Investigation of the Effect of Fragrance-Enhancing Temperature on the Taste and Aroma of Black Tea from the Cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya Using Metabolomics and Sensory Histology Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacturing of Black Tea Samples
2.2. Standard Compounds and Chemicals
2.3. Quantitative Descriptive Analysis
2.4. Analysis of Chemical Compounds in Tea Leaves by Spectrophotometry and HPLC
2.5. Electronic Nose (E-Nose) Data Collection and Analysis
2.6. Extraction and Identification of Volatile Compounds in HJYBT
2.6.1. Extraction of Volatiles Using Solvent-Assisted Flavor Evaporation
2.6.2. GC-TOFMS Analysis
2.6.3. Data Preprocessing and Analysis
2.6.4. Quantification and Odor Activity Values Calculation
2.7. Data Statistics and Analysis
3. Results and Discussion
3.1. Effect of Different Temperature of EF on Sensory Quality of HJYBT
3.2. Effect of Different EF on the Taste Components of HJYBT
3.2.1. Content Analysis of General Biochemistry Components
3.2.2. Content Analysis of Catechins, Flavones and Caffeine
3.2.3. Analysis of the Content of FAAs
3.2.4. Multivariate Statistical Analysis and Screening for Differential NVMs
3.3. Effect of Different EFs on the Aroma and Volatile Compounds of HJYBT
3.3.1. Results of E-Nose Analysis
3.3.2. Overview of the Profile of Volatile Compounds (VMs)
3.3.3. Variance Analysis of VMs in HJYBT during EF Processing
3.3.4. Key Aroma Compounds in HJYBT during EF Processing
3.3.5. Correlation Analysis of Key Differential VMs and QDA Indicators Based on PLS-DA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.H.; Huang, Y.Y.; Liu, Z.S.; Pang, Y.L.; Yang, C.; Li, M.; Wu, Q.H.; Nie, J.F. Determination of the variations in the metabolic profiles and bacterial communities during traditional craftsmanship Liupao tea processing. Food Chem. X 2024, 22, 101516. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Yang, L.R.; Luo, X.P.; Huang, R.Y.; Jiao, W.W.; Zhong, X.X.; Li, L.X.; Wang, Q.; Liu, M.L.; Liu, K.Y. Aroma formation and dynamic changes during Sichuan black tea processing by GC–MS-based metabolomics. Fermentation 2023, 9, 686. [Google Scholar] [CrossRef]
- Hua, J.J.; Yang, W.O.; Zhu, X.Z.; Wang, J.J.; Yu, Y.Y.; Chen, M.; Yang, L.Y.; Yuan, H.B.; Jiang, Y.W. Objective quantification technique and widely targeted metabolomic reveal the effect of drying temperature on sensory attributes and related non-volatile metabolites of black tea. Food Chem. 2024, 439, 138154. [Google Scholar] [CrossRef] [PubMed]
- Bahorun, T.; Luximon-Ramma, A.; Gunness, T.K.; Sookar, D.; Bhoyroo, S.; Jugessur, R.; Reebye, D.; Googoolye, K.; Crozier, A.; Aruoma, O.I. Black tea reduces uric acid and c-reactive protein levels in humans susceptible to cardiovascular diseases. Toxicology 2010, 278, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, R.L.; Mine, Y. The impact of oolong and black tea polyphenols on human health. Food Biosci. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Ma, J.Q.; Wang, Y.J.; Li, J.Y.; Zhang, J.X.; Wei, Y.M.; Yan, Y.X.; Wang, H.P.; Pan, Y.; Xiong, Z.C.; Wang, R.J.; et al. Aroma formation mechanism by the drying step during congou black tea processing: Analyses by HP-SPME and SAFE with GC-MS. LWT 2024, 198, 116019. [Google Scholar] [CrossRef]
- Huang, W.J.; Fang, S.M.; Wang, J.; Zhuo, C.; Luo, Y.H.; Yu, Y.L.; Li, L.Q.; Wang, Y.J.; Deng, W.W.; Ning, J.M. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea. Food Chem. 2022, 395, 133549. [Google Scholar] [CrossRef]
