Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- (1)
- preliminary processing of data coming from the sensor, including signal filtering; normalization of resistance values; construction of auxiliary graphs of the normalized signal, the first derivative, and the second derivative in the coordinates of the Elovich equation;
- (2)
- finding informative features: the values of the extrema of the first and second derivatives of the normalized response, the slope of the approximating line in the coordinates of the Elovich equation in the time interval between the extrema of the first and second derivatives (in order to determine the response section that will be used to construct the equation in the coordinates Elovich; determination the time at which the extrema of the first and second derivatives of the response are observed);
- (3)
- compiling an array of data on the values of three informative features for each reference concentration in the operating range of the sensor for each gas;
- (4)
- normalization of the values of the informative features by the maximum value and construction of straight lines characterizing gas in the space of informative features, using the method of least squares in space;
- (5)
- for identification of an unknown gas, data from the sensor is processed according to paragraphs 1 and 2 and are normalized by the same coefficients as when constructing the straight lines characterizing gas in the space of informative features;
- (6)
- determination of a point in a multidimensional space corresponding to a dimension;
- (7)
- calculation and comparison of the minimum distances to all straight lines characterizing gas in space of informative features;
- (8)
- determination of the gas type by the minimum distance to the straight lines characterizing gas in space of informative features;
- (9)
- determination of gas concentration based on the calibration dependence of the sensor for the recognized gas;
- (10)
- output of results.
- -
- for SO2 R21 = 0.9999; R22 = 0.9433;
- -
- for NO2 R21 = 0.9516; R22 = 0.9043;
- -
- for CO R21 = 0.9867; R22 = 0.9563.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Xun, Q.; Li, Z.; Du, S. Silicon carbide converters and MEMS devices for high-temperature power electronics: A critical review. Micromachines 2019, 10, 406. [Google Scholar] [CrossRef]
- Platonov, V.B.; Rumyantseva, M.N.; Frolov, A.S.; Yapryntsev, A.D.; Gaskov, A.M. High-temperature resistive gas sensors based on ZnO/SiC nanocomposites. Beilstein J. Nanotechnol. 2019, 10, 1537–1547. [Google Scholar] [CrossRef]
- Sasago, Y.; Nakamura, H.; Odaka, T.; Isobe, A.; Komatsu, S.; Nakamura, Y.; Yamawaki, T.; Yorita, C.; Ushifusa, N.; Yoshikawa, Y.; et al. SiC-FET gas sensor for detecting sub-ppm gas concentrations. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 151–158. [Google Scholar] [CrossRef]
- Andersson, M.; Bastuck, M.; Huotari, J.; Spetz, A.L.; Lappalainen, J.; Schütze, A.; Puglisi, D. SiC-FET sensors for selective and quantitative detection of VOCs down to ppb level. Procedia Eng. 2016, 168, 216–220. [Google Scholar] [CrossRef]
- Gaiardo, A.; Bellutti, P.; Fabbri, B.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Malagù, C.; Pepponi, N.; Valt, M.; et al. Chemoresistive gas sensor based on SiC thick film: Possible distinctive sensing properties between H2S and SO2. Procedia Eng. 2016, 168, 276–279. [Google Scholar] [CrossRef]
- Semenov, A.V.; Lubov, D.V.; Kozlovskyi, A.A. The chemresistive properties of SiC nanocrystalline films with different conductivity type. J. Sens. 2020, 2020, 7587314. [Google Scholar] [CrossRef]
