Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions
Abstract
1. Introduction
2. Sources and Properties of (Micro)plastics
3. Microbial Degradation of (Micro)plastics
3.1. Pure Cultures for (Micro)plastic Degradation
3.1.1. Bacteria
3.1.2. Fungi
3.1.3. Microalgae
Microorganism Category | Plastic | Microorganism and Source | Key Enzyme | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|---|
Bacteria | PET | Ideonella sakaiensis/Soil | PETase, MHETase. | 30 °C, 300 strokes/min, aerobic | 100%/42 d | [36] |
PVC | Klebsiella sp. EMBL-1/Larval gut | Catalase-peroxidase, Dehalogenases, Enolase, Aldehyde dehydrogenase, Oxygenase. | 30 °C, 150 rpm/min, aerobic | 19.57%/90 d | [38] | |
PE | Acinetobacter venetianus F1/Sediments from the Haima cold seeps | Monooxygenase, Oxygenase, Dehydrogenase, Esterase, Lipase, Hydrolases, Reductases. | 28 °C, 160 rpm/min, aerobic | 12.2%/56 d | [39] | |
Fungi | PUR | Aspergillus tubingensis/Soil | Esterase, Lipase. | 37 °C, 150 rpm/min, aerobic | 90%/60 d | [42] |
PVC | Phanerocheate chrysosporium/Laboratory | Lignin peroxidase. | 25 °C, pH = 5, aerobic | 31%/28 d | [50] | |
PE | Alternaria alternata/Plastic debris in coastal areas | Laccase, Peroxidase, Oxidoreductase. | 25 °C, alkali, aerobic | Not available | [44] | |
Microalgae | LDPE | Phormidium lucidum/Domestic sewage | Laccase, Peroxidase. | aerobic | 30%/42 d | [48] |
LDPE | Oscillatoria subbrevis/Domestic sewage | Laccase, Peroxidase. | aerobic | 30%/42 d | [48] |
3.2. Mixed Cultures for (Micro)plastic Degradation
3.2.1. Natural Mixed Cultures
3.2.2. Artificial Mixed Cultures
Plastic | Microbial Community Construction | Culture Source | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|
PET | Rhodococcus jostii, Bacillus subtilis | Laboratory | 30 °C, aerobic | 31.2%/60 d | [55] |
PET | Exiguobacterium sp., Halomonas sp., Ochrobactrum sp. | Surface sedimentary samples | Culture for four weeks, aerobic | Not available | [54] |
PE | Rhodopseudomonas sp. P1, Rhodanobacter sp. Rs, Microbacterium sp. M1, Bacillus aryabhattai 5-3 | Soil | 28 °C, 180 rpm for 60 d, aerobic | Not available | [56] |
PE | Acinetobacter sp. NyZ450, Bacillus sp. NyZ451 | Larval gut | 23 °C, 180 rpm/min, aerobic | 18%/30 d | [58] |
PS | Stenotrophomonas, maltophilia, Bacillus velezensis | Soil and river sediments | 30 °C, 110 rpm/min, aerobic | 43.5%/60 d | [57] |
3.3. Factors Impacting Microbial Degradation of (Micro)plastics
4. Coupled Enhanced Technologies
4.1. Advanced Oxidation Technology
4.2. Electrochemical Technology
4.3. Genetic Engineering Technology
5. Conclusions
Funding
Conflicts of Interest
References
- Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023 (accessed on 22 May 2024).