- Hu, C.J.; Li, D.; Ma, Y.X.; Zhang, W.; Lin, C.; Zheng, X.Q.; Liang, Y.R.; Lu, J.L. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 2018, 269, 202–211. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.N.; Ma, C.Q.; Huang, Y.Y. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea. Food Chem. 2023, 410, 135396. [Google Scholar] [CrossRef]
- Li, Y.C.; He, C.; Yu, X.L.; Zhou, J.T.; Ntezimana, B.; Yu, Z.; Chen, Y.Q.; Ni, D.J. Study on improving aroma quality of summer-autumn black tea by red-light irradiation during withering. LWT 2022, 154, 112597. [Google Scholar] [CrossRef]
- Guo, X.Y.; Ho, C.T.; Wan, X.C.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Jin, S.; Fu, Y.Q.; Chen, L.S.; Yin, J.F.; Xu, Y.Q. A targeted and untargeted metabolomics analysis of ‘Oriental Beauty’ oolong tea during processing. Beve Plant Res. 2022, 2, 20. [Google Scholar] [CrossRef]
- Feng, W.Z.; Zhou, H.; Xiong, Z.C.; Sheng, C.Y.; Xia, D.Z.; Zhang, J.X.; Li, T.H.; Wei, Y.M.; Deng, W.W.; Ning, J. Exploring the effect of different tea varieties on the quality of Lu’an Guapian tea based on metabolomics and molecular sensory. Food Chem. X 2024, 23, 101534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Yue, C.N.; Tong, H.R. Analysis of taste characteristics and identification of key chemical components of fifteen Chinese yellow tea samples. J. Food Sci. Technol. 2021, 58, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Ho, C.T.; Schwab, W.; Song, C.K.; Wan, X.C. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea. Food Chem. 2019, 280, 73–82. [Google Scholar] [CrossRef]
- Qiu, F.F.; Zeng, W.C.; Qu, F.F.; Yu, Z.; Chen, Y.Q.; Zheng, S.B.; Ni, D.J. Effect of aroma enhancement methods on the quality of congou black tea. Food Sci. 2019, 40, 82–87. [Google Scholar]
- Qiu, X.L.; Wang, J.X.; Yu, X.F.; Lv, S.D.; Wu, Y.S.; Wang, C.; Gao, X.M.; Li, J.B.; Zhang, W.R.; Zhao, P.; et al. Aroma formation in Dianhong black tea: Effects of baking. Int. J. Food Prop. 2017, 20, 2724–2735. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, F.F.; Duan, Y.L.; Chen, S.H.; Zhang, A.H.; Chu, W.C. Removal of trihalomethanes and haloacetamides from drinking water during tea brewing: Removal mechanism and kinetic analysis. Water Res. 2020, 184, 116148. [Google Scholar] [CrossRef]
- Sasaki, T.; Koshi, E.; Take, M.; Michihata, T.; Maruya, M.; Enomoto, M. Characterisation of odorants in roasted stem tea using gas chromatography–mass spectrometry and gas chromatography-olfactometry analysis. Food Chem. 2017, 220, 177–183. [Google Scholar] [CrossRef]
- Wang, J.J.; Yuan, H.B.; Hua, J.J.; Jiang, Y.W.; Dong, C.W.; Deng, Y.L.; Yang, Y.Q. Effects of second-drying process parameters on the hot-air drying characteristics and quality of congou black tea. Trans. CSAE 2020, 36, 287–296. [Google Scholar]
- Yao, H.B.; Su, H.; Ma, J.Y.; Zheng, J.; He, W.; Wu, C.L.; Hou, Z.Y.; Zhao, R.L.; Zhou, Q.Q. Widely targeted volatileomics analysis reveals the typical aroma formation of Xinyang black tea during fermentation. Food Res. Int. 2023, 164, 112387. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Hu, S.Y.; Yang, W.T.; Yang, H.Z.Y.; Zhang, W.W.; Ye, J.H.; Zheng, X.Q.; Liang, Y.R.; Dong, Z.B.; Lu, J.L. Conversion obstacle from Mg-protoporphyrin IX to protochlorophyllide might be responsible for chlorophyll-deficient phenotype of the Huangjinya’s albino offspring. Plant Phys. Bioch. 