109 ± 0.062 | 1.773 ± 0.057 | 1.245 ± 0.073 | 1.053 ± 0.048 | 1.278 ± 0.085 | 1.296 ± 0.063 | 1.448 ± 0.075 |
cis-3-Hexen-1-ol | 2.040 ± 0.1 | 2.701 ± 0.133 | 1.050 ± 0.058 | 2.453 ± 0.078 | 2.906 ± 0.171 | 1.606 ± 0.073 | 2.036 ± 0.136 | 2.240 ± 0.11 | 2.932 ± 0.153 |
Linalool | 1.305 ± 0.064 | 1.269 ± 0.062 | 0.986 ± 0.055 | 2.461 ± 0.078 | 2.830 ± 0.167 | 1.619 ± 0.074 | 1.775 ± 0.119 | 2.812 ± 0.138 | 2.647 ± 0.138 |
L-Menthol | 1.895 ± 0.093 | 1.390 ± 0.068 | 1.306 ± 0.072 | 1.693 ± 0.054 | 1.642 ± 0.097 | 2.259 ± 0.103 | 1.635 ± 0.109 | 3.650 ± 0.179 | 2.463 ± 0.128 |
Geraniol | 0.322 ± 0.016 | 0.309 ± 0.015 | 0.115 ± 0.006 | 1.058 ± 0.034 | 1.516 ± 0.089 | 0.455 ± 0.021 | 0.512 ± 0.034 | 0.473 ± 0.023 | 0.668 ± 0.035 |
Benzyl alcohol | 1.492 ± 0.073 | 2.076 ± 0.102 | 0.437 ± 0.024 | 0.811 ± 0.029 | 0.903 ± 0.053 | 0.790 ± 0.036 | 0.499 ± 0.033 | 0.768 ± 0.038 | 0.846 ± 0.044 |
Phenethyl alcohol | 1.607 ± 0.079 | 2.428 ± 0.119 | 0.692 ± 0.038 | 1.658 ± 0.053 | 1.241 ± 0.073 | 0.847 ± 0.039 | 1.385 ± 0.093 | 1.301 ± 0.064 | 0.875 ± 0.046 |
Ester | 15.986 ± 0.58 | 16.587 ± 0.657 | 16.860 ± 0.657 | 20.304 ± 0.808 | 19.796 ± 0.726 | 21.690 ± 0.673 | 19.681 ± 0.669 | 16.095 ± 0.701 | 19.241 ± 0.68 |
Ethyl acetate | 6.496 ± 0.236 | 6.397 ± 0.254 | 6.131 ± 0.233 | 6.967 ± 0.332 | 7.470 ± 0.274 | 8.605 ± 0.267 | 7.186 ± 0.244 | 6.702 ± 0.292 | 7.299 ± 0.258 |
Ethyl lactate | 9.490 ± 0.344 | 10.190 ± 0.404 | 10.729 ± 0.408 | 13.337 ± 0.476 | 12.326 ± 0.452 | 13.085 ± 0.406 | 12.495 ± 0.424 | 9.393 ± 0.409 | 11.942 ± 0.422 |
Aldehyde | 10.847 ± 0.602 | 10.851 ± 0.456 | 10.778 ± 0.484 | 15.012 ± 0.765 | 12.360 ± 0.595 | 13.640 ± 0.589 | 14.769 ± 0.811 | 7.031 ± 0.254 | 11.637 ± 0.622 |
Isobutyraldehyde | 4.049 ± 0.225 | 3.274 ± 0.137 | 4.244 ± 0.191 | 6.354 ± 0.324 | 5.966 ± 0.287 | 6.728 ± 0.291 | 5.699 ± 0.313 | 2.870 ± 0.104 | 5.591 ± 0.299 |
Isovaleraldehyde | 4.735 ± 0.263 | 4.907 ± 0.206 | 4.838 ± 0.217 | - | 4.759 ± 0.229 | - | 6.534 ± 0.359 | 2.764 ± 0.1 | 5.061 ± 0.271 |
Valeraldehyde | - | - | - | 6.817 ± 0.348 | - | 5.914 ± 0.256 | - | - | - |
Hexanal | 2.063 ± 0.115 | 2.670 ± 0.112 | 1.696 ± 0.076 | 1.841 ± 0.094 | 1.635 ± 0.079 | 0.998 ± 0.043 | 2.536 ± 0.139 | 1.397 ± 0.05 | 0.985 ± 0.053 |
Oxygen heterocyclic and Sulfo-compounds | 3.094 ± 0.589 | 3.830 ± 0.73 | 3.863 ± 0.709 | 2.137 ± 0.545 | 1.990 ± 0.423 | 2.802 ± 0.563 | 2.804 ± 0.675 | 2.121 ± 0.433 | 2.135 ± 0.55 |
Dimethyl sulfide | 9.300 ± 0.354 | 12.255 ± 0.467 | 12.937 ± 0.475 | 2.418 ± 0.123 | 3.834 ± 0.16 | 8.106 ± 0.326 | 5.843 ± 0.281 | 2.854 ± 0.116 | 3.408 ± 0.175 |
