Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Characterization
2.2. Yeast Sample
2.3. Isolation of Bacterial Strains
2.4. Culture Media and Isolation of Mesophilic Bacteria
2.5. Selected Mesophilic and Amylolytic Bacterium Used for Fermentation
2.6. Media Used for Fermentation
2.7. Ethanol and Glucose Tolerating Potential of Selected Strains
2.8. Ethanol Fermentation
2.9. Optimization of Ethanol Yield Using Commercial and Indigenous Medium
2.10. Ethanol Content Estimation Using Acid Dichromate Test
2.11. Statistical Analysis
2.12. Co-Culturing of Yeast and Bacterial Strain
2.13. Ethanol Production Using Various Routes
2.13.1. Consolidated Fermentation/Route A
2.13.2. Separate Saccharification and Ethanol Fermentation/Route B
2.13.3. Two-Step Saccharification Plus Ethanol Fermentation/Route C
2.13.4. Bacterial Saccharification and Fermentation/Route D
2.14. Ethanol Quantification by HPLC
2.15. Determination of Nutritional Status of Fermentation Residue by Proximate Analysis
3. Results
3.1. Morphological Characteristics of Bacillus subtilis QY5 PP784163
3.2. Molecular Identification of Bacterial Isolates
3.3. Ethanol and Glucose Tolerating Potential of Yeast and Bacterial Strain
3.4. Optimization of Physical Parameters for Ethanol Production in Submerged Fermentation
3.5. Compatibility of Bacterium and Yeast
3.6. Ethanol Quantification by HPLC
3.6.1. Consolidated Fermentation (Route A)
3.6.2. Separate Saccharification and Ethanol Fermentation (Route B)
3.6.3. Two-Step Saccharification Plus Ethanol Fermentation (Route C)
3.6.4. Bacterial Saccharification and Fermentation (Route D)
3.7. Potential of Fermented Residual Cake by Proximate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention: Study Conducted for the International Congress ‘Save Food!’ at Interpack 2011, Düsseldorf, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food waste: Challenges and opportunities for enhancing the emerging bio-economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Al Zadjali, S.; Morse, S.; Chenoweth, J.; Deadman, M. Disposal of pesticide waste from agricultural production in the Al-Batinah region of Northern Oman. Sci. Total Environ. 2013, 463, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Pardo, G.; Moral, R.; Del Prado, A. SIMSWASTE-AD—A modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. Sci. Total Environ. 2017, 574, 806–817. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef]
- Broitman, D.; Raviv, O.; Ayalon, O.; Kan, I. Designing an agricultural vegetative waste-management system under uncertain prices of treatment-technology output products. Waste Manag. 2018, 75, 37–43. [Google Scholar] [CrossRef]
- Ball, J.M.; Bredenhann, L.B. A South African project to remediate dumpsites. In Proceedings of the Ninth International Waste Management and Landfill Symposium, Cagliari, Italy, 6–10 October 2003. [Google Scholar]
- Adejumo, I.O.; Adebiyi, O.A. Agricultural solid wastes: Causes, effects, and effective management. In Strategies of Sustainable Solid Waste Management; IntechOpen: London, UK, 2020; Volume 8. [Google Scholar]
- Narasimmalu, A.; Ramasamy, R. November. Food Processing Industry Waste and Circular Economy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 955, 012089. [Google Scholar] [CrossRef]
- Peter, A.E.; Nagendra, S.S.; Nambi, I.M. Environmental burden by an open dumpsite in urban India. Waste Manag. 2019, 85, 151–163. [Google Scholar] [CrossRef]
- Chen, T.; Qiu, X.; Feng, H.; Yin, J.; Shen, D. Solid digestate disposal strategies to reduce the environmental impact and energy consumption of food waste-based biogas systems. Bioresour. Technol. 2021, 325, 124706. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.; Zeng, Y. Knowledge domain and emerging trends of agricultural waste management in the field of social science: A scientometric review. Sci. Total Environ. 2019, 670, 236–244. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Alengebawy, A.; El-Sherif, D.M.; Gaballah, M.S.; Elwakeel, K.Z.; El-Qelish, M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilisations: A systematic review. Environ. Res. 2023, 225, 115558. [Google Scholar] [CrossRef] [PubMed]
