Influence of Galvanized Steel on Kombucha Fermentation: Weight Loss Measurements, Scanning Electron Microscopy Analysis, Corrosion Activity, and Phytochemical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metal
2.2. Fermentation Process
2.3. Quantification of Sugars, Ethanol and Acetic Acid
2.4. pH Determination
2.5. Zinc and Iron Analysis
2.6. Mass Loss Measurements
2.7. Scanning Electron Microscopy
2.8. Electrochemical Techniques
2.9. Liquid–Liquid Extraction
2.10. Determination of Total Phenol Content
2.11. High-Performance Liquid Chromatography Analysis
2.12. Gas Chromatography–Mass Spectrometry Analysis
2.13. Free Radical Scavenging Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Impact of Galvanized Steel on the Kombucha Fermentation
3.2. Metal Evolution and Mass Loss Measurement
3.3. Assessing Environmental Corrosiveness during Kombucha Fermentation
3.4. Principal Component Analysis
3.5. Chemical Composition and Bioactivity of Kombucha Extracts
3.5.1. Extraction Yields and Total Polyphenol Content
3.5.2. Identification of Phenolic Compounds
3.5.3. Gas Chromatography–Mass Spectrometry Analysis before and after Derivatization
3.5.4. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salgar-Chaparro, S.J.; Darwin, A.; Kaksonen, A.H.; Machuca, L.L. Carbon Steel Corrosion by Bacteria from Failed Seal Rings at an Offshore Facility. Sci. Rep. 2020, 10, 12287. [Google Scholar] [CrossRef]
- Etteyeb, N.; Nóvoa, X.R. Inhibition Effect of Some Trees Cultivated in Arid Regions against the Corrosion of Steel Reinforcement in Alkaline Chloride Solution. Corros. Sci. 2016, 112, 471–482. [Google Scholar] [CrossRef]
- Kaziullayeva, A.; Olaifa, K.; Marsili, E. Fermented Whey as Natural Descaling Agent: Electrochemical and Microscopical Analysis. Arab. J. Chem. 2021, 14, 103065. [Google Scholar] [CrossRef]
- Ram, C.; Zaman, B.; Dhir, A. Study on Corrosion Investigations in Industrial Effluents: A Review. Corros. Rev. 2019, 37, 115–130. [Google Scholar] [CrossRef]
- Popoola, L.; Grema, A.; Latinwo, G.; Gutti, B.; Balogun, A. Corrosion Problems during Oil and Gas Production and Its Mitigation. Int. J. Ind. Chem. 2013, 4, 35. [Google Scholar] [CrossRef]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.C. Microbially Influenced Corrosion—Any Progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Stipanicev, M.; Turcu, F.; Esnault, L.; Rosas, O.; Basseguy, R.; Sztyler, M.; Beech, I.B. Corrosion of Carbon Steel by Bacteria from North Sea Offshore Seawater Injection Systems: Laboratory Investigation. Bioelectrochemistry 2014, 97, 76–88. [Google Scholar] [CrossRef]
- Kokilaramani, S.; Al-Ansari, M.M.; Rajasekar, A.; Al-Khattaf, F.S.; Hussain, A.M.R.; Govarthanan, M. Microbial Influenced Corrosion of Processing Industry by Re-Circulating Waste Water and Its Control Measures—A Review. Chemosphere 2021, 265, 129075. [Google Scholar] [CrossRef]
- Liengen, T.; Basseguy, R.; Damien, Feron; Beech, I. Electroactive Biofilms. In Understanding Biocorrosion: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 107–143. ISBN 9781782421207. [Google Scholar]
