Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Analysis
2.3. Relative Feed Value (RFV)
2.4. Ruminal Degradability Analysis
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition and HCN Content in Whole-Plant Cassava
3.2. Mineral Composition of Whole-Plant Cassava
3.3. Amino Acid Content of Whole-Plant Cassava
3.4. Ruminal Degradability of Whole-Plant Cassava
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Zi, X.; Yang, H.; Ji, F.; Tang, J.; Lv, R.; Zhou, H. Effects of king grass and sugarcane top in the absence or presence of exogenous enzymes on the growth performance and rumen microbiota diversity of goats. Trop. Anim. Health Prod. 2021, 53, 106. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G.; Li, M.; Shi, L.; Huang, X.; Guan, S. Effects of nutrition level of concentrate-based diets on growth performance and carcass characteristics of Hainan black goats. Trop. Anim. Health Prod. 2014, 46, 783–788. [Google Scholar] [CrossRef]
- FAO-STAT, Food and Agriculture Organization of the United Nations. 2019. Available online: https://www.fao.org/faostat/zh/#data/QCL/visualize (accessed on 1 November 2023).
- Napasirth, V.; Napasirth, P.; Sulinthone, T.; Phommachanh, K.; Cai, Y. Microbial population, chemical composition and silage fermentation of cassava residues. Anim. Sci. J. 2015, 86, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, C.N.; Ibeto, C.N.; Ezeoha, S.L.; Ogbuagu, N.J. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energy 2015, 81, 745–752. [Google Scholar] [CrossRef]
- Jampa, M.; Sutthanut, K.; Weerapreeyakul, N.; Tukummee, W.; Wattanathorn, J.; Muchimapura, S. Multiple Bioactivities of Manihot esculenta Leaves: UV Filter, Anti-Oxidation, Anti-Melanogenesis, Collagen Synthesis Enhancement, and Anti-Adipogenesis. Molecules 2022, 27, 1556. [Google Scholar] [CrossRef]
- Laya, A.; Koubala, B.B.; Negi, P.S. Antidiabetic (α-amylase and α-glucosidase) and anti-obesity (lipase) inhibitory activities of edible cassava (Manihot esculenta Crantz) as measured by in vitro gastrointestinal digestion: Effects of phenolics and harvested time. Int. J. Food Prop. 2022, 25, 492–508. [Google Scholar] [CrossRef]
- Fasae, O.A.; Adu, I.F.; Aina, A.B.; Dipeolu, M.A. Growth performance, carcass characteristics and meat sensory evaluation of West African dwarf sheep fed varying levels of maize and cassava hay. Trop. Anim. Health Prod. 2011, 43, 503–510. [Google Scholar] [CrossRef]
- Hue, K.T.; Thanh Van, d.T.; Spörndly, E.; Ledin, I.; Wredle, E. Effect of adaptation strategies when feeding fresh cassava foliage on intake and physiological responses of lambs. Trop. Anim. Health Prod. 2012, 44, 267–276. [Google Scholar] [CrossRef]
- Nguyen, T.H.L.; Ngoan, L.D.; Bosch, G.; Verstegen, M.W.A.; Hendriks, W.H. Ileal and total tract apparent crude protein and amino acid digestibility of ensiled and dried cassava leaves and sweet potato vines in growing pigs. Anim. Feed. Sci. Technol. 2012, 172, 171–179. [Google Scholar] [CrossRef]