2024, 212, 108778. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Gao, M.J.; Hou, R.Y.; Hu, X.Y.; Zhang, L.; Wan, X.C.; Wei, S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem. 2014, 155, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Li, M.X.; Zhang, Y.; Chu, S.; Huo, Y.; Zhao, J.; Wan, C.P. Huangjinya black tea alleviates obesity and insulin resistance via modulating fecal metabolome in high-fat diet-fed mice. Molec. Nutr. Food Res. 2020, 64, e2000353. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Xu, j.l.; Zhang, Y.; Chu, S.; Sun, S.Z.; Huo, Y.; Zhao, J.; Hu, X.D.; Wan, C.P.; Li, Y.L. Comparative analysis of fecal metabolite profiles in HFD-induced obese mice after oral administration of huangjinya green tea extract. Food Chem. Toxi. 2020, 145, 111744. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef]
- Guo, G.Y.; Yang, Z.; Wang, S.L.; Yin, P. Optimization of the baking technical parameters for Xinyang maojian tea. Food Sci. Technol. 2017, 42, 81–85. [Google Scholar]
- Pou, K.R.J. Fermentation: The key step in the processing of black tea. J. Biosyst. Eng. 2016, 41, 85–92. [Google Scholar]
- Xia, H.L.; Chen, W.; Hu, D.; Miao, A.Q.; Qiao, X.Y.; Qiu, G.J.; Liang, J.H.; Guo, W.Q.; Ma, C.Y. Rapid discrimination of quality grade of black tea based on near-infrared spectroscopy (NIRS), electronic nose (E-nose) and data fusion. Food Chem. 2024, 440, 138242. [Google Scholar] [CrossRef]
- Yue, C.N.; Wang, Z.H.; Peng, H.; Li, W.J.; Yang, P.X. UPLC–QTOF/MS-based non-targeted metabolomics coupled with the quality component, QDA, to reveal the taste and metabolite characteristics of six types of Congou black te. LWT 2023, 185, 115197. [Google Scholar] [CrossRef]
- Dong, H.Y.; Li, Y.H.; Lai, X.F.; Hao, M.J.; Sun, L.L.; Li, Q.H.; Chen, R.H.; Li, Q.; Sun, S.L.; Wang, B.J.; et al. Effects of fermentation duration on the flavour quality of large leaf black tea based on metabolomics. Food Chem. 2024, 444, 138680. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Chen, D.; Zhu, L.Y.; Zhao, Y.N.; Lin, Z.; Li, X.Z.; Dai, W.D. A comprehensive study of the differences in protein expression and chemical constituents in tea leaves (Camellia sinensis var. sinensis) with different maturity using a combined proteomics and metabolomics method. Food Res. Int. 2022, 157, 111397. [Google Scholar]
- Xue, J.J.; Liu, P.P.; Yin, J.F.; Wang, W.W.; Zhang, J.Y.; Wang, W.; Le, T.; Ni, D.J.; Jiang, H.Y. Dynamic changes in volatile compounds of shaken black tea during its manufacture by GC × GC-TOFMS and multivariate data analysis. Foods 2022, 11, 1228. [Google Scholar] [CrossRef] [PubMed]
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. Standardization Administration of China: Beijing, China, 2018.
- Wang, Q.P.; Peng, C.X.; Gong, J.S. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh te. J. Sci. Food Agric. 2011, 91, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, Y.; Dai, L.L.; Zhang, D.L.; Li, J.H.; Yuan, W.X.; Li, Y.L.; Zhou, H.J. A high-performance liquid chromatographic chromatographic method for simultaneous determination of 21 free amino acids in tea. Food Anal. Methods 2013, 6, 69–75. [Google Scholar] [CrossRef]
- Yang, P.; Song, H.L.; Lin, Y.P.; Guo, T.Y.; Wang, L.J.; Granvogl, M.; Xu, Y.Q. Differences of characteristic aroma compounds in Rougui tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC x GC-O-MS and sensory evaluatio. Food Funct. 2021, 12, 4797–4807. [Google Scholar] [CrossRef]