- Skovhus, T.L.; Lee, J.S.; Little, B.J. Predominant MIC Mechanisms in the Oil and Gas Industry. In Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry; CRC Press: Boca Raton, FL, USA, 2017; pp. 75–85. ISBN 1315157810. [Google Scholar]
- Magni, M.; Postiglione, E.; Marzorati, S.; Verotta, L.; Trasatti, S.P. Green Corrosion Inhibitors from Agri-Food Wastes: The Case of Punica Granatum Extract and Its Constituent Ellagic Acid. A Validation Study. Processes 2020, 8, 272. [Google Scholar] [CrossRef]
- Miralrio, A.; Vázquez, A.E. Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review. Processes 2020, 8, 942. [Google Scholar] [CrossRef]
- Wei, H.; Heidarshenas, B.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K. Green Inhibitors for Steel Corrosion in Acidic Environment: State of Art. Mater. Today Sustain. 2020, 10, 100044. [Google Scholar] [CrossRef]
- Alao, A.O.; Popoola, A.P.; Dada, M.O.; Sanni, O. Utilization of Green Inhibitors as a Sustainable Corrosion Control Method for Steel in Petrochemical Industries: A Review. Front. Energy Res. 2023, 10, 1063315. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.P.; Taillandier, P.; Beaufort, S. Metabolome-Microbiome Signatures in the Fermented Beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, R.; Beaufort, S.; Villarreal-Soto, S.A.; Taillandier, P.; Bouajila, J.; Debouba, M. Kombucha Fermentation of African Mustard (Brassica Tournefortii) Leaves: Chemical Composition and Bioactivity. Food Biosci. 2019, 30, 100414. [Google Scholar] [CrossRef]
- Javed, M.A.; Stoddart, P.R.; Wade, S.A. Corrosion of Carbon Steel by Sulphate Reducing Bacteria: Initial Attachment and the Role of Ferrous Ions. Corros. Sci. 2015, 93, 48–57. [Google Scholar] [CrossRef]
- Ogawa, A.; Takakura, K.; Hirai, N.; Kanematsu, H.; Kuroda, D.; Kougo, T.; Sano, K.; Terada, S. Biofilm Formation Plays a Crucial Rule in the Initial Step of Carbon Steel Corrosion in Air and Water Environments. Materials 2020, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Klawpiyapamornkun, T.; Uttarotai, T.; Wangkarn, S.; Sirisa-ard, P.; Kiatkarun, S.; Tragoolpua, Y.; Bovonsombut, S. Enhancing the Chemical Composition of Kombucha Fermentation by Adding Indian Gooseberry as a Substrate. Fermentation 2023, 9, 291. [Google Scholar] [CrossRef]
- Coelho, R.M.D.; de Almeida, A.L.; do Amaral, R.Q.G.; da Mota, R.N.; de Sousa, P.H.M. Kombucha: Review. Int. J. Gastron. Food Sci. 2020, 22, 100272. [Google Scholar] [CrossRef]
- Sutthiphatkul, T.; Mangmool, S.; Rungjindamai, N.; Ochaikul, D. Characteristics and Antioxidant Activities of Kombucha from Black Tea and Roselle by a Mixed Starter Culture. Curr. Appl. Sci. Technol. 2023, 23, 1–15. [Google Scholar] [CrossRef]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Harangozo, Ľ.; Kántor, A.; Kačániová, M. The Evaluation of Chemical, Antioxidant, Antimicrobial and Sensory Properties of Kombucha Tea Beverage. J. Food Sci. Technol. 2020, 57, 1840–1846. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. [Google Scholar] [CrossRef]