- Food Wastage Footprint (Project). Food Wastage Footprint: Impacts on Natural Resources: Summary Report; Food & Agriculture Organization of the UN (FAO): Rome, Italy, 2013. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2021; United Nations: Nairobi, Kenya, 2021. [Google Scholar]
- Klemeš, J.J.; Varbanov, P.S.; Ocłoń, P.; Chin, H.H. Towards efficient and clean process integration: Utilisation of renewable resources and energy-saving technologies. Energies 2019, 12, 4092. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of hydrogen as economic and environmentally friendly fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Kularathne, I.W.; Gunathilake, C.A.; Rathneweera, A.C.; Kalpage, C.S.; Rajapakse, S. The effect of use of biofuels on environmental pollution—A review. Int. J. Renew. Energy Res. 2019, 9, 1355–1367. [Google Scholar]
- Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning waste cooking oils into biofuels—Valorization Technologies: A review. Energies 2021, 15, 116. [Google Scholar] [CrossRef]
- Mostofa, M. An introduction to bioethanol and its prospects in Bangladesh: A review. J. Energy Res. Rev. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Susmozas, A.; Martín-Sampedro, R.; Ibarra, D.; Eugenio, M.E.; Iglesias, R.; Manzanares, P.; Moreno, A.D. Process strategies for the transition of 1G to advanced bioethanol production. Processes 2020, 8, 1310. [Google Scholar] [CrossRef]
- Lamichhane, G.; Acharya, A.; Poudel, D.K.; Aryal, B.; Gyawali, N.; Niraula, P.; Phuyal, S.R.; Budhathoki, P.; Bk, G.; Parajuli, N. Recent advances in bioethanol production from lignocellulosic biomass. Int. J. Green Energy 2021, 18, 731–744. [Google Scholar] [CrossRef]
- Edeh, I. Bioethanol production: An overview. In Bioethanol Technologies; IntechOpen: London, UK, 2021; p. 1. [Google Scholar]
- Ma, Y.; Wang, X.R.; Li, T.; Zhang, J.; Gao, J.; Sun, Z.Y. Hydrogen and ethanol: Production, storage, and transportation. Int. J. Hydrogen Energy 2021, 46, 27330–27348. [Google Scholar] [CrossRef]
- Singh, B.; Raigond, P.; Dutt, S.; Kumar, M. Potatoes for food and nutritional security. In Potato: Nutrition and Food Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–12. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 27 August 2024).
- Mickiewicz, B.; Volkova, E.; Jurczak, R. The global market for potato and potato products in the current and forecast period. Eur. Res. Stud. J. 2022, XXV, 740–751. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, S.J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Christofi, A.; Malamis, D.; Mai, S. A sustainable approach to valorize potato peel waste towards biofuel production. Biomass Convers. Biorefinery 2023, 13, 8197–8208. [Google Scholar] [CrossRef]
- Chohan, N.A.; Aruwajoye, G.S.; Sewsynker-Sukai, Y.; Kana, E.G. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renew. Energy 2020, 146, 1031–1040. [Google Scholar] [CrossRef]
- Ebrahimian, F.; Denayer, J.F.; Karimi, K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. Bioresour. Technol. 2022, 360, 127609. [Google Scholar] [CrossRef]
- Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar]
- Maldonado, A.F.S.; Mudge, E.; Gänzle, M.G.; Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 2014, 65, 27–34. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Wu, Z.G.; Xu, H.Y.; Ma, Q.; Cao, Y.; Ma, J.N.; Ma, C.M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochem. 2014, 21, 1470–1476. [Google Scholar] [CrossRef]
- Galhano dos Santos, R.; Ventura, P.; Bordado, J.C.; Mateus, M.M. Valorizing potato peel waste: An overview of the latest publications. Rev. Environ. Sci. Bio/Technol. 2016, 15, 585–592. [Google Scholar] [CrossRef]