- Sun, L.; Han, C.; Wu, N.; Wang, B.; Wang, Y. High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition. RSC Adv. 2018, 8, 13697–13707. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J.; Jung, M. Silicon carbide-based hydrogen gas sensors for high-temperature applications. Sensors 2013, 13, 13575–13583. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Meng, X.; Zhang, Z.; Cao, J. A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surf. Interfaces 2021, 24, 101110. [Google Scholar] [CrossRef]
- Ding, H.; Ge, H.F.; Liu, J.H. High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sens. Actuators B Chem. 2005, 107, 749–755. [Google Scholar] [CrossRef]
- Roth, M.; Hartinger, R.; Faul, R.; Endres, H.-E. Drift reduction of organic coated gas-sensors by temperature modulation. Sens. Actuators B Chem. 1996, 36, 358–362. [Google Scholar] [CrossRef]
- Martinelli, E.; Polese, D.; Catini, A.; D’Amico, A.; Di Natale, C. Self-adapted temperature modulation in metal-oxide semiconductor gas sensors. Sens. Actuators B Chem. 2012, 161, 534–541. [Google Scholar] [CrossRef]
- Lee, A.P.; Reedy, B.J. Temperature modulation in semiconductor gas sensing. Sens. Actuators B Chem. 1999, 60, 35–42. [Google Scholar] [CrossRef]
- Sun, K.; Zhan, G.; Zhang, L.; Wang, Z.; Lin, S. Highly sensitive NO2 gas sensor based on ZnO nanoarray modulated by oxygen vacancy with Ce doping. Sens. Actuators B Chem. 2023, 379, 133294. [Google Scholar] [CrossRef]
- Ghosh, R.; Santra, S.; Ray, S.K.; Guha, P.K. Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 2015, 107, 153102. [Google Scholar] [CrossRef]
- Manna, B.; Chakrabarti, I.; Guha, P.K. Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: First-principle study and its experimental correlation. IEEE Trans. Electron. Dev. 2019, 66, 1942–1949. [Google Scholar] [CrossRef]
- Kim, T.-H.; Jeong, S.-Y.; Moon, Y.K.; Lee, J.-H. Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sens. Actuators B Chem. 2019, 301, 127140. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, C.; De, Q.; Gu, F.; Han, D. One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature. ACS Sens. 2018, 3, 468–475. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Anisimov, D.S.; Chekusova, V.P.; Trul, A.A.; Abramov, A.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Sci. Rep. 2021, 11, 10683. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Du, T.; Zhu, Z.; Zhang, J.; Liu, Q. A gas sensor array for the simultaneous detection of multiple VOCs. Sci. Rep. 2017, 7, 1960. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuators B Chem. 2021, 39, 129090. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Li, H.-Y.; Kim, B.-Y.; Jo, Y.-M.; Byun, H.-G.; Hwang, I.-S.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.H. Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe-doped In2O3 nanofibers. Sens. Actuators B. Chem. 2019, 285, 193–200. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Guha, P.K. Selective detection of VOCs with WO3 nanoplates based single chemiresistive sensor device using machine learning algorithms. IEEE Sens. J. 2021, 21, 5771–5778. [Google Scholar] [CrossRef]
- Vergara, A.; Llobet, E.; Martinelli, E.; Di Natale, C.; D’Amico, A.; Correig, X. Feature extraction of metal oxide gas sensors using dynamic moments. Sens. Actuators B Chem. 2007, 122, 219–226. [Google Scholar] [CrossRef]
- Rodner, M.; Bahonjic, J.; Mathisen, M.; Gunnarsson, R.; Ekeroth, S.; Helmersson, U.; Ivanov, I.G.; Yakimova, R.; Eriksson, J. Performance tuning of gas sensors based on epitaxial graphene on silicon carbide. Mater. Design. 2018, 153, 153–158. [Google Scholar] [CrossRef]