- Wang, H.J.; Hua, J.J.; Jiang, Y.W.; Wang, J.J.; Yuan, H.B. Effect of different heat transfer modes during secondary drying on quality components, color and taste of Congou black tea. Food Sci. 2020, 41, 148–157. [Google Scholar]
- Mei, S.F. Changes in Aroma Quality during Odor Enhancement Process and Identification of Key Odorants of Caramel Aroma in Black Tea. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
- Yao, Y. Study on the Effect of Vacuum Baking on the Quality of Black Tea. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
- Yang, Y.Q.; Hua, J.J.; Deng, Y.L.; Jiang, Y.W.; Qian, M.C.; Wang, J.J.; Li, J.; Zhang, M.M.; Dong, C.W.; Yuan, H.B. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res. Int. 2020, 137, 109656. [Google Scholar] [CrossRef]
- Chen, Q.C.; Fu, Y.; Heng, W.T.; Yu, S.; Xie, F.; Dong, F.; Lin, Z.; Dai, W.D.; Fu, H.H. Re-rolling treatment in the fermentation process improves the taste and liquor color qualities of black tea. Food Chem. X 2024, 21, 101143. [Google Scholar] [CrossRef]
- Zhang, J.X.; Feng, W.Z.; Xion, Z.C.; Dong, S.; Sheng, C.Y.; Wu, Y.D.; Deng, G.J.; Deng, W.W.; Ning, J.M. Investigation of the effect of over-fired drying on the taste and aroma of Lu’an Guapian tea using metabolomics and sensory histology technique. Food Chem. 2024, 437, 137851. [Google Scholar] [CrossRef]
- Liu, S.Q.; Yang, J.; Yuan, L.L.; Hong, W.X.; Li, Z.L. Effect of baking and aroma-improving conditions on the black tea sensory quality and major biochemical components. J. Food Saf. Qual. 2015, 6, 1301–1306. [Google Scholar]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Zhang, Y.N.; Chen, J.X.; Wang, F.; Du, Q.Z.; Yin, J.F. Quantitative analyses of the bitterness and astringency of catechin from green tea. Food Chem. 2018, 258, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fang, T.T.; Li, W.; Jiang, Z.D.; Zhou, T.S.; Zhang, L.; Yu, Y.B. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Res. Int. 2022, 162, 112169. [Google Scholar]
- Ye, J.H.; Ye, Y.; Ying, J.F.; Jin, J.; Liang, Y.R.; Liu, R.Y.; Tang, P.; Xu, Y.C. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 2022, 123, 130–143. [Google Scholar] [CrossRef]
- Yu, P.G.; Yeo, A.S.L.; Low, M.Y.; Zhou, W.B. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chem. 2014, 155, 9–16. [Google Scholar] [CrossRef]
- Huang, W.J.; Lu, G.F.; Deng, W.W.; Ning, J.M. Effects of different withering methods on the taste of Keemun black tea. LWT 2022, 166, 113791. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Yu, Z.M.; Yang, Z.Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2020, 60, 844–858. [Google Scholar] [CrossRef]
- Bondarovich, H.A.; Giammarino, A.S.; Renner, F.W.; Shephard, A.J.; Gianturco, M.A. Some aspects of the chemistry of tea. a contribution to the knowledge of the volatile constituents. J. Agric. Food Chem. 1967, 15, 36–47. [Google Scholar] [CrossRef]
- Lin, Y.P.; Liu, B.S.; Huang, Y.B.; Zhan, S.Q.; Zhang, J.M.; Chen, R.B. Effect of baking degrees on the quality of Wuyi rock tea “Dahongpao”. Food Res. Develop. 2020, 22, 49–54. [Google Scholar]