- Mushtaq, Q.; Joly, N.; Martin, P.; Qazi, J.I. Optimization of alkali treatment for production of fermentable sugars and phenolic compounds from potato peel waste using topographical characterization and FTIR spectroscopy. Molecules 2023, 28, 7250. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, Q.; Ishtiaq, U.; Joly, N.; Martin, P.; Qazi, J. Investigation and characterization of changes in potato peels by thermochemical acidic pre-treatment for extraction of various compounds. Sci. Rep. 2024, 14, 12655. [Google Scholar] [CrossRef]
- Dubey, K.K.; Ray, A.; Behera, B. Production of demethylated colchicine through microbial transformation and scale-up process development. Process Biochem. 2008, 43, 251–257. [Google Scholar] [CrossRef]
- Dubey, K.K.; Jawed, A.; Haque, S. Enhanced extraction of 3demethylated colchicine from fermentation broth of Bacillus megaterium: Optimization of process parameters by statistical experimental design. Eng. Sci. 2011, 11, 598–606. [Google Scholar]
- Singh, V.; Khan, M.; Khan, S.; Tripathi, C.K. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 2009, 82, 379–385. [Google Scholar] [CrossRef]
- Rajeswari, P.; Arul Jose, P.; Amiya, R.; Jebakumar, S.R.D. Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Front. Microbiol. 2014, 5, 753. [Google Scholar] [CrossRef]
- Abedini, A.; Amiri, H.; Karimi, K. Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment. Renew. Energy 2020, 160, 269–277. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107108. [Google Scholar] [CrossRef]
- Van Zyl, W.H.; Lynd, L.R.; den Haan, R.; McBride, J.E. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Biofuels 2007, 205–235. [Google Scholar]
- Lynd, L.R.; van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, X.; Liu, W.; Xu, H.; Cao, Y. Consolidated bioprocess for bioethanol production from lignocellulosic biomass using Clostridium thermocellum DSM 1237. BioResearch 2020, 15, 8355–8368. [Google Scholar] [CrossRef]
- Maslova, O.; Stepanov, N.; Senko, O.; Efremenko, E. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresour. Technol. 2019, 272, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kannuchamy, S.; Mukund, N.; Saleena, L.M. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production. BMC Biotechnol. 2016, 16, 1–6. [Google Scholar] [CrossRef]
- Cunniff, P. AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- Mushtaq, Q.; Ishtiaq, U.; Joly, N.; Qazi, J.I.; Martin, P. Amylase and Cellulase Production from Newly Isolated Bacillus subtilis Using Acid Treated Potato Peel Waste. Microorganisms 2024, 12, 1106. [Google Scholar] [CrossRef]
- Chaudhary, N.; Aslam, A.; Qazi, J.I. Ethanologenic potential of the bacterium Bacillus cereus NB-19 in media comprising of sugar mill and dairy industrial wastes. Afr. J. Biotechnol. 2009, 8, 6716–6720. [Google Scholar]
- Bernfeld, P. Amylases, a and b, Methods in Enzymology; Academic Press: New York, NY, USA, 1955; Volume 1, pp. 149–158. [Google Scholar]
- Ghosh, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Bennett, C. Spectrophotometric acid dichromate method for the determination of ethyl alcohol. Am. J. Med. Technol. 1971, 37, 217–220. [Google Scholar]
- Varize, C.S.; Bücker, A.; Lopes, L.D.; Christofoleti-Furlan, R.M.; Raposo, M.S.; Basso, L.C.; Stambuk, B.U. Increasing ethanol tolerance and ethanol production in an industrial fuel ethanol Saccharomyces cerevisiae strain. Fermentation 2022, 8, 470. [Google Scholar] [CrossRef]
- Kourouma, M.C.; Mbengue, M.; Sarr, N.C.D.; Sarr, K.; Kane, C.T. Thermoresistant, Ethanol-Resistant and Acid-Resistant Properties of Acetic Acid Bacteria Isolated from Fermented Mango Alcohol. Adv. Microbiol. 2022, 12, 177–191. [Google Scholar] [CrossRef]
- Chavez, A.Y.; Morales, R.; Gonzalez, C.; Moya, F.V. Production of ethanol from two varieties of potato peel waste through cellulolytic and amylolytic enzymes. Int. J. Energy A Clean Environ. 2020, 21, 41–58. [Google Scholar] [CrossRef]
- Ude, M.U.; Oluka, I.S. Optimization of Production and Characterization of Bio-Fuel Produced from Cassava and Potato Peels. Proc. Niger. Acad. Sci. 2021, 14, 66–81. [Google Scholar] [CrossRef]