Isopropyl Vinyl Ether | 3.573 ± 0.136 | 3.624 ± 0.138 | 3.956 ± 0.145 | 3.773 ± 0.192 | 1.753 ± 0.073 | 3.166 ± 0.127 | 3.929 ± 0.189 | 4.548 ± 0.186 | 2.931 ± 0.15 |
(E)-linalool oxide (furanoid) | 0.956 ± 0.036 | 0.878 ± 0.033 | 0.918 ± 0.034 | 2.093 ± 0.107 | 2.522 ± 0.105 | 1.531 ± 0.062 | 1.779 ± 0.086 | 1.123 ± 0.046 | 2.525 ± 0.13 |
α-Copaene | 1.174 ± 0.045 | 1.472 ± 0.056 | 1.505 ± 0.055 | 1.203 ± 0.061 | 1.265 ± 0.053 | 1.208 ± 0.049 | 1.047 ± 0.05 | 2.080 ± 0.085 | 1.270 ± 0.065 |
1,2-Epoxyoctahydropentalene | 0.468 ± 0.018 | 0.920 ± 0.035 | - | 1.197 ± 0.061 | 0.578 ± 0.031 | - | 1.423 ± 0.069 | - | 0.539 ± 0.03 |
Hydrocarbons | 11.947 ± 0.501 | 9.973 ± 0.489 | 9.521 ± 0.433 | 9.948 ± 0.523 | 11.437 ± 0.578 | 12.659 ± 0.578 | 10.571 ± 0.377 | 15.969 ± 0.854 | 12.536 ± 0.647 |
4-Methyloctane | 0.873 ± 0.036 | 0.677 ± 0.031 | 0.768 ± 0.032 | 1.295 ± 0.066 | 1.294 ± 0.063 | 1.721 ± 0.088 | 1.005 ± 0.034 | 0.796 ± 0.043 | 1.624 ± 0.083 |
2,6,7-Trimethyl-decane | 0.966 ± 0.039 | 0.606 ± 0.032 | 0.756 ± 0.032 | 0.784 ± 0.04 | 1.255 ± 0.061 | 1.202 ± 0.061 | 1.111 ± 0.038 | 1.134 ± 0.061 | 1.568 ± 0.08 |
Dodecane | 4.224 ± 0.172 | 3.689 ± 0.168 | 3.441 ± 0.144 | 4.62 ± 0.236 | 4.805 ± 0.235 | 4.772 ± 0.243 | 6.352 ± 0.216 | 4.472 ± 0.239 | 5.038 ± 0.257 |
Tridecane | 4.282 ± 0.175 | 1.203 ± 0.055 | 1.626 ± 0.068 | 2.971 ± 0.151 | 3.232 ± 0.158 | 3.626 ± 0.185 | 0.499 ± 0.017 | 5.819 ± 0.311 | 3.164 ± 0.161 |
1-Propoxyhexane | - | 1.172 ± 0.053 | 0.415 ± 0.03 | - | - | - | - | 0.577 ± 0.031 | - |
Decane | - | - | 2.288 ± 0.096 | - | - | - | 1.193 ± 0.041 | - | - |
Tetradecane | 1.458 ± 0.059 | 1.413 ± 0.064 | - | - | 0.645 ± 0.032 | 0.445 ± 0.03 | - | 1.84 ± 0.098 | 0.668 ± 0.034 |
N-HEPTADECANE | 0.144 ± 0.019 | 1.213 ± 0.055 | 0.227 ± 0.031 | 0.278 ± 0.03 | 0.206 ± 0.029 | 0.893 ± 0.046 | 0.411 ± 0.032 | 1.331 ± 0.071 | 0.474 ± 0.032 |
Others | 6.589 ± 0.403 | 6.102 ± 0.314 | 7.142 ± 0.299 | 9.51 ± 0.411 | 8.086 ± 0.293 | 7.638 ± 0.328 | 9.526 ± 0.387 | 6.666 ± 0.392 | 7.238 ± 0.264 |
Acetoin | 0.678 ± 0.031 | 0.555 ± 0.034 | 0.84 ± 0.047 | 0.849 ± 0.037 | 0.996 ± 0.036 | 0.887 ± 0.038 | 1.388 ± 0.056 | 0.952 ± 0.056 | 1.001 ± 0.037 |
trans-Caryophyllene | 1.56 ± 0.071 | 1.113 ± 0.052 | 1.107 ± 0.062 | 1.56 ± 0.067 | 1.337 ± 0.049 | 1.912 ± 0.082 | 1.485 ± 0.06 | 2.224 ± 0.131 | 2.011 ± 0.073 |
Ether | 2.147 ± 0.098 | 2.185 ± 0.101 | 2.703 ± 0.152 | 3.013 ± 0.13 | 2.372 ± 0.086 | 2.133 ± 0.092 | 2.807 ± 0.114 | 1.514 ± 0.089 | 1.753 ± 0.064 |
p-Xylene | 1.837 ± 0.083 | 1.742 ± 0.081 | 0.765 ± 0.043 | 2.349 ± 0.101 | 2.026 ± 0.074 | 1.532 ± 0.066 | 2.257 ± 0.092 | 0.73 ± 0.043 | 1.525 ± 0.056 |