- Guo, Q.Y.; Adelina, N.M.; Hu, J.T.; Zhang, L.Z.; Zhao, Y.H. Comparative analysis of volatile profiles in four pine-mushrooms using HS-SPME/GC-MS and E-nose. Food Control 2022, 134, 108711. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Song, H.L. Dynamic changes in Qidan aroma during roasting: Characterization of aroma compounds and their kinetic fitting. Foods 2024, 13, 1611. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Ouyang, W.; Zhu, X.Z.; Jiang, Y.W.; Yu, Y.Y.; Chen, M.; Yuan, H.B.; Hua, J.J. Effect of shaking on the improvement of aroma quality and transformation of volatile metabolites in black tea. Food Chem. X 2023, 20, 101007. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.P.; Zhang, Y.; Dai, W.D.; Guo, L.; Tan, J.F.; Peng, C.H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Wang, Y.J.; Huang, L.F.; Deng, G.J.; Ning, J.M. The shaking and standing processing improve the aroma quality of summer black tea. Food Chem. 2024, 454, 139772. [Google Scholar] [CrossRef]
- Cui, J.L.; Wang, J.M.; Jing, T.; Jin, J.Y.; Zhao, M.Y.; Hu, Y.Q.; Wu, Y.; Yu, F.; Zhang, N.; Luo, Z.W.; et al. Effect of storage time on aroma profiles of wuyi rock tea. LWT 2024, 203, 116367. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.X.; Kong, Y.W.; Peng, X.P.; Li, C.W.; Liu, S.H.; Du, L.P.; Xiao, D.G.; Xu, Y.Q. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatographymass spectrometry, multivariate data analysis, and descriptive sensory analysis. Food Res. Int. 2017, 100, 267–275. [Google Scholar] [CrossRef]
Compounds | CK | T60 | T70 | T80 | T90 | T100 |
---|---|---|---|---|---|---|
GA | 3.09 ± 0.02 d | 3.39 ± 0.10 c | 3.61 ± 0.02 b | 3.70 ± 0.03 b | 3.90 ± 0.07 b | 4.53 ± 0.01 a |
GC | 6.47 ± 0.07 b | 7.15 ± 0.42 a | 5.94 ± 0.60 b | 5.23 ± 0.04 c | 6.14 ± 0.61 b | 3.95 ± 0.12 d |
EGC | 6.88 ± 0.24 a | 6.41 ± 0.08 b | 5.69 ± 0.09 c | 5.13 ± 0.09 d | 5.08 ± 0.05 d | 4.03 ± 0.19 e |
C | 6.32 ± 0.03 c | 6.68 ± 0.20 b | 6.77 ± 0.04 b | 7.17 ± 0.02 a | 6.47 ± 0.25 bc | 6.17 ± 0.05 d |
CAF | 39.17 ± 0.22 ab | 38.89 ± 0.22 ab | 40.37 ± 0.22 a | 40.08 ± 0.76 a | 39.05 ± 0.77 ab | 40.88 ± 0.07 a |
EGCG | 11.71 ± 0.09 a | 10.92 ± 0.06 b | 10.62 ± 0.02 b | 10.18 ± 0.02 bc | 9.40 ± 0.10 c | 8.16 ± 0.03 d |
EC | 3.14 ± 0.11 ab | 2.99 ± 0.04 b | 2.92 ± 0.01 b | 3.23 ± 0.03 a | 2.96 ± 0.02 b | 2.87 ± 0.02 c |
GCG | 1.07 ± 0.06 b | 1.01 ± 0.06 b | 1.04 ± 0.04 b | 1.03 ± 0.08 b | 0.99 ± 0.05 bc | 1.67 ± 0.02 a |
ECG | 2.96 ± 0.05 c | 3.56 ± 0.22 a | 3.70 ± 0.03 a | 3.25 ± 0.16 b | 3.56 ± 0.11 a | 2.14 ± 0.01 d |
CG | 1.65 ± 0.20 cd | 1.71 ± 0.07 c | 1.81 ± 0.04 b | 1.58 ± 0.03 d | 1.88 ± 0.04 b | 1.98 ± 0.08 a |
Myr | 2.53 ± 0.02 a | 2.47 ± 0.02 a | 2.14 ± 0.02 b | 2.05 ± 0.03 c | 2.27 ± 0.02 b | 2.25 ± 0.02 b |
Que | 0.06 ± 0.00 c | 0.07 ± 0.01 b | 0.08 ± 0.01 a | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.08 ± 0.01 a |
Lut | 0.03 ± 0.00 b | 0.04 ± 0.01 a | 0.04 ± 0.00 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.00 a |
Kae | 0.41 ± 0.02 a | 0.42 ± 0.01 a | 0.47 ± 0.01 a | 0.44 ± 0.03 a | 0.42 ± 0.04 a | 0.39 ± 0.02 a |
Rut | 0.02 ± 0.00 c | 0.02 ± 0.00 c | 0.02 ± 0.00 c | 0.03 ± 0.00 b | 0.03 ± 0.00 b | 0.04 ± 0.00 a |
NECs | 22.81 ± 0.42 ab | 23.23 ± 0.41 a | 21.32 ± 0.61 b | 20.76 ± 0.05 b | 20.65 ± 0.42 b | 17.01 ± 0.24 c |
ECs | 17.40 ± 0.33 a | 17.20 ± 0.11 a | 17.17 ± 0.03 a | 16.03 ± 0.15 b | 15.83 ± 0.10 c | 13.95 ± 0.11 d |
TCs | 40.21 ± 0.10 a | 40.43 ± 0.51 a | 38.49 ± 0.63 b | 36.78 ± 0.20 c | 36.48 ± 0.46 c | 30.96 ± 0.18 d |
TFS | 3.05 ± 0.05 a | 3.03 ± 0.04 a | 2.75 ± 0.02 b | 2.62 ± 0.03 bc | 2.82 ± 0.07 b | 2.81 ± 0.04 b |