- Régnier, C.; Bocage, B.; Archimède, H.; Noblet, J.; Renaudeau, D. Digestive utilization of tropical foliages of cassava, sweet potatoes, wild cocoyam and erythrina in Creole growing pigs. Anim. Feed. Sci. Technol. 2013, 180, 44–54. [Google Scholar] [CrossRef]
- Dang, H.L.; Obitsu, T.; Sugino, T. Effects of ensiling treatment for tuber crop forages and grain source on carbohydrate digestion, nitrogen utilization, and urea metabolism in sheep. Anim. Feed. Sci. Technol. 2018, 243, 140–149. [Google Scholar] [CrossRef]
- Viennasay, B.; Wanapat, M.; Phesatcha, K.; Phesatcha, B.; Ampapon, T. Replacement of rice straw with cassava-top silage on rumen ecology, fermentation and nutrient digestibilities in dairy steers. Anim. Prod. Sci. 2019, 59, 906–913. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Pan, X.; Xu, T.; Zhang, Z.; Zi, X.; Jiang, Y. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing. Sci. Rep. 2017, 7, 45697. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, H.; Xu, T.; Zi, X. Effect of cassava foliage on the performance, carcass characteristics and gastrointestinal tract development of geese. Poult. Sci. 2019, 98, 2133–2138. [Google Scholar] [CrossRef] [PubMed]
- Ojo, I.; Apiamu, A.; Egbune, E.O.; Tonukari, N.J. Biochemical Characterization of Solid-State Fermented Cassava Stem (Manihot esculenta Crantz-MEC) and Its Application in Poultry Feed Formulation. Appl. Biochem. Biotechnol. 2022, 194, 2620–2631. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, N.S.; Torres-Mendoza, L.J.; Abelilla, J.J.; Stein, H.H. Chemical composition of cassava-based feed ingredients from South-East Asia. Anim. Biosci. 2023, 36, 908–919. [Google Scholar] [CrossRef]
- Isamah, G.K.; Asagba, S.O.; Ekakitie, A.O. Lipid peroxidation, activities of superoxide dismutase and catalase during post-harvest deterioration of cassava (Manihot esculenta Crantz) root tubers. Int. Biodeterior. Biodegrad. 2003, 52, 129–133. [Google Scholar] [CrossRef]
- Kayode, B.I.; Kayode, R.M.O.; Salami, K.O.; Obilana, A.O.; George, T.T.; Dudu, O.E.; Adebo, O.A.; Njobeh, P.B.; Diarra, S.S.; Oyeyinka, S.A. Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT 2021, 147, 111546. [Google Scholar] [CrossRef]
- Bogale, S.; Haile, A.; Berhanu, B.; Beshir, H.M. Cassava production practices in Ethiopia and its use as Ingredient for injera making. Future Foods 2022, 6, 100204. [Google Scholar] [CrossRef]
- Ono, L.T.; Silva, J.J.; Soto, T.S.; Doná, S.; Iamanaka, B.T.; Fungaro, M.H.P.; Taniwaki, M.H. Fungal communities in Brazilian cassava tubers and food products. Int. J. Food Microbiol. 2023, 384, 109909. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Jiang, H.; Ni, H.; Liu, Y.; Huang, P.; Fang, J.; Kong, X. Diets Partially Replaced With Cassava Residue Modulate Antioxidant Capacity, Lipid Metabolism, and Gut Barrier Function of Huanjiang Mini-Pigs. Front. Vet. Sci. 2022, 9, 902328. [Google Scholar] [CrossRef] [PubMed]
- Nhassico, D.; Muquingue, H.; Cliff, J.; Cumbana, A.; Bradbury, J.H. Rising African cassava production, diseases due to high cyanide intake and control measures. J. Sci. Food Agric. 2008, 88, 2043–2049. [Google Scholar] [CrossRef]