- Nugraha, H.T.; Rinanti, A.; Wijayanti, A.; Aphirta, S. Bioremediation of Iron and Manganese Heavy Metal Polluted Soil by Mixed Culture of Acetobacter tropicalis and Lactobacillus fermentum. IOP Conf. Ser. Earth Environ. Sci. 2023, 1203, 012006. [Google Scholar] [CrossRef]
- Stehlik-Tomas, V.; Grba, S.; Stanzer, D.; Vahčić, N.; Zetić, V.G. Uptake of Iron by Yeast Cells and Its Impact on Biomass Production. Acta Aliment. 2003, 32, 279–287. [Google Scholar] [CrossRef]
- Velićanski, A.; Cvetković, D.; Markov, S. Characteristics of Kombucha Fermentation on Medicinal Herbs from Lamiaceae Family. Rom. Biotechnol. Lett. 2013, 18, 8034–8042. [Google Scholar]
- Kallel, L.; Desseaux, V.; Hamdi, M.; Stocker, P.; Ajandouz, E.H. Insights into the Fermentation Biochemistry of Kombucha Teas and Potential Impacts of Kombucha Drinking on Starch Digestion. Food Res. Int. 2012, 49, 226–232. [Google Scholar] [CrossRef]
- de Noronha, M.C.; Cardoso, R.R.; dos Santos D’Almeida, C.T.; Vieira do Carmo, M.A.; Azevedo, L.; Maltarollo, V.G.; Júnior, J.I.R.; Eller, M.R.; Cameron, L.C.; Ferreira, M.S.L.; et al. Black Tea Kombucha: Physicochemical, Microbiological and Comprehensive Phenolic Profile Changes during Fermentation, and Antimalarial Activity. Food Chem. 2022, 384, 132515. [Google Scholar] [CrossRef] [PubMed]
- Bolton, N.; Critchley, M.; Fabien, R.; Cromar, N.; Fallowfield, H. Microbially Influenced Corrosion of Galvanized Steel Pipes in Aerobic Water Systems. J. Appl. Microbiol. 2010, 109, 239–247. [Google Scholar] [CrossRef] [PubMed]
- La Torre, C.; Fazio, A.; Caputo, P.; Plastina, P.; Caroleo, M.C.; Cannataro, R.; Cione, E. Effects of Long—Term Storage on Radical Scavenging Properties and Phenolic Content of Kombucha from Black Tea. Molecules 2021, 26, 5474. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha Tea Fermentation: Microbial and Biochemical Dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Godočíková, L.; Árvay, J.; Kačániová, M. Kombucha Tea Beverage: Microbiological Characteristic, Antioxidant Activity, and Phytochemical Composition. Acta Aliment. 2019, 48, 324–331. [Google Scholar] [CrossRef]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H. Bin Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Debusho, L.K.; Mudau, F.N. Sensory Characteristics and Volatile Compounds of Herbal Teas and Mixtures of Bush Tea with Other Selected Herbal Teas of South Africa. Foods 2020, 9, 496. [Google Scholar] [CrossRef]
- Kitwetcharoen, H.; Phung, L.T.; Klanrit, P.; Thanonkeo, S.; Tippayawat, P.; Yamada, M.; Thanonkeo, P. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Fermentation 2023, 9, 48. [Google Scholar] [CrossRef]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.X.; Mutukumira, A.N. Kombucha: Production and Microbiological Research †. Foods 2022, 11, 3456. [Google Scholar] [CrossRef]
- Oyetayo, V.O.; Ogidi, C.O.; Bayode, S.O.; Enikanselu, F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus Pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021, 74, 901–910. [Google Scholar] [CrossRef]