- Tenkolu, G.A.; Kuffi, K.D.; Gindaba, G.T. Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Convers. Biorefinery 2024, 14, 5205–5223. [Google Scholar] [CrossRef]
- Chauhan, M.; Dutt, S.; Manjul, A.S.; Singh, B.; Garlapati, V.K. A sustainable approach of turning potato waste towards bioethanol production using indigenous microbes of Himachal Pradesh, India. Chemosphere 2022, 299, 134429. [Google Scholar] [CrossRef]
- Casabar, J.T.; Unpaprom, Y.; Ramaraj, R. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers. Biorefinery 2019, 9, 761–765. [Google Scholar] [CrossRef]
- Somda, M.K.; Savadogo, A.; Ouattara, C.A.T.; Ouattara, A.S.; Traore, A.S. Thermotolerant and alcohol-tolerant yeasts targeted to optimize hydrolyzation from mango peel for high bioethanol production. Asian J. Biotechnol. 2011, 3, 77–83. [Google Scholar] [CrossRef]
- Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy 2015, 140, 65–74. [Google Scholar] [CrossRef]
- Baneme-Smith, V.; Chinn, M.S. Consolidated bioprocessing for biofuel production: Recent advances. Energy Emiss. Control. Technol. 2015, 3, 23–44. [Google Scholar]
- Devarapalli, M.; Atiyeh, H.K. A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res. J. 2015, 2, 268–280. [Google Scholar] [CrossRef]
- Olguin-Maciel, E.; Singh, A.; Chable-Villacis, R.; Tapia-Tussell, R.; Ruiz, H.A. Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: An overview. Agronomy 2020, 10, 1834. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Singh, A.; Haldar, D.; Soam, S.; Chen, C.W.; Tsai, M.L.; Dong, C.D. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. Bioresour. Technol. 2022, 354, 127153. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, S.; Isabel, J.B.; Kavitha, S.; Karthik, V.; Mohamed, B.A.; Gizaw, D.G.; Sivashanmugam, P.; Aminabhavi, T.M. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol—A review. Chem. Eng. J. 2023, 453, 139783. [Google Scholar] [CrossRef]
- Maleki, F.; Changizian, M.; Zolfaghari, N.; Rajaei, S.; Noghabi, K.A.; Zahiri, H.S. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains. Sci. Rep. 2021, 11, 13731. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Miah, A.B.; Mahmud, S.A.; Mahin, A.A. Enhanced bioethanol production from potato peel waste via consolidated bioprocessing with statistically optimized medium. Appl. Biochem. Biotechnol. 2018, 186, 425–442. [Google Scholar] [CrossRef]
- Kavitha, S.; Gajendran, T.; Saranya, K.; Selvakumar, P.; Manivasagan, V. Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy. Renew. Energy 2021, 172, 440–452. [Google Scholar] [CrossRef]
- Papathoti, N.K.; Mendam, K.; Thepbandit, W.; Burgula, N.; Sangpueak, R.; Saengchan, C.; Hoang, N.H.; Keshav, P.K.; Le Thanh, T.; Buensanteai, N. Bioethanol production from alkali-pretreated cassava stem waste via consolidated bioprocessing by ethanol-tolerant Clostridium thermocellum ATCC 31,924. Biomass Convers. Biorefinery 2024, 14, 6821–6833. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Wu, T.; Li, J.; Hu, D.; Liu, D.; Li, J.; Tian, C. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila. Metab. Eng. 2023, 78, 192–199. [Google Scholar] [CrossRef]
- Malherbe, S.J.; Cripwell, R.A.; Favaro, L.; van Zyl, W.H.; Viljoen-Bloom, M. Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing. Renew. Energy 2023, 206, 498–505. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O.; Zacchi, G. Techno-economic aspects of ethanol production from lignocellulosic agricultural crops and residues. In Environmental Biotechnology and Safety; Elsevier: Amsterdam, The Netherlands, 2011; pp. 615–628. [Google Scholar]
- Raftery, J.P.; Karim, M.N. Sustainable Production of Liquid Fuels. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2015; Volume 37, pp. 55–62. [Google Scholar]
- Ma, Y.; Liu, S.; Wang, Y.; Wang, Y. Direct utilization of lipid and starch from wet microalgae (Chlorella vulgaris). In Algal Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 149–163. [Google Scholar]