- Wobeto, C.; Corrêa, A.D.; Abreu, C.M.P.; Santos, C.D. Cyanide in flourand cassava leaves (Manihot esculenta crantz). Food Sci. Technol. 2004, 28, 1115–1118. [Google Scholar]
- Modesto Junior, E.N.; Chisté, R.C.; Pena, R.D.S. Oven drying and hot water cooking processes decrease HCN contents of cassava leaves. Food Res. Int. 2019, 119, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Oni, A.O.; Onwuka, C.F.; Arigbede, O.M.; Oni, O.O.; Anele, U.Y.; Yusuf, K.O.; Oduguwa, B.O.; Onifade, O.S. Chemical composition and in sacco degradability of four varieties of cassava leaves grown in Southwestern Nigeria in the rumen of sheep. Trop. Anim. Health Prod. 2010, 42, 1385–1393. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Lei, V.; Amoa-Awua, W.K.; Brimer, L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 1999, 53, 169–184. [Google Scholar] [CrossRef]
- Winters, A.L.; Lloyd, J.D.; Jones, R.; Merry, R.J. Evaluation of a rapid method for estimating free amino acids in silages. Anim. Feed. Sci. Technol. 2002, 99, 177–187. [Google Scholar] [CrossRef]
- ARC. The Nutrient Requirements of Ruminant Livestock; Agricultural Research Council, Commonwealth Agricultural Bureaux: Slough, UK, 1965. [Google Scholar]
- Ngo Van, M.; Wiktorsson, H. Effect of molasses on nutritional quality of cassava and Gliricidia tops silage. Asian-Australas. J. Anim. Sci. 2002, 15, 1294–1299. [Google Scholar]
- Ly, N.T.H.; Ngoan, L.D.; Verstegen, M.W.A.; Hendriks, W.H. Inclusion of Ensiled Cassava KM94 Leaves in Diets for Growing Pigs in Vietnam Reduces Growth Rate but Increases Profitability. Asian-Australas. J. Anim. Sci. 2011, 24, 1157–1163. [Google Scholar] [CrossRef]
- Hue, K.T.; Thanh Van, d.T.; Ledin, I.; Wredle, E.; Spörndly, E. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield. Asian-Australas. J. Anim. Sci. 2012, 25, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Sath, K.; Sokun, K.; Pauly, T.; Holtenius, K. Feed intake, digestibility, and N retention in cattle fed rice straw and para grass combined with different levels of protein derived from cassava foliage. Asian-Australas. J. Anim. Sci. 2012, 25, 956–961. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Zi, X.; Cai, Y. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase. Anim. Sci. J. 2017, 88, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- GB 13078-2001; General Administration of Quality Supervision Inspection and Quarantine (GAQSIQ), Hygienical Standard for Feeds. Standards Press of China: Beijing, China, 2001.
- Sath, K.; Pauly, T.; Holtenius, K. Mineral status in cattle fed rice straw and para grass combined with different levels of protein derived from cassava foliage. Asian-Australas. J. Anim. Sci. 2013, 26, 59–64. [Google Scholar] [CrossRef]
- NRC. Nutrient requirement of goats. Angora, dairy and meat goat in temperate and tropical countries. In Nutrient Requirement of Domestic Animal Number 15; National Academy Press: Washington, DC, USA, 1981. [Google Scholar]