- Poniedziałek, B.; Mleczek, M.; Niedzielski, P.; Siwulski, M.; Gąsecka, M.; Kozak, L.; Komosa, A.; Rzymski, P. Bio-Enriched Pleurotus Mushrooms for Deficiency Control and Improved Antioxidative Protection of Human Platelets? Eur. Food Res. Technol. 2017, 243, 2187–2198. [Google Scholar] [CrossRef]
- Chu, S.C.; Chen, C. Effects of Origins and Fermentation Time on the Antioxidant Activities of Kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Wenisch, C.; Biffignandi, P.M. Effect of Bioflavonoids (Trihydroxyethylrutin and Disodium Flavodate) in Vitro on Neutrophil Reactive Oxygen Production and Phagocytic Ability Assessed by Flow Cytometry. Curr. Med. Res. Opin. 2001, 17, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Suttiarporn, P.; Sookwong, P.; Mahatheeranont, S. Fractionation and Identification of Antioxidant Compounds from Bran of Thai Black Rice Cv. Riceberry. Int. J. Chem. Eng. Appl. 2016, 7, 109–114. [Google Scholar] [CrossRef]
Samples | Zn (ppm) | Fe (ppm) |
---|---|---|
Atea | 1.20 × 10−1 ± 1.68 × 10−3 b | 2.13 × 10−2 ± 2.92 × 10−3 b |
K−GS | 1.35 × 10−1 ± 3.92 × 10−2 b | 3.31 × 10−2 ± 1.40 × 10−3 b |
K+GS | 7.25 × 101 ± 1.80 a | 8.93 ± 9.85 × 10−2 a |
pH | Atea | 3d | 7d | 10d | 14d |
---|---|---|---|---|---|
K−GS | 3.8 | 3.3 | 3.2 | 2.8 | 2.6 |
K+GS | 3.8 | 3.5 | 3.3 | 2.9 | 2.7 |
pH | Sucrose | Glucose | Fructose | Acetic Acid | Ethanol | Ecorr | Jcorr | |
---|---|---|---|---|---|---|---|---|
pH | 1 | 0.891 | 0.746 | −0.817 | −0.922 | −0.877 | −0.059 | −0.791 |
Sucrose | 0.891 | 1 | 0.912 | −0.772 | −0.972 | −0.978 | −0.251 | −0.937 |
Glucose | 0.746 | 0.912 | 1 | −0.446 | −0.833 | −0.936 | −0.228 | −0.801 |
Fructose | −0.817 | −0.772 | −0.446 | 1 | 0.840 | 0.691 | 0.155 | 0.794 |
Acetic Acid | −0.922 | −0.972 | −0.833 | 0.840 | 1 | 0.947 | 0.276 | 0.866 |
Ethanol | −0.877 | −0.978 | −0.936 | 0.691 | 0.947 | 1 | 0.231 | 0.887 |
Ecorr | −0.059 | −0.251 | −0.228 | 0.155 | 0.276 | 0.231 | 1 | 0.201 |
Jcorr | −0.791 | −0.937 | −0.801 | 0.794 | 0.866 | 0.887 | 0.201 | 1 |
Area (mAU × min) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Black tea | K−GS | K+GS | |||||||||
N° | TR (min) | Compound | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O |
1 | 0.93 | 2,4 Dihydroxycinnamic acid | - | - | - | 501.48 | - | - | 507.98 | - | - |
2 | 0.96 | Ellagic acid | 392.15 | 187.32 | 1.81 | - | 123.81 | - | - | 173.08 | 2.59 |
3 | 2.05 | Trihydroxyethylrutin | - | - | - | - | - | - | 305.75 | 38.19 | - |
4 | 2.21 | Gallic acid | - | 47.61 | - | 268.00 | 31.05 | 1.00 | - | - | 0.70 |
5 | 2.34 | Gallocyanin | 160.79 | - | - | - | - | - | - | - | - |
6 | 2.52 | Methyl 3,5-dihydroxybenzoate | - | - | - | - | - | - | 70.05 | - | - |
7 | 2.97 | 3-Amino-4-hydroxybenzoic acid | - | - | - | 74.90 | - | - | - | - | - |
8 | 3.15 | Caffeic Acid | 38.33 | - | - | - | - | - | - | - | - |
9 | 17.05 | Ethyl trans-2-hydroxycinnamate | - | - | - | 1.37 | - | - | - | - | - |
10 | 17.76 | Ethyl 4-hydroxy-3-cinamate | - | - | - | - | - | - | 111.59 | - | - |
11 | 22.60 | 4′,5′-dimethoxy-2′-hydroxy-4-methylchalcone | - | - | 0.06 | - | - | 0.08 | - | - | 0.08 |