- Bertacchi, S.; Jayaprakash, P.; Morrissey, J.P.; Branduardi, P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb. Biotechnol. 2022, 15, 985–995. [Google Scholar] [CrossRef]
- Moodley, P.; Ray, R.C.; Kana, E.B.G. Advances in Lignocellulosic Biofuel Production Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 267–304. [Google Scholar]
- Méndez, J.; de França Passos, D.; Wischral, D.; Modesto, L.F.; Pereira, N., Jr. Second-generation ethanol production by separate hydrolysis and fermentation from sugarcane bagasse with cellulose hydrolysis using a customized enzyme cocktail. Biofuels 2019, 12, 1225–1231. [Google Scholar] [CrossRef]
- Erdei, B.; Franko, B.; Galbe, M.; Zacchi, G. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol. Biofuels 2012, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Slathia, P.S.; Raina, N.; Kiran, A.; Kour, R.; Bhagat, D.; Sharma, P. Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation. Biomass Convers. Biorefinery 2020, 10, 95–106. [Google Scholar] [CrossRef]
- Annamalai, N.; Al Battashi, H.; Anu, S.N.; Al Azkawi, A.; Al Bahry, S.; Sivakumar, N. Enhanced bioethanol production from waste paper through separate hydrolysis and fermentation. Waste Biomass Valorization 2020, 11, 121–131. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sunwoo, I.Y.; Ra, C.H.; Jeong, G.T.; Kim, S.K. Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation. Bioprocess Biosyst. Eng. 2019, 42, 415–424. [Google Scholar] [CrossRef]
- Ragab, A.M.; El-Gendy, N.S.; Farahat, L.A.; Madian, H.R. Bioethanol production from rice straw enzymatically saccharified by fungal isolates, Trichoderma viride F94 and Aspergillus terreus F98. Soft 2014, 3, 19–29. [Google Scholar]
- Sharma, S.; Sharma, V.; Kuila, A. Simultaneous saccharification and fermentation of corn husk by co-culture strategy. J. Pet. Environ. Biotechnol. 2018, 9, 360. [Google Scholar] [CrossRef]
- Szambelan, K.; Nowak, J.; Szwengiel, A.; Jeleń, H.; Łukaszewski, G. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars. Ind. Crop. Prod. 2018, 118, 355–361. [Google Scholar] [CrossRef]
- Javed, M.R.; Noman, M.; Shahid, M.; Ahmed, T.; Khurshid, M.; Rashid, M.H.; Ismail, M.; Sadaf, M.; Khan, F. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol. Res. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Hariharan, H.; Joshy, E.N.; Sajeevan, K.; Moneyraj, K. Bioethanol Production from Sweet Potato and Cassava by Simultaneous Saccharification and Fermentation. In Sustainable Development in Energy and Environment: Select Proceedings of ICSDEE 2019; Springer: Singapore, 2020; pp. 13–23. [Google Scholar]
- Jugwanth, Y.; Sewsynker-Sukai, Y.; Kana, E.G. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel 2020, 262, 116552. [Google Scholar] [CrossRef]
- Mazaheri, D.; Orooji, Y.; Mazaheri, M.; Moghaddam, M.S.; Karimi-Maleh, H. Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–9. [Google Scholar]
- Khanpanuek, S.; Lunprom, S.; Reungsang, A.; Salakkam, A. Repeated-batch simultaneous saccharification and fermentation of cassava pulp for ethanol production using amylases and Saccharomyces cerevisiae immobilized on bacterial cellulose. Biochem. Eng. J. 2022, 177, 108258. [Google Scholar] [CrossRef]
- Al-Ahdal, M.A.; Ali, E.M.; Baothman, O.A.; Al-sieni, A.I.; Al-Talhi, H.A. Xylanase enhanced second-generation bioethanol production through simultaneous saccharification and fermentation. Biofuels 2023, 14, 1009–1014. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yang, Y.H.; Choi, K.Y. Bioconversion of plant hydrolysate biomass into biofuels using an engineered Bacillus subtilis and Escherichia coli mixed-whole cell biotransformation. Biotechnol. Bioprocess Eng. 2020, 25, 477–484. [Google Scholar] [CrossRef]
- Tantipaibulvut, S.; Pinisakul, A.; Rattanachaisit, P.; Klatin, K.; Onsriprai, B.; Boonyaratsiri, K. Ethanol production from desizing wastewater using co-culture of Bacillus subtilis and Saccharomyces cerevisiae. Energy Procedia 2015, 79, 1001–1007. [Google Scholar] [CrossRef]