- Shi, J.; Zhang, C.; Chen, W.-Q. The expansion and shrinkage of the international trade network of plastic wastes affected by China’s waste management policies. Sustain. Prod. Consum. 2021, 25, 187–197. [Google Scholar] [CrossRef]
- Van Oosterhout, L.; Dijkstra, H.; Borst, D.; Duijndam, S.; Rehdanz, K.; Van Beukering, P. Triggering sustainable plastics consumption behavior: Identifying consumer profiles across Europe and designing strategies to engage them. Sustain. Prod. Consum. 2023, 36, 148–160. [Google Scholar] [CrossRef]
- Isobe, A.; Azuma, T.; Cordova, M.R.; Cózar, A.; Galgani, F.; Hagita, R.; Kanhai, L.D.; Imai, K.; Iwasaki, S.; Kako, S.I.; et al. A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Micropl. Nanopl. 2021, 1, 16. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Das, S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. Chemosphere 2023, 334, 138928. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Rochman, C.M.; Browne, M.A.; Halpern, B.S.; Hentschel, B.T.; Hoh, E.; Karapanagioti, H.K.; Rios-Mendoza, L.M.; Takada, H.; Teh, S.; Thompson, R.C. Classify plastic waste as hazardous. Nature 2013, 494, 169–171. [Google Scholar] [CrossRef]
- Maity, S.; Biswas, C.; Banerjee, S.; Guchhait, R.; Adhikari, M.; Chatterjee, A.; Pramanick, K. Interaction of plastic particles with heavy metals and the resulting toxicological impacts: A review. Environ. Sci. Pollut. Res. 2021, 28, 60291–60307. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Q.; Ding, H.; Song, Y.; Pan, Q.; Deng, H.; Zeng, E.Y. Differences of microplastics and nanoplastics in urban waters: Environmental behaviors, hazards, and removal. Water Res. 2024, 260, 121895. [Google Scholar] [CrossRef]
- Guo, S.; Feng, D.; Li, Y.; Liu, L.; Tang, J. Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review. Ecotoxicol. Environ. Saf. 2024, 271, 115979. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X. Microplastic Degradation in Sewage Sludge by Hydrothermal Carbonization: Efficiency and Mechanisms. Chemosphere 2022, 297, 134203. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 2022, 39, 102263. [Google Scholar] [CrossRef]
- Bao, T.; Qian, Y.; Xin, Y.; Collins, J.J.; Lu, T. Engineering microbial division of labor for plastic upcycling. Nat. Commun. 2023, 14, 5712. [Google Scholar] [CrossRef]
- He, W.; Li, Y.; Ni, L.; Zhu, W. Effect of stabilizer EDTA on the thermal hazard of green synthesis process of adipic acid and development of microchannel continuous flow process. Emerg. Manag. Sci. Technol. 2023, 3, 22. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Liu, J.; Yu, H.; Liu, P.; Yang, Y.; Sun, D.; Kang, H.; Wang, Y.; Tang, J.; et al. Integration of advanced biotechnology for green carbon. Green Carbon 2024, 2, 164–175. [Google Scholar] [CrossRef]
- Ogunbayo, A.O.; Olanipekun, O.O.; Adamu, I.A. Preliminary Studies on the Microbial Degradation of Plastic Waste Using Aspergillus niger and Pseudomonas sp. J. Environ. Prot. Ecol. 2019, 10, 625–631. [Google Scholar] [CrossRef]
- Rios, L.M.; Jones, P.R.; Moore, C.; Narayan, U.V. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage patch”. J. Environ. Monitor. 2010, 12, 2226–2236. [Google Scholar] [CrossRef]
- Sorasan, C.; Edo, C.; González-Pleiter, M.; Fernández-Pinas, F.; Leganés, F.; Rodríguez, A.; Rosal, R. Ageing and fragmentation of marine microplastics. Sci. Total Environ. 2022, 827, 154438. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 2022, 60, 107991. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Naik, T.S.S.K.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Nostro, A. Poly(lactic acid)/carvacrol-based materials: Preparation, physicochemical properties, and antimicrobial activity. Appl. Microbiol. Biotechnol. 2020, 104, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Pfohl, P.; Bahl, D.; Rückel, M.; Wagner, M.; Meyer, L.; Bolduan, P.; Battagliarin, G.; Hüffer, T.; Zumstein, M.; Hofmann, T.; et al. Effect of Polymer Properties on the Biodegradation of Polyurethane Microplastics. Environ. Sci. Technol. 2022, 56, 16873–16884. [Google Scholar] [CrossRef]