Compounds | CK | T60 | T70 | T80 | T90 | T100 |
---|---|---|---|---|---|---|
Asp | 3.28 ± 0.01 a | 3.00 ± 0.05 b | 2.54 ± 0.00 c | 2.75 ± 0.08 c | 2.18 ± 0.02 d | 2.02 ± 0.01 d |
Glu | 0.40 ± 0.00 a | 0.42 ± 0.00 a | 0.44 ± 0.00 a | 0.33 ± 0.03 b | 0.32 ± 0.06 b | 0.32 ± 0.06 b |
Gln | 1.35 ± 0.00 a | 1.16 ± 0.00 b | 0.62 ± 0.00 e | 0.73 ± 0.05 d | 0.92 ± 0.02 c | 0.65 ± 0.03 e |
Thea | 9.01 ± 0.03 a | 8.2 ± 0.10 b | 7.82 ± 0.04 c | 6.95 ± 0.07 d | 6.08 ± 0.08 e | 5.16 ± 0.03 f |
His | 0.20 ± 0.00 a | 0.17 ± 0.00 a | 0.18 ± 0.01 a | 0.18 ± 0.01 a | 0.16 ± 0.01 ab | 0.16 ± 0.01 ab |
Arg | 1.56 ± 0.03 a | 1.58 ± 0.01 a | 1.57 ± 0.02 a | 1.41 ± 0.09 b | 1.26 ± 0.02 c | 1.13 ± 0.00 c |
Tyr | 0.50 ± 0.01 a | 0.50 ± 0.00 a | 0.52 ± 0.00 a | 0.44 ± 0.03 b | 0.44 ± 0.02 b | 0.44 ± 0.02 b |
Val | 1.36 ± 0.00 a | 1.21 ± 0.01 b | 1.25 ± 0.02 b | 1.14 ± 0.05 c | 1.04 ± 0.08 c | 0.84 ± 0.03 d |
Phe | 0.98 ± 0.00 a | 0.93 ± 0.00 a | 0.88 ± 0.00 a | 0.73 ± 0.01 b | 0.66 ± 0.02 b | 0.47 ± 0.01 c |
Lys | 0.81 ± 0.01 a | 0.83 ± 0.01 a | 0.86 ± 0.01 a | 0.7 ± 0.06 b | 0.7 ± 0.03 b | 0.46 ± 0.01 c |
Leu | 1.21 ± 0.01 a | 1.11 ± 0.01 a | 1.13 ± 0.01 a | 0.92 ± 0.05 b | 0.85 ± 0.01 b | 0.59 ± 0.00 c |
Ser | 1.08 ± 0.00 a | 0.9 ± 0.01 a | 0.96 ± 0.02 a | 0.78 ± 0.05 b | 0.79 ± 0.02 b | 0.56 ± 0.03 c |
Gly | 0.14 ± 0.00 a | 0.14 ± 0.00 a | 0.15 ± 0.01 a | 0.14 ± 0.00 a | 0.12 ± 0.00 b | 0.12 ± 0.00 b |
Thr | 0.81 ± 0.00 a | 0.66 ± 0.00 b | 0.69 ± 0.00 b | 0.57 ± 0.04 c | 0.57 ± 0.03 c | 0.52 ± 0.05 c |
Ala | 0.44 ± 0.00 a | 0.45 ± 0.00 a | 0.49 ± 0.00 a | 0.40 ± 0.03 a | 0.41 ± 0.03 a | 0.41 ± 0.03 a |
Cys | 0.07 ± 0.00 b | 0.05 ± 0.00 d | 0.06 ± 0.00 c | 0.11 ± 0.00 a | 0.07 ± 0.01 b | 0.07 ± 0.01 b |
L-asp | 4.31 ± 0.06 a | 4.42 ± 0.06 a | 4.5 ± 0.06 a | 3.92 ± 0.10 b | 3.68 ± 0.09 b | 3.16 ± 0.01 c |
Met | 0.19 ± 0.01 a | 0.19 ± 0.00 a | 0.21 ± 0.01 a | 0.17 ± 0.02 b | 0.19 ± 0.06 a | 0.19 ± 0.06 a |
Try | 0.83 ± 0.02 a | 0.82 ± 0.01 a | 0.84 ± 0.01 a | 0.75 ± 0.04 b | 0.7 ± 0.02 b | 0.54 ± 0.02 c |
Iso | 0.88 ± 0.02 a | 0.89 ± 0.01 a | 0.92 ± 0.02 a | 0.75 ± 0.06 b | 0.73 ± 0.02 b | 0.55 ± 0.02 c |
TFAAs | 29.42 ± 0.18 a | 27.64 ± 0.27 b | 26.61 ± 0.16 b | 23.86 ± 0.73 c | 21.87 ± 0.38 c | 18.35 ± 0.1 d |
No. | Compounds | CK vs. T60 | CK vs. T70 | CK vs. T80 | CK vs. T90 | CK vs. T100 | ||||||||||
VIP | p-Value | Type | VIP | p-Value | Type | VIP | p-Value | Type | VIP | p-Value | Type | VIP | p-Value | Type | ||
Alcohols | ||||||||||||||||
1 | Geraniol | 1.25 | 0.02 | Up | 2.46 | 0.01 | Up | 4.48 | 0.00 | Up | 1.27 | 0.00 | Up | 3.16 | 0.01 | Down |
2 | 2-phenylethanol | 2.83 | 0.04 | Up | 5.71 | 0.00 | Up | 7.47 | 0.00 | Up | 3.49 | 0.00 | Up | 2.62 | 0.00 | Down |
3 | 1-penten-3-ol | 2.46 | 0.04 | Down | 2.56 | 0.01 | Down | 2.46 | 0.00 | Down | 3.25 | 0.00 | Down | 2.92 | 0.00 | Down |
4 | (Z)-2-penten-1-ol | 4.34 | 0.02 | Down | 4.34 | 0.01 | Down | 3.51 | 0.00 | Down | 4.41 | 0.00 | Down | 3.97 | 0.00 | Down |
5 | (E)-3-hexen-1-ol | 4.98 | 0.00 | Down | 4.53 | 0.00 | Down | 3.81 | 0.00 | Down | 4.51 | 0.00 | Down | 4.25 | 0.00 | Down |
6 | 1-hexanol | 3.60 | 0.01 | Down | 3.08 | 0.00 | Down | 2.65 | 0.00 | Down | 3.21 | 0.00 | Down | 3.25 | 0.00 | Down |
7 | (E)-2-hexen-1-ol | 2.87 | 0.00 | Down | 2.58 | 0.00 | Down | 2.15 | 0.00 | Down | 2.34 | 0.00 | Down | 2.45 | 0.00 | Down |
8 | 1-octanol | 1.69 | 0.00 | Down | 1.34 | 0.00 | Down | 1.18 | 0.00 | Down | 1.52 | 0.00 | Down | 1.49 | 0.00 | Down |