- Tran, H.T.M.; Cheirsilp, B.; Hodgson, B.; Umsakul, K. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem. Eng. J. 2010, 48, 260–267. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Bioconversion of orange peels for ethanol production using Bacillus subtilis and Pseudomonas aeruginosa. Afr. J. Microbiol. Res. 2013, 7, 1266–1277. [Google Scholar]
- Perez, C.L.; Milessi, T.S.; Sandri, J.P.; Ramos, M.D.; Carvalho, B.T.; Claes, A.; Demeke, M.M.; Thevelein, J.M.; Zangirolami, T.C. Evaluation of consolidated biopro-cessing of sugarcane biomass by a multiple hydrolytic enzyme producer Saccharomyces yeast. BioEnergy Res. 2023, 16, 1973–1989. [Google Scholar] [CrossRef]
- Sarkar, D.; Prajapati, S.; Poddar, K.; Sarkar, A. Ethanol production by Klebsiella sp. SWET4 using banana peel as feasible substrate. Biomass Convers. Biorefinery 2022, 12, 1479–1491. [Google Scholar] [CrossRef]
- Maxwell, O.I.; Chinwuba, U.B.; Onyebuchukwu, M.G. Protein enrichment of potato peels using Saccharomyces cerevisiae via solid-state fermentation process. Adv. Chem. Eng. Sci. 2018, 9, 99–108. [Google Scholar] [CrossRef]
- Akintomide, M.J.; Antai, S.P. Protein enrichment of Irish potato (Solanium tuberosium) peels through solid substrate fermentation by Saccharomyces cerevisiae and Aspergillus niger. J. Environ. Sci. 2012, 1, 15–19. [Google Scholar]
- Onuguh, I.C.; Ikhuoria, E.U.; Obibuzo, J.U. Assessing the Potentials of Some Agro-Waste Peels Through Proximate Analysis. Int. J. Agric. Anim. Prod. (IJAAP) 2022, 2, 1–6. [Google Scholar]
- Helal, M.M.; Adawy, T.E.; Beltagy, A.E.; Bedawey, A.E.; Youssef, S.M. Evaluation of potato peel extract as a source of antioxidant and antimicrobial substances. Menoufia J. Food Dairy Sci. 2020, 5, 79–90. [Google Scholar] [CrossRef]
- dos Santos Oliveira, M.; Feddern, V.; Kupski, L.; Cipolatti, E.P.; Badiale-Furlong, E.; de Souza-Soares, L.A. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour. Technol. 2011, 102, 8335–8338. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, C.; Arapoglou, D.; Chorianopoulos, N.; Markou, G.; Haroutounian, S.A. Conversion of brewers’ spent grain into proteinaceous animal feed using solid state fermentation. Environ. Sci. Pollut. Res. 2022, 29, 29562–29569. [Google Scholar] [CrossRef] [PubMed]
Sr # | Routes | Ethanol (%) |
---|---|---|
1 | A | 0.39 |
2 | 0.41 | |
3 | 0.33 | |
4 | B | 0.49 |
5 | 0.50 | |
6 | 0.49 | |
7 | C | 0.46 |
8 | 0.43 | |
9 | 0.45 | |
10 | D | 0 |
11 | 0 | |
12 | 0 | |
13 | Standard | 100 |
Sr # | ||||||
---|---|---|---|---|---|---|
1. | Parameters (%) | Control (without any bacterial and yeast culture) | A | B | C | D |
2. | Moisture | 9.051 ± 0.12 | 7.290 ± 0.03 | 7.080 ± 0.05 | 6.771 ± 0.06 | 7.951 ± 0.11 |
3. | Ash | 14.881 ± 0.07 | 7.600 ± 0.13 | 7.070 ± 0.03 | 7.231 ± 0.08 | 7.850 ± 0.12 |
4. | Crude fat | 0.030 ± 0.12 | 2.881 ± 0.11 | 2.481 ± 0.04 | 1.930 ± 0.03 | 1.721 ± 0.17 |
5. | Crude protein | 1.260 ± 0.23 | 17.450 ± 0.21 | 1.191 ± 0.11 | 18.241 ± 0.26 | 15.941 ± 0.15 |
6. | Crude fiber | 0.210 ± 0.15 | 4.331 ± 0.16 | 3.590 ± 0.06 | 4.980 ± 0.17 | 4.750 ± 0.17 |
7. | Carbohydrates | 74.781 ± 0.19 | 60.450 ± 0.11 | 82.180 ± 0.06 | 60.851 ± 0.15 | 61.791 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, Q.; Ishtiaq, U.; Joly, N.; Spalletta, A.; Martin, P. Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency. Fermentation 2024, 10, 523. https://doi.org/10.3390/fermentation10100523
Mushtaq Q, Ishtiaq U, Joly N, Spalletta A, Martin P. Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency. Fermentation. 2024; 10(10):523. https://doi.org/10.3390/fermentation10100523
Chicago/Turabian StyleMushtaq, Qudsia, Uzair Ishtiaq, Nicolas Joly, Alexis Spalletta, and Patrick Martin. 2024. "Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency" Fermentation 10, no. 10: 523. https://doi.org/10.3390/fermentation10100523
APA StyleMushtaq, Q., Ishtiaq, U., Joly, N., Spalletta, A., & Martin, P. (2024). Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency. Fermentation, 10(10), 523. https://doi.org/10.3390/fermentation10100523