Area (×108) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Black tea | K−GS | K+GS | |||||||||
N° | TR (min) | Compound | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O |
1 | 7.28 | ethyl 2-methylbutanoate | 1.06 | - | - | 1.91 | - | - | 2.47 | - | - |
2 | 7.79 | o-Xylene | 0.45 | - | - | 0.74 | - | - | 0.86 | - | - |
3 | 8 | 2-Furanmethanol | - | - | - | - | - | - | - | - | 1.78 |
4 | 8.52 | Cyanodimethylamine | - | 4.61 | - | - | 4.59 | - | - | - | - |
5 | 8.58 | Methoxyacetonitrile | - | - | - | - | - | - | - | 9.52 | - |
6 | 9.17 | trans-2,5-dimethyl-3,4-epoxyhexane | - | - | - | - | 8.76 | - | - | - | - |
7 | 9.19 | Propanamide | - | 8.71 | - | - | - | - | - | - | - |
8 | 9.31 | 4-Heptanone | - | 3.81 | - | - | 4.17 | - | - | - | - |
9 | 9.53 | Isobutyl isobutanoate | - | 5.31 | - | - | 5.04 | - | - | - | - |
10 | 9.78 | 3-methyl-4-heptanone | - | 7.87 | - | - | 8.27 | - | - | 17.5 | - |
11 | 9.88 | Butyl isobutanoate | - | 61.30 | - | - | 37.20 | - | - | 69.03 | - |
12 | 9.98 | 2,2-dimethylbutanoic acid | - | - | - | - | - | - | - | 34.5 | - |
13 | 10.1 | Hexanal, 2-ethyl- | - | - | - | - | - | - | - | 8.58 | - |
14 | 10.38 | Butyl butanoate | - | 70.39 | - | - | 56.28 | - | - | 84.33 | - |
15 | 10.63 | Undecane | - | - | 0.39 | - | - | 1.28 | - | - | 0.92 |
16 | 10.85 | Dihydroisophoron | 1.76 | - | - | 2.87 | - | - | 3.53 | - | - |
17 | 11.12 | 2,3-Butanediol, diacetate | - | - | - | - | - | - | 2.16 | - | - |
18 | 11.71 | 5-Methylfurfuryl alcohol | - | - | - | - | - | - | 0.60 | - | - |
19 | 12.22 | Octadecanoic acid, 3-hydroxy-, methyl ester | - | - | - | - | - | - | 2.68 | - | - |
20 | 12.46 | Phenylethyl Alcohol | - | - | - | 3.49 | - | - | 4.68 | - | - |
21 | 13.19 | 3-Hydroxy-2,3-dihydromaltol | - | - | - | - | - | - | - | - | 1.25 |
22 | 16.06 | 1,3-Diacetin | - | - | - | - | - | - | 1.54 | - | - |
23 | 17.72 | Methyl 10-methylundecanoate | - | - | - | - | - | 0.83 | - | - | - |
24 | 18 | 2,4-Ditert-butylphenol | 1.06 | - | - | 2.65 | - | - | 1.12 | - | - |
25 | 19.89 | Methyl isomyristate | - | - | 0.19 | - | - | 0.88 | - | - | - |
26 | 19.96 | 2,2′-Methylenebis(6-tert-butyl-p-cresol) | 1.01 | - | - | - | - | - | 14.50 | - | 0.88 |
27 | 21.79 | methyl hexadecanoate | - | - | 3.74 | - | - | 95.4 | - | - | 0.28 |
28 | 23.12 | Caffeine | 266.38 | 59.29 | 4.04 | 135.24 | 7.71 | - | 219.20 | 23.41 | 0.35 |
29 | 23.77 | Oleic acid, methyl ester | - | - | - | - | - | 4.73 | - | - | - |
30 | 23.87 | Methyl 16-methylheptadecanoate | - | - | 2.01 | - | - | - | - | - | - |
Area (×108) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Black Tea | K−GS | K+GS | |||||||||
N° | TR (min) | Compound | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O | EtOAc | BuOH | H2O |
1 | 9.52 | 2,3-Butanediol | - | - | - | 66.49 | - | - | 76.82 | - | - |
2 | 10.34 | Lactic Acid | 18.80 | 14.46 | - | 43.74 | 6.56 | - | 64.67 | 76.61 | - |
3 | 10.84 | 2-Ethylhexanol | - | 50.82 | - | - | - | - | - | - | - |
4 | 10.9 | 2-hydroperoxyoxolane | - | - | - | - | 10.73 | - | - | - | - |