m-Xylene | 0.367 ± 0.031 | 0.507 ± 0.031 | 1.727 ± 0.097 | 1.739 ± 0.075 | 1.355 ± 0.049 | 1.174 ± 0.05 | 1.589 ± 0.065 | 1.246 ± 0.073 | 0.948 ± 0.035 |
R2X | R2Y | R2 | Q2 | |
---|---|---|---|---|
Alcohol | 1 | 1 | 0.997 | 0.992 |
Ester | 1 | 0.25 | 0.234 | 0.0716 |
Aldehyde | 1 | 0.75 | 0.488 | 0.338 |
Oxygen heterocyclic and Sulfo-compounds | 1 | 0.625 | 0.564 | 0.321 |
Hydrocarbons | 1 | 1 | 0.998 | 0.994 |
Others | 1 | 0.625 | 0.58 | 0.349 |
Sensor | Performance Description | Sensitivity (mL/min) | Response Value (G/G0) |
---|---|---|---|
W1C | Sensitive to aromatic compounds | 10 | 0.0260 |
W5S | High sensitivity, very sensitive to nitrogen oxides | 1 | 61.065 |
W3C | Detection of aromatic components (especially ammonia) | 10 | 0.042 |
W6S | Used for selective detection of hydrogen (only detection of hydrogen in the aroma gas stream entering the electronic nose system) | 100 | 2.827 |
W5C | Alkanes, aromatic compounds, compounds with little polarity | 1 | 0.133 |
W1S | Mainly sensitive to methane in the environment, with high sensitivity | 100 | 543.898 |
W1W | Mainly sensitive to sulfide (can detect 0.1 µg/g hydrogen sulfide) Very sensitive to many terpenes and organic sulfur compounds (mainly for the detection of odor, limonene, and piperazine) | 1 | 29.681 |
W2S | Ethanol detection is also sensitive to some aromatic compounds | 100 | 35.812 |
W2W | Aromatic ingredients, sensitive to organic sulfur compounds | 1 | 32.216 |
W3S | Used to detect high-concentration alkanes (>100 µg/g) | 100 | 6.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Lin, B.; Chen, J.; Zheng, F.; Fang, X.; Luo, L.; Chen, H.; Verma, K.K.; Chen, G. Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine. Fermentation 2024, 10, 449. https://doi.org/10.3390/fermentation10090449
Wu F, Lin B, Chen J, Zheng F, Fang X, Luo L, Chen H, Verma KK, Chen G. Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine. Fermentation. 2024; 10(9):449. https://doi.org/10.3390/fermentation10090449
Chicago/Turabian StyleWu, Feifei, Bo Lin, Jing Chen, Fengjin Zheng, Xiaochun Fang, Lianfeng Luo, Haisheng Chen, Krishan K. Verma, and Ganlin Chen. 2024. "Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine" Fermentation 10, no. 9: 449. https://doi.org/10.3390/fermentation10090449
APA StyleWu, F., Lin, B., Chen, J., Zheng, F., Fang, X., Luo, L., Chen, H., Verma, K. K., & Chen, G. (2024). Characteristic Aroma Screening among Green Tea Varieties and Electronic Sensory Evaluation of Green Tea Wine. Fermentation, 10(9), 449. https://doi.org/10.3390/fermentation10090449