- Nanto, H.; Tsubakino, S.; Ikeda, M.; Endo, F. Identification of aromas from wine using quartz-resonator gas sensors in conjunction with neural-network analysis. Sens. Actuators B Chem. 1995, 25, 794–796. [Google Scholar] [CrossRef]
- Endres, H.E.; Go, W.; Jander, H.D.; Drost, S.; Sberveglieri, G.; Faglia, G.; Perego, C. A systematic investigation on the use of time-dependent sensor signals in signal-processing techniques. Sens. Actuators B Chem. 1995, 25, 785–789. [Google Scholar] [CrossRef]
- Hongmei, W.; Lishi, W.; Wanli, X.; Baogni, Z.; Chengjun, L.; Jianxing, F. An application of artificical neural networks. Simultaneous determination of the concentration of sulfur dioxide and relative humidity with a single coated piezoelectric crystal. Anal. Chem. 1997, 69, 699–702. [Google Scholar] [CrossRef]
- Du, H.; Xie, G.; Su, Y.; Tai, H.; Du, X.; Yu, H.; Zhang, Q. A new model and its application for the dynamic response of RGO resistive gas sensor. Sensors 2019, 19, 889. [Google Scholar] [CrossRef] [PubMed]
- Plugotarenko, N.K.; Novikov, S.P.; Myasoedova, T.N.; Mikhailova, T.S. Comparative Analysis of Derivative Parameters of Chemoresistive Sensor Signals for Gas Concentration Estimation. Chemosensors 2022, 10, 126. [Google Scholar] [CrossRef]
- Somboon, P.; Wyszynski, B.; Nakamoto, T. Realization of recording a wide range of odor by utilizing both of transient and steady-state sensor responses in recording process. Sens. Actuators B Chem. 2007, 124, 557–563. [Google Scholar] [CrossRef]
- Newton, M.I.; Starke, T.K.H.; Willis, M.R.; McHale, G. NO2 detection at room temperature with copper phthalocyanine thin film devices. Sens. Actuators B Chem. 2000, 67, 307–311. [Google Scholar] [CrossRef]
- Mazein, P.; Zimmermann, C.; Rebière, D.; Déjous, C.; Pistré, J.; Planade, R. Dynamic analysis of Love waves sensors responses: Application to organophosphorus compounds in dry and wet air. Sens. Actuators B Chem. 2003, 95, 51–57. [Google Scholar] [CrossRef]
- Rodner, M.; Eriksson, J. First-order time-derivative readout of epitaxial graphene-based gas sensors for fast analyte determination. Sens. Actuators Rep. 2020, 2, 100012. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef]
- Arbayani Zaidan, M.; Hossein Motlagh, N.; Fung, P.L.; Khalaf, A.S.; Matsumi, Y.; Ding, A.; Tarkoma, S.; Petäjä, T.; Kulmala, M.; Hussein, T. Intelligent air pollution sensors calibration for extreme events and drifts monitoring. IEEE Trans. Ind. Inform. 2023, 19, 1366–1379. [Google Scholar] [CrossRef]
- Yang, L.; Ji, H.; Meng, C.; Li, Y.; Zheng, G.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; Guo, S.; et al. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers. Am. Chem. Soc. 2022, 14–15, 17818–17825. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Guha, P.K. Ultra-selective tin oxide-based chemiresistive gas sensor employing signal transform and machine learning techniques. Anal. Chim. Acta 2022, 1217, 339996. [Google Scholar] [CrossRef] [PubMed]
- El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Low-Temperature Adsorption Study of Carbon Dioxide on Porous Magnetite Nanospheres Iron Oxide. Biointerface Res. Appl. Chem. 2021, 12, 6252–6268. [Google Scholar]
- Urfa, Y.; Çorumlu, V.; Altındal, A. Gamma ray irradiation dose dependent methanol sensing with ZnO nanoparticles. Mater. Chem. Phys. 2021, 264, 124473. [Google Scholar] [CrossRef]
- Xie, T.; Xie, G.; Du, H.; Su, Y.; Ye, Z.; Chen, Y.; Jiang, Y. Two novel methods for evaluating the performance of OTFT gas sensors. Sens. Actuators B Chem. 2016, 230, 176–183. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Plugotarenko, N.K.; Moiseeva, T.A. Copper-containing films obtained by the simple citrate sol–gel route for NO2 detection: Adsorption and kinetic study. Chemosensors 2020, 8, 79. [Google Scholar] [CrossRef]