- Gomez, G.; Noma, A.T. The amino acid composition of cassava leaves, foliage, root tissues and whole-root chips. Nutr. Rep. Int. 1986, 33, 595–601. [Google Scholar]
- Chauynarong, N.; Elangovan, A.V.; Iji, P.A. The potential of cassava products in diets for poultry. Worlds Poult. Sci. J. 2009, 65, 23–36. [Google Scholar] [CrossRef]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Jacquot, R. Les facteurs d’efficacit’e alimentaire. In Nutrition et Alimentation Tropicales; Tome 1, AO Editions; FAO: Rome, Italy, 1957. [Google Scholar]
- Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ. Tech. Rep. Ser. 1985, 724, 1–206. [Google Scholar]
- Wanapat, M.; Pimpa, O.; Petlum, A.; Boontao, U. Cassava hay: A new strategic feed for ruminants during the dry season. Livest. Res. Rural Dev. 1997, 9, 57–61. [Google Scholar]
- Ngo Van, M.; Wiktorsson, H. Cassava tops ensiled with or without molasses as additive effects on quality, feed intake and digestibility by heifers. Asian-Australas. J. Anim. Sci. 2001, 14, 624–630. [Google Scholar]
- Pin, C.; Somnuek, S. Effects of varieties and timing of subsequent cutting on yield, chemical composition and ruminal degradability of cassava Hay in Southern Thailand. Songklanakarin J. Sci. Technol. 2007, 29, 49–60. [Google Scholar]
SC5 | SC7 | SC205 | SC9 | SC14 | Mean | SEM | p Value | |
---|---|---|---|---|---|---|---|---|
DM (g kg−1 FM) | 283.2 a | 291.5 a | 276.0 a | 281.1 a | 255.8 b | 277.5 | 6.0 | <0.05 |
CP (g kg−1 DM) | 142.4 c | 195.3 a | 173.6 b | 195.8 a | 176.8 b | 176.8 | 9.8 | <0.05 |
ADF (g kg−1 DM) | 130.7 | 137.2 | 142.8 | 134.0 | 136.3 | 136.2 | 2.0 | 0.351 |
NDF (g kg−1 DM) | 269.5 | 285.0 | 277.0 | 266.2 | 286.6 | 276.9 | 4.1 | 0.664 |
GE (MJ kg−1 DM) | 17.5 | 18.9 | 18.7 | 18.3 | 18.3 | 18.3 | 0.2 | 0.219 |
WSC (g kg−1 DM) | 222.3 | 241.8 | 214.7 | 273.5 | 201.7 | 230.8 | 12.5 | 0.533 |
Starch (g kg−1 DM) | 278.9 | 253.1 | 286.3 | 223.7 | 296.4 | 267.7 | 13.2 | 0.246 |
RFV (%) | 271.7 | 255.3 | 261.2 | 274.2 | 254.1 | 263.2 | 4.2 | 0.437 |
HCN (mg kg−1 FM) | 114.8 b | 131.6 a | 86.4 c | 76.5 c | 78.3 c | 97.5 | 10.9 | <0.05 |
HCN after drying (mg kg−1 DM) | 47.3 a | 50.7 a | 50.3 a | 36.0 b | 36.7 b | 44.2 | 3.26 | <0.05 |
SC5 | SC7 | SC205 | SC9 | SC14 | Mean | SEM | p Value | |
---|---|---|---|---|---|---|---|---|
Ca (g kg−1 DM) | 12.2 a | 9.3 b | 7.0 c | 8.4 c | 9.2 b | 9.2 | 0.8 | <0.01 |
P (g kg−1 DM) | 5.3 a | 2.9 b | 3.2 b | 3.1 b | 3.7 b | 3.6 | 0.4 | <0.05 |
K (g kg−1 DM) | 21.9 b | 27.1 a | 20.5 b | 30.2 a | 24.7 b | 24.9 | 1.7 | <0.05 |
Mg (g kg−1 DM) | 7.1 b | 7.8 b | 9.4 a | 5.8 c | 6.6 c | 7.3 | 0.6 | <0.05 |
Na (g kg−1 DM) | 0.5 | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 | 0 | 0.557 |
Fe (mg kg−1 DM) | 93.8 c | 151.2 b | 202.0 a | 96.2 c | 135.8 b | 135.8 | 19.9 | <0.01 |
Mn (mg kg−1 DM) | 1175.5 b | 1150.7 b | 1848.1 a | 933.7 b | 1018.3 b | 1225.3 | 161.6 | <0.01 |
Cu (mg kg−1 DM) | 4.8 | 6.7 | 5.4 | 6.4 | 5.8 | 5.8 | 0.3 | 0.411 |
Zn (mg kg−1 DM) | 109.4 a | 120.8 a | 78.4 b | 112.6 a | 105.31 | 105.3 | 7.2 | <0.05 |