- Yang, S.-S.; Ding, M.-Q.; Ren, X.-R.; Zhang, Z.-R.; Li, M.-X.; Zhang, L.-L.; Pang, J.-W.; Chen, C.-X.; Zhao, L.; Xing, D.-F.; et al. Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Sci. Total Environ. 2022, 828, 154458. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhang, Z.; Jing, Y.; Bai, L.; Zhao, M.; Hao, X.; Li, X.; Guo, X. The photo-aging of polyvinyl chloride microplastics under different UV irradiations. Gondwana Res. 2022, 108, 72–80. [Google Scholar] [CrossRef]
- Endo, K. Synthesis and structure of poly(vinyl chloride). Prog. Polym. Sci. 2002, 27, 2021–2054. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, B.-H.; Yang, W.-W.; Li, X.; Zhu, L.-W.; Xu, Z.-K.; Wan, L.-S. Effect of polar groups of polystyrenes on the self-assembly of breath figure arrays. J. Polym. Sci. 2022, 60, 2371–2382. [Google Scholar] [CrossRef]
- Du, T.; Shao, S.; Qian, L.; Meng, R.; Li, T.; Wu, L.; Li, Y. Effects of photochlorination on the physicochemical transformation of polystyrene nanoplastics: Mechanism and environmental fate. Water Res. 2023, 243, 120367. [Google Scholar] [CrossRef] [PubMed]
- Mahato, B.; Babarinde, V.O.; Abaimov, S.G.; Lomov, S.V.; Akhatov, I. Interface strength of glass fibers in polypropylene: Dependence on the cooling rate and the degree of crystallinity. Polym. Compos. 2020, 41, 1310–1322. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.; Wang, Y.; Wang, L.; Qiu, Y.; Wang, L.; Chen, T.; Zhao, L. Crystallization and Performance of Polyamide Blends Comprising Polyamide 4, Polyamide 6, and Their Copolymers. Polymers 2023, 15, 3399. [Google Scholar] [CrossRef]
- Hou, L.; Xi, J.; Liu, J.; Wang, P.; Xu, T.; Liu, T.; Qu, W.; Lin, Y.B. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 2022, 286, 131758. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, C.G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 2019, 222, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Lee, H.M.; Yu, H.C.; Jeon, E.; Lee, S.; Li, J.; Kim, D.H. Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environ. Sci. Technol. 2020, 54, 6987–6996. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.Y.; Shin, T.J.; Choi, S.Y.; Lee, S.Y.; Kim, K.J. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, H.; Yang, D.; Zhang, G.; Zhang, J.; Ju, F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 2022, 13, 5360. [Google Scholar] [CrossRef]
- Lyu, L.; Fang, K.; Huang, X.; Tian, X.; Zhang, S. Polyethylene is degraded by the deep-sea Acinetobacter venetianus bacterium. Environ. Chem. Lett. 2024, 22, 1591–1597. [Google Scholar] [CrossRef]
- Sanchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Khan, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, D.; Li, Q.; Zhao, Y.; Li, L.; Lin, H.; Bi, Q.; Zhao, Y. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 2020, 704, 135931. [Google Scholar] [CrossRef]
- Gao, R.; Liu, R.; Sun, C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 2022, 431, 128617. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed]
- Vimal Kumar, R.; Kanna, G.R.; Elumalai, S. Biodegradation of Polyethylene by Green Photosynthetic Microalgae. J. Bioremediat. Biodegrad. 2017, 2017, 1000381. [Google Scholar] [CrossRef]
- Chia, W.Y.; Tang, D.Y.Y.; Khoo, K.S.; Lup, A.N.L.; Chew, K.W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef]