9 | α-terpineol | 1.47 | 0.00 | Up | 1.23 | 0.01 | Up | 2.87 | 0.00 | Up | 2.85 | 0.00 | Up | 4.02 | 0.00 | Up |
Hydrocarbons | ||||||||||||||||
10 | Dodecane | 1.64 | 0.03 | Down | 5.90 | 0.00 | Up | 5.28 | 0.00 | Up | 6.70 | 0.00 | Up | 7.27 | 0.00 | Up |
11 | Tridecane | 2.40 | 0.04 | Up | 3.03 | 0.01 | Up | 2.43 | 0.00 | Up | 2.97 | 0.01 | Up | 2.98 | 0.00 | Up |
12 | Decane | 2.88 | 0.00 | Down | 2.35 | 0.00 | Down | 1.06 | 0.02 | Down | 2.22 | 0.00 | Down | 1.20 | 0.00 | Down |
13 | 3-methyl-tridecane | 1.91 | 0.00 | Up | 1.48 | 0.00 | Up | 1.39 | 0.00 | Up | 1.60 | 0.00 | Up | 1.84 | 0.00 | Up |
14 | 3-methylene-undecane | 1.12 | 0.01 | Down | 1.21 | 0.00 | Up | 1.030 | 0.00 | Up | 1.16 | 0.00 | Up | 1.41 | 0.00 | Up |
15 | Linalool | 2.32 | 0.00 | Up | 2.57 | 0.00 | Up | 2.78 | 0.00 | Up | 2.16 | 0.00 | Down | 1.87 | 0.00 | Down |
16 | Tetradecane | 1.39 | 0.00 | Up | 1.27 | 0.00 | Up | 1.00 | 0.00 | Up | 1.56 | 0.00 | Up | 1.43 | 0.00 | Up |
Aldehydes | ||||||||||||||||
17 | Heptanal | 2.79 | 0.01 | Down | 3.05 | 0.00 | Down | 3.14 | 0.00 | Down | 4.90 | 0.00 | Down | 4.88 | 0.00 | Down |
18 | Pentanal | 3.18 | 0.00 | Up | 2.94 | 0.00 | Up | 2.66 | 0.00 | Up | 2.41 | 0.00 | Up | 2.19 | 0.00 | Up |
19 | Nonanal | 2.51 | 0.00 | Up | 2.09 | 0.00 | Up | 1.94 | 0.00 | Up | 1.67 | 0.00 | Down | 1.82 | 0.00 | Down |
20 | Furfural | 1.49 | 0.00 | Up | 1.26 | 0.00 | Up | 187 | 0.00 | Up | 4.05 | 0.00 | Up | 4.74 | 0.00 | Up |
21 | α-citral | 1.50 | 0.00 | Down | 1.29 | 0.00 | Down | 1.10 | 0.00 | Down | 1.31 | 0.00 | Down | 1.26 | 0.00 | Down |
Esters | ||||||||||||||||
22 | Methyl salicylate | 7.66 | 0.00 | Down | 6.52 | 0.00 | Down | 5.51 | 0.00 | Down | 6.31 | 0.00 | Down | 6.00 | 0.00 | Down |
23 | γ-Decalactone | 5.46 | 0.00 | Down | 4.45 | 0.00 | Down | 3.71 | 0.00 | Down | 4.47 | 0.00 | Down | 3.98 | 0.00 | Down |
24 | Allyl phenoxyacetate | 2.40 | 0.00 | Down | 1.86 | 0.00 | Down | 1.56 | 0.00 | Down | 1.88 | 0.00 | Down | 1.69 | 0.00 | Down |
25 | Hexanoic acid, hexyl ester | 2.53 | 0.00 | Down | 1.83 | 0.00 | Down | 1.49 | 0.00 | Down | 1.78 | 0.00 | Down | 1.57 | 0.00 | Down |
Heterocyclic compounds | ||||||||||||||||
26 | 2-pentyl-furan | 2.53 | 0.00 | Up | 1.97 | 0.00 | Up | 1.71 | 0.00 | Up | 2.50 | 0.00 | Up | 1.92 | 0.00 | Up |
27 | Pyrrole | 2.11 | 0.00 | Up | 1.24 | 0.00 | Up | 2.01 | 0.00 | Up | 2.31 | 0.00 | Up | 1.18 | 0.00 | Up |
28 | Pyridine | 1.21 | 0.00 | Up | 1.32 | 0.00 | Up | 1.81 | 0.00 | Up | 2.43 | 0.00 | Up | 3.12 | 0.00 | Up |
Terpenoids | ||||||||||||||||
29 | Myrcene | 1.56 | 0.01 | Up | 1.39 | 0.00 | Up | 1.35 | 0.00 | Up | 2.12 | 0.00 | Up | 3.04 | 0.00 | Up |
30 | 2,4-dimethyl-1-heptene | 1.03 | 0.00 | Up | 1.04 | 0.00 | Up | 1.40 | 0.00 | Up | 1.01 | 0.00 | Up | 1.29 | 0.00 | Up |
Ketones | ||||||||||||||||
31 | (E)-β-ionone | 2.13 | 0.00 | Up | 2.21 | 0.00 | Up | 1.98 | 0.00 | Up | 3.10 | 0.00 | Up | 2.64 | 0.00 | Up |
Ethers | ||||||||||||||||
32 | Diphenyl ether | 5.99 | 0.00 | Down | 4.49 | 0.00 | Down | 3.75 | 0.00 | Down | 4.51 | 0.00 | Down | 4.02 | 0.00 | Down |
Acid | ||||||||||||||||
33 | Acetic acid | 3.22 | 0.00 | Down | 2.46 | 0.00 | Down | 2.29 | 0.00 | Down | 2.85 | 0.00 | Down | 2.53 | 0.00 | Down |
No. | Compounds | CAS | Odor Type | Threshold (μg/kg−1) | OAVs | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | T60 | T70 | T80 | T90 | T100 | |||||