SC5 | SC7 | SC205 | SC9 | SC14 | Mean | SEM | p Value | |
---|---|---|---|---|---|---|---|---|
Essential amino acids (g kg−1 DM) | 61.0 c | 82.2 a | 74.2 b | 77.9 a | 61.7 c | 72.9 | 3.6 | <0.01 |
Thr (g kg−1 DM) | 6.8 | 9.2 | 8.2 | 8.5 | 6.9 | 8.1 | 0.4 | 0.231 |
Val (g kg−1 DM) | 8.3 b | 11.2 a | 10.0 a | 10.5 a | 8.3 b | 9.9 | 0.5 | <0.05 |
Met (g kg−1 DM) | 0.7 | 0.97 | 0.71 | 0.94 | 0.7 | 0.8 | 0.1 | 0.267 |
Iie (g kg−1 DM) | 6.8 | 9.1 | 8.2 | 8.7 | 6.8 | 8.1 | 0.4 | 0.182 |
Leu (g kg−1 DM) | 13.2 b | 18.1 a | 16.2 a | 17.1 a | 13.2 b | 15.9 | 0.9 | <0.05 |
Phe (g kg−1 DM) | 8.3 b | 11.0 a | 10.1 a | 10.8 a | 8.3 b | 9.9 | 0.5 | <0.05 |
Lys (g kg−1 DM) | 8.8 | 11.8 | 10.9 | 11.0 | 9.2 | 10.6 | 0.5 | 0.407 |
Arg (g kg−1 DM) | 8.2 b | 10.8 a | 9.9 a | 10.4 a | 8.3 b | 9.7 | 0.4 | <0.05 |
Non-essential amino acids (g kg−1 DM) | 67.8 c | 91.1 a | 84.8 b | 85.0 b | 70.1 c | 81.4 | 10.4 | <0.05 |
Asp (g kg−1 DM) | 14.9 | 19.2 | 18.0 | 17.9 | 16.2 | 17.6 | 0.5 | 0.581 |
Ser (g kg−1 DM) | 6.3 | 8.7 | 7.9 | 8.1 | 7.0 | 7.8 | 0.3 | 0.242 |
Glu (g kg−1 DM) | 18.4 c | 24.2 a | 23.4 a | 21.9 b | 18.5 c | 21.7 | 1.0 | <0.01 |
Gly (g kg−1 DM) | 7.7 b | 10.6 a | 9.5 a | 10.0 a | 7.7 b | 9.3 | 0.5 | <0.05 |
Ala (g kg−1 DM) | 8.8 b | 12.5 a | 11.8 a | 12.1 a | 8.7 b | 1.1 | 0.7 | <0.05 |
Tyr (g kg−1 DM) | 4.7 | 6.4 | 5.6 | 6.2 | 4.7 | 5.6 | 0.3 | 0.39 |
Pro (g kg−1 DM) | 6.9 b | 9.5 a | 8.6 a | 8.8 a | 7.3 b | 8.4 | 0.4 | <0.05 |
Total amino acids (g kg−1) | 131.7 c | 177.0 a | 163.0 b | 167.0 b | 150.0 c | 158.0 | 7.4 | <0.01 |
Essential amino acids/Total amino acids | 41.2 | 46.4 | 45.5 | 46.7 | 45.7 | 45.1 | 1.0 | 0.533 |
Total amino acids/Non-essential amino acids | 80.0 | 90.2 | 87.5 | 91.7 | 88.0 | 87.5 | 2.0 | 0.641 |
SC5 | SC7 | SC205 | SC9 | SC14 | Mean | SEM | p Value | |
---|---|---|---|---|---|---|---|---|
DMD (%) | 55.8 b | 65.3 ab | 74.7 a | 50.7 c | 80.0 a | 65.3 | 5.5 | <0.05 |
NDFD (%) | 53.3 b | 58.3 b | 59.1 b | 53.3 b | 67.3 a | 58.3 | 2.6 | <0.05 |
ADFD (%) | 28.3 c | 35.1 b | 43.3 a | 29.6 c | 39.3 b | 35.1 | 2.8 | <0.01 |
CPD (%) | 60.0 b | 64.8 b | 79.7 a | 47.9 c | 71.7 a | 64.8 | 5.4 | <0.01 |
ME (MJ kg−1 DM) | 7.9 c | 9.8 b | 11.4 a | 7.5 c | 12.3 a | 9.8 | 2.1 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhou, H.; Zi, X.; Lv, R.; Tang, J.; Ou, W.; Chen, S. Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China. Fermentation 2024, 10, 45. https://doi.org/10.3390/fermentation10010045
Li M, Zhou H, Zi X, Lv R, Tang J, Ou W, Chen S. Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China. Fermentation. 2024; 10(1):45. https://doi.org/10.3390/fermentation10010045
Chicago/Turabian StyleLi, Mao, Hanlin Zhou, Xuejuan Zi, Renlong Lv, Jun Tang, Wenjun Ou, and Songbi Chen. 2024. "Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China" Fermentation 10, no. 1: 45. https://doi.org/10.3390/fermentation10010045
APA StyleLi, M., Zhou, H., Zi, X., Lv, R., Tang, J., Ou, W., & Chen, S. (2024). Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China. Fermentation, 10(1), 45. https://doi.org/10.3390/fermentation10010045