- Gowthami, A.; Marjuk, M.S.; Raju, P.; Devi, K.N.; Santhanam, P.; Kumar, S.D.; Perumal, P. Biodegradation efficacy of selected marine microalgae against Low-Density Polyethylene (LDPE): An environment friendly green approach. Mar. Pollut. Bull. 2023, 190, 114889. [Google Scholar] [CrossRef]
- Khatoon, N.; Jamal, A.; Ali, M.I. Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environ. Technol. 2019, 40, 1366–1375. [Google Scholar] [CrossRef]
- Devi, R.S.; Ramya, R.; Kannan, K.; Antony, A.R.; Kannan, V.R. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar. Pollut. Bull. 2019, 138, 549–560. [Google Scholar] [CrossRef]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE 2017, 12, e0183984. [Google Scholar] [CrossRef]
- Xu, Y.; Xian, Z.N.; Yue, W.; Yin, C.F.; Zhou, N.Y. Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae. Chemosphere 2023, 318, 137944. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Sun, C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. J. Hazard. Mater. 2021, 416, 125928. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Ma, Y.; Chang, H.; Li, B.; Ding, M.; Yuan, Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front. Microbiol. 2021, 12, 778828. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Han, S.; Wang, Y.; Duan, Y.; Liu, T.; Hou, L.; Zhang, Z.; Li, L.; Lin, Y. Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. J. Hazard. Mater. 2023, 442, 130045. [Google Scholar] [CrossRef]
- Xiang, P.; Zhang, Y.; Zhang, T.; Wu, Q.; Zhao, C.; Li, Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. J. Hazard. Mater. 2023, 458, 131856. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.-F.; Xu, Y.; Zhou, N.-Y. Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int. Biodeter. Biodegr. 2020, 155, 105089. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Jing, X.; Zhang, L.; Chen, J.; Rensing, C.; Luan, T.; Zhou, S. Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions. Water Res. 2021, 207, 117782. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Nieto-Sandoval, J.; Romera-Castillo, C.; de Pedro, Z.M.; Casas, J.A. Insights into the degradation of microplastics by Fenton oxidation: From surface modification to mineralization. Chemosphere 2022, 309, 136809. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.-S.; Luo, T.-Y.; Wu, R.-L.; Wei, W.; Ni, B.-J. Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem. Eng. J. 2021, 416, 129123. [Google Scholar] [CrossRef]
- Pang, W.; Li, B.; Wu, Y.; Zeng, Q.; Yang, J.; Zhang, Y.; Tian, S. Upgraded recycling of biodegradable PBAT plastic: Efficient hydrolysis and electrocatalytic conversion. Chem. Eng. J. 2024, 486, 150342. [Google Scholar] [CrossRef]
- Montazer, Z.; Habibi-Najafi, M.B.; Mohebbi, M.; Oromiehei, A. Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil. J. Polym. Environ. 2018, 26, 3613–3625. [Google Scholar] [CrossRef]
- Tribedi, P.; Dey, S. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environ. Monit. Assess. 2017, 189, 624. [Google Scholar] [CrossRef]
- Xing, R.; Sun, H.; Du, X.; Lin, H.; Qin, S.; Chen, Z.; Zhou, S. Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction. J. Hazard. Mater. 2023, 449, 131031. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Chen, Z.; Yu, Z.; Xue, J.; Luan, T.; Chen, S.; Zhou, S. Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Water Res. 2022, 223, 118979. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Q. Bioelectrochemical systems—A potentially effective technology for mitigating microplastic contamination in wastewater. J. Clean. Prod. 2024, 450, 141931. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Fessler, M.; Jin, B.; Su, Y.; Zhang, Y. Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion. Water Res. 2022, 221, 118844. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Jin, B.; Wünsch, U.J.; Su, Y.; Zhang, Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. Water Res. 2022, 211, 118046. [Google Scholar] [CrossRef]