- Saleh, T.A. Chapter 2—Adsorption technology and surface science. Interface Sci. Technol. 2022, 34, 39–64. [Google Scholar]
- Mikhailova, T.S.; Grigoryev, M.N.; Myasoedova, T.N. The two-stage electrochemical deposition of a manganese-doped silicon-carbon film onto the silicon (100) substrate. J. Phys. Conf. Ser. 2019, 1410, 012027. [Google Scholar] [CrossRef]
- Plugotarenko, N.K.; Myasoedova, T.N.; Grigoryev, M.N.; Mikhailova, T.S. Electrochemical deposition of silicon-carbon films: A study on the nucleation and growth mechanism. Nanomaterials 2019, 9, 1754. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Grigoryev, M.N.; Plugotarenko, N.K.; Mikhailova, T.S. Fabrication of gas-sensor chips based on silicon-carbon films obtained by electrochemical deposition. Chemosensors 2019, 7, 52. [Google Scholar] [CrossRef]
- Hassan, N.; Shahat, A.; El-Didamony, A.; El-Desouky, M.; El-Bindary, A. Equilibrium, kinetic and thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8. Moroc. J. Chem. 2020, 8, 627–637. [Google Scholar]
Models | Gas | Equation of Approximating Curve | R2 | MBE | RMSE |
---|---|---|---|---|---|
Pseudo-First-order kinetic | SO2 | Y = − 0.0584 X − 1.6488 | 0.8620 | −0.01108 | 0.6739 |
CO | Y = − 0.0427 X − 2.3478 | 0.8025 | −0.00511 | 0.6058 | |
NO2 | Y = − 0.0365 X − 2.0274 | 0.8895 | −0.00552 | 0.3696 | |
Pseudo-second-order kinetic | SO2 | Y = − 8.3199 X + 1959.3 | 0.2355 | 1539.1 | 1557.8 |
CO | Y = 2.1369 X + 1622.4 | 0.0207 | 1730.3 | 1731.4 | |
NO2 | Y = 0.4603 X + 1090.4 | 0.0047 | 1113.6 | 1113.7 | |
Intraparticle diffusion | SO2 | Y = 0.0092 X − 0.025 | 0.9622 | 0.0368 | 0.04255 |
CO | Y = 0.0064 X − 0.0141 | 0.9844 | 0.0289 | 0.03249 | |
NO2 | Y = 0.0104 X − 0.0245 | 0.9855 | 0.0453 | 0.05139 | |
Elovich (over the entire time interval) | SO2 | Y = 0.0237 X − 0.0499 | 0.9041 | 0.0363 | 0.0424 |
CO | Y = 0.0168 X − 0.0324 | 0.9318 | 0.0287 | 0.0326 | |
NO2 | Y = 0.0270 X − 0.0535 | 0.9152 | 0.0447 | 0.0512 | |
Elovich (in the range from the minimum of the first derivative to the maximum of the second derivative of the sensor response) | SO2 | Y = 0.0435 X − 0.1281 | 0.9995 | 0.00088 | 0.00202 |
CO | Y = 0.0179 X − 0.0379 | 0.9965 | −0.00022 | 0.00079 | |
NO2 | Y = 0.0382 X − 0.0987 | 0.9998 | 0.00029 | 0.00044 | |
Ritchie | SO2 | Y = 2947.5 X − 29.463 | 0.9235 | 147.61 | 736.32 |
CO | Y = 2628.3 X − 19.825 | 0.8205 | 1214.99 | 6217.64 | |
NO2 | Y = 1552.4 X − 9.5079 | 0.9207 | 191.39 | 1074.84 |
Reference Concentration | Gas | Concentration, ppm | Relative Error, % |
---|---|---|---|
15 | CO | 14.55 | 3.00 |
40 | CO | 39.60 | 1.00 |
15 | SO2 | 14.50 | 3.30 |
40 | SO2 | 39.20 | 2.00 |
15 | NO2 | 14.30 | 4.60 |
40 | NO2 | 40.30 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plugotarenko, N.K.; Novikov, S.P.; Myasoedova, T.N.; Mikhailova, T.S. Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification. C 2023, 9, 104. https://doi.org/10.3390/c9040104
Plugotarenko NK, Novikov SP, Myasoedova TN, Mikhailova TS. Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification. C. 2023; 9(4):104. https://doi.org/10.3390/c9040104
Chicago/Turabian StylePlugotarenko, Nina K., Sergey P. Novikov, Tatiana N. Myasoedova, and Tatiana S. Mikhailova. 2023. "Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification" C 9, no. 4: 104. https://doi.org/10.3390/c9040104
APA StylePlugotarenko, N. K., Novikov, S. P., Myasoedova, T. N., & Mikhailova, T. S. (2023). Investigation of Adsorption Kinetics on the Surface of a Copper-Containing Silicon–Carbon Gas Sensor: Gas Identification. C, 9(4), 104. https://doi.org/10.3390/c9040104