5 | 11.59 | Hydracrylic acid | - | - | - | 20.08 | - | - | - | - | - |
6 | 11.75 | 2-Oxyisovaleric acid | - | - | - | 24.60 | - | - | 24.36 | - | - |
7 | 13.02 | Leucinic acid | - | - | - | - | - | - | 35.86 | - | - |
8 | 13.16 | Dihydroxyacetone | - | - | - | - | - | - | - | 89.39 | - |
9 | 13.32 | Glycerol | 23.62 | - | - | 152.42 | 40.06 | - | 76.14 | 123.78 | - |
10 | 14.58 | 1-Monoacetin | - | - | - | - | 63.84 | - | - | ||
11 | 14.76 | Butanedioic acid | - | - | - | 54.63 | 28.62 | - | 63.84 | 69.07 | - |
12 | 18.24 | Tyrosol | - | - | - | 6.64 | - | - | - | - | - |
13 | 18.57 | Atrolactinic acid | - | - | - | 4.62 | - | - | 10.91 | - | - |
14 | 18.91 | Pentonic acid 1,4-lactone | - | - | - | - | 28.90 | - | - | - | - |
15 | 20.11 | D-(-)-Tagatofuranose | 19.08 | 9.93 | - | - | - | - | - | - | - |
16 | 21.39 | Gluconic acid lactone | - | - | - | - | - | - | - | 72.10 | - |
17 | 21.48 | 2,2′-Methylenebis(6-tert-butyl-p-cresol) | - | 110.04 | - | - | - | - | - | - | - |
18 | 21.55 | Lactic acid, 3-(p-hydroxyphenyl)- | - | 2.06 | - | - | - | - | 13.81 | - | - |
19 | 21.63 | 2,3,4,5,6-pentahydroxyhexanal | - | - | - | - | - | - | - | 82.70 | - |
20 | 21.94 | Gallic acid | 72.64 | 97.06 | - | 189.32 | - | - | 242.83 | 61.38 | - |
21 | 22.65 | Palmitic Acid | 47.63 | 2.76 | - | 44.79 | - | - | 36.60 | - | - |
22 | 24.93 | 9-Octadecenoic acid | 65.90 | - | - | 133.87 | - | - | - | - | - |
23 | 27.94 | Catechin | - | - | - | - | - | - | 1.33 | - | - |
Extract | IC50 (µg/mL) | ||
---|---|---|---|
Black tea | K-GS | K+GS | |
EtOAc | 14.5 ± 0.5 b | 10.1 ± 0.4 a | 8.6 ± 0.5 a |
BuOH | >50 | 21.7 ± 1.1 c | 14.3 ± 1.4 b |
H2O | >50 | >50 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouguech, N.; Taillandier, P.; Bouajila, J.; Basseguy, R.; Romdhane, M.; Etteyeb, N. Influence of Galvanized Steel on Kombucha Fermentation: Weight Loss Measurements, Scanning Electron Microscopy Analysis, Corrosion Activity, and Phytochemical Study. Fermentation 2024, 10, 159. https://doi.org/10.3390/fermentation10030159
Mouguech N, Taillandier P, Bouajila J, Basseguy R, Romdhane M, Etteyeb N. Influence of Galvanized Steel on Kombucha Fermentation: Weight Loss Measurements, Scanning Electron Microscopy Analysis, Corrosion Activity, and Phytochemical Study. Fermentation. 2024; 10(3):159. https://doi.org/10.3390/fermentation10030159
Chicago/Turabian StyleMouguech, Najet, Patricia Taillandier, Jalloul Bouajila, Regine Basseguy, Mehrez Romdhane, and Naceur Etteyeb. 2024. "Influence of Galvanized Steel on Kombucha Fermentation: Weight Loss Measurements, Scanning Electron Microscopy Analysis, Corrosion Activity, and Phytochemical Study" Fermentation 10, no. 3: 159. https://doi.org/10.3390/fermentation10030159
APA StyleMouguech, N., Taillandier, P., Bouajila, J., Basseguy, R., Romdhane, M., & Etteyeb, N. (2024). Influence of Galvanized Steel on Kombucha Fermentation: Weight Loss Measurements, Scanning Electron Microscopy Analysis, Corrosion Activity, and Phytochemical Study. Fermentation, 10(3), 159. https://doi.org/10.3390/fermentation10030159