- Wang, K.; Yang, S.; Yu, X.; Bai, M.; Ye, H.; Xu, Y.; Zhao, L.; Wu, D.; Li, X.; Weng, L.; et al. Microplastics degradation stimulated by in-situ bioelectric field in agricultural soils. Environ. Int. 2023, 177, 108035. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Wang, B.; Tao, M.; Ji, H.; Xiang, X.; Fu, Z.; Liao, L.; Liao, P.; Chen, R. Effective degradation of polystyrene microplastics by Ti/La/Co-Sb-SnO2 anodes: Enhanced electrocatalytic stability and electrode lifespan. Sci. Total Environ. 2024, 922, 171002. [Google Scholar] [CrossRef]
- Rahmati, F.; Sethi, D.; Shu, W.; Asgari Lajayer, B.; Mosaferi, M.; Thomson, A.; Price, G.W. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. Chemosphere 2024, 355, 141749. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cao, L.; Qin, Z.; Li, S.; Kong, W.; Liu, Y. Tat-Independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by Its native signal peptide. J. Agric. Food Chem. 2018, 66, 13217–13227. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, R.; Cui, Q.; Bornscheuer, U.T.; Liu, Y.J. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol. 2021, 14, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.J.; Sanchez, A.; Dini-Andreote, F. Engineering microbiomes to transform plastics. Trends Biotechnol. 2024, 42, 265–268. [Google Scholar] [CrossRef]
Plastic Category | Plastic Name | Structural Formula | Density (g/cm3) | Crystallinity | Glass Transition Temperature (Tg) (°C) | Molecular Polarity | Reference |
---|---|---|---|---|---|---|---|
Polyester | Polyethylene terephthalate (PET) | 1.33–1.35 | Semi-crystalline | 73–78 | Polar | [22] | |
Polylactic acid (PLA) | 1.25–1.28 | Semi-crystalline | 60–65 | Polar | [23] | ||
Polyurethane (PU) | 1.15–1.3 | Semi-crystalline | −62 | Polar | [24] | ||
Polyolefin | Polyethylene (PE) | 0.92–0.97 | Semi-crystalline | −110 | Non-polar | [25] | |
Polyvinyl chloride (PVC) | 1.15–1.70 | Amorphous | 60–100 | Non-polar | [26,27] | ||
Polystyrene (PS) | 1.04–1.06 | Amorphous | 90 | Non-polar | [28,29] | ||
Polypropylene (PP) | 0.89–0.91 | Semi-crystalline | (−20)–0 | Non-polar | [30] | ||
Polyamide | Polyamides (PA) | 1.02–1.05 | Semi-crystalline | −60 | Polar | [31] |
Plastic | Dominant Bacteria | Culture Source | Degradation Condition | Plastic Weight Loss | Reference |
---|---|---|---|---|---|
HDPE | Bacillus sp., Pseudomonas sp. | Discarded refuse | 30 °C, aerobic | 23.14%/4 weeks | [51] |
PVC | Stenotrophomonas, Enterococcus, Acinetobacter | Larval gut | 30 °C, 180 rpm/min, aerobic | 6.13%/30 d | [53] |
PE | Bacillus sp., Paenibacillus sp. | Landfill | 30 °C, aerobic | 14.7%/60 d | [33] |
PE | Betaproteobacteria, Alphaproteobacteria, Gamma-proteobacteria | Discarded refuse | 25 °C, 120 rpm/min, aerobic | 19%/6 months | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Xu, M.; Zhao, W.; Yang, X.; Xin, F.; Dong, W.; Jia, H.; Wu, X. Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation 2024, 10, 441. https://doi.org/10.3390/fermentation10090441
Gao W, Xu M, Zhao W, Yang X, Xin F, Dong W, Jia H, Wu X. Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation. 2024; 10(9):441. https://doi.org/10.3390/fermentation10090441
Chicago/Turabian StyleGao, Wei, Mingxuan Xu, Wanqi Zhao, Xiaorui Yang, Fengxue Xin, Weiliang Dong, Honghua Jia, and Xiayuan Wu. 2024. "Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions" Fermentation 10, no. 9: 441. https://doi.org/10.3390/fermentation10090441
APA StyleGao, W., Xu, M., Zhao, W., Yang, X., Xin, F., Dong, W., Jia, H., & Wu, X. (2024). Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions. Fermentation, 10(9), 441. https://doi.org/10.3390/fermentation10090441