1 | Geraniol | 106-24-1 | Floral | 7.5 [11] | 566.17 | 647.07 | 772.32 | 1183.36 | 655.23 | 362.57 |
2 | Heptanal | 111-71-7 | Green | 3 [32] | 922.04 | 821.27 | 691.80 | 553.49 | 288.55 | 110.58 |
3 | Methyl salicylate | 118-61-6 | Floral | 40 [6] | 123.15 | 69.03 | 44.94 | 37.88 | 44.03 | 31.09 |
4 | 2-pentyl-furan | 3777-69-3 | Fruity | 4.8 [32] | 116.79 | 156.29 | 217.59 | 226.02 | 260.58 | 236.24 |
5 | Pentanal | 110-62-3 | Nutty | 400 [32] | 0.64 | 1.57 | 2.23 | 2.62 | 1.82 | 1.87 |
6 | Nonanal | 124-19-6 | Floral | 10 [11] | 55.94 | 79.59 | 88.41 | 98.53 | 33.02 | 21.49 |
7 | (Z)-2-penten-1-ol | 1576-95-0 | Green | 720 [11] | 3.18 | 2.14 | 1.06 | 1.23 | 1.02 | 0.93 |
8 | (E)-3-hexen-1-ol | 928-97-2 | Green | 110 [11] | 21.74 | 13.24 | 7.90 | 6.85 | 6.67 | 4.88 |
9 | 1-hexanol | 111-27-3 | Green | 5.6 [11] | 265.97 | 177.66 | 138.55 | 123.09 | 117.75 | 71.28 |
10 | Furfural | 1998-1-1 | Roasted | 770 [11] | 0.17 | 0.28 | 0.33 | 0.68 | 1.86 | 3.15 |
11 | (E)-β-ionone | 79-77-6 | Floral | 7 [32] | 3.53 | 10.79 | 14.89 | 28.37 | 14.77 | 11.12 |
12 | Myrcene | 123-35-3 | Woody | 15 [11] | 8.73 | 15.10 | 18.45 | 22.47 | 32.56 | 72.05 |
13 | Linalool | 78-70-6 | Floral | 10 [11] | 116.68 | 190.22 | 214.61 | 350.62 | 80.03 | 43.49 |
14 | (E)-2-hexen-1-ol | 928-95-0 | Green | 5.6 [11] | 136.63 | 81.34 | 48.56 | 43.29 | 58.40 | 26.46 |
15 | 1-octanol | 111-87-5 | Chemical | 125.8 [56] | 2.60 | 1.75 | 1.53 | 1.35 | 1.14 | 0.78 |
16 | γ-decalactone | 706-14-9 | Fruity | 110 [11] | 15.50 | 5.56 | 2.29 | 1.46 | 1.13 | 0.79 |
17 | α-citral | 141-27-5 | Green | 32 [11] | 6.35 | 3.76 | 2.55 | 2.12 | 2.10 | 1.29 |
18 | Hexanoic acid, hexyl ester | 6378-65-0 | Green | 70 [6] | 3.90 | 0.53 | 0.37 | 0.31 | 0.27 | 0.25 |
19 | 2-ethyl-6-methyl-pyrazine | 13925-03-6 | Roasted | 40 [32] | 0.10 | 0.27 | 1.12 | 1.95 | 3.08 | 6.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Luo, X.; Yan, J.; Liu, K.; Wang, C.; Jiao, W.; Zhao, H.; Liu, M.; Yang, L. Investigation of the Effect of Fragrance-Enhancing Temperature on the Taste and Aroma of Black Tea from the Cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya Using Metabolomics and Sensory Histology Techniques. Fermentation 2024, 10, 520. https://doi.org/10.3390/fermentation10100520
Jiang B, Luo X, Yan J, Liu K, Wang C, Jiao W, Zhao H, Liu M, Yang L. Investigation of the Effect of Fragrance-Enhancing Temperature on the Taste and Aroma of Black Tea from the Cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya Using Metabolomics and Sensory Histology Techniques. Fermentation. 2024; 10(10):520. https://doi.org/10.3390/fermentation10100520
Chicago/Turabian StyleJiang, Bin, Xueping Luo, Jingna Yan, Kunyi Liu, Congming Wang, Wenwen Jiao, Hu Zhao, Mingli Liu, and Liran Yang. 2024. "Investigation of the Effect of Fragrance-Enhancing Temperature on the Taste and Aroma of Black Tea from the Cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya Using Metabolomics and Sensory Histology Techniques" Fermentation 10, no. 10: 520. https://doi.org/10.3390/fermentation10100520
APA StyleJiang, B., Luo, X., Yan, J., Liu, K., Wang, C., Jiao, W., Zhao, H., Liu, M., & Yang, L. (2024). Investigation of the Effect of Fragrance-Enhancing Temperature on the Taste and Aroma of Black Tea from the Cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya Using Metabolomics and Sensory Histology Techniques. Fermentation, 10(10), 520. https://doi.org/10.3390/fermentation10100520