Novel Ultrahard Extended Hexagonal C10, C14 and C18 Allotropes with Mixed sp2/sp3 Hybridizations: Crystal Chemistry and Ab Initio Investigations
Abstract
1. Introduction
2. Brief Presentation of the Computational Framework
3. Crystal Chemistry Results
4. Charge Density
5. Mechanical Properties from Elastic Constants
Space Group | a=b (Å) | c (Å) | ρ (g/cm3) | HV (GPa) | B0 (GPa) | |
---|---|---|---|---|---|---|
Polytype 4H: C8 | P63/mmc | 2.5221 | 8.2371 | 3.5164 | 97 | 443 |
Hybrid C10 | P63/mmc | 2.4960 | 11.1775 | 3.3073 | 92 | 417 |
Polytype 6H: C12 | P63/mmc | 2.5221 | 12.3557 | 3.5164 | 97 | 443 |
Hybrid C14 | P63/mmc | 2.5000 | 15.2330 | 3.3867 | 94 | 427 |
Polytype 8H: C16 | P63/mmc | 2.5221 | 16.47429 | 3.5164 | 97 | 443 |
Hybrid C18 | P63/mmc | 2.5019 | 19.3964 | 3.4146 | 94 | 430 |
Lonsdaleite | P63/mmc | 2.5221 † | 4.1186 † | 3.5164 | 97 | 443 |
Diamond | Fd-3m | 3.56661 ‡ | 3.5169 | 98 | 445 § |
HV | B | GV | E ** | ν ** | KIc‡ | |||||
---|---|---|---|---|---|---|---|---|---|---|
T * | LO † | MO ‡ | CN § | B0 * | BV | |||||
GPa | MPa·m½ | |||||||||
Polytype 4H: C8 | 97 | 90 | 106 | 102 | 443 | 445 | 557 | 1179 | 0.058 | 6.5 |
Hybrid C10 | 92 | 79 | 82 | 74 | 417 | 408 | 440 | 971 | 0.103 | 5.4 |
Polytype 6H: C12 | 97 | 90 | 94 | 85 | 443 | 445 | 502 | 1094 | 0.090 | 6.2 |
Hybrid C14 | 94 | 72 | 88 | 80 | 427 | 417 | 467 | 1020 | 0.092 | 5.7 |
Polytype 8H: C16 | 97 | 90 | 103 | 100 | 443 | 432 | 539 | 1142 | 0.059 | 6.3 |
Hybrid C18 | 94 | 66 | 92 | 88 | 430 | 412 | 488 | 1050 | 0.075 | 5.7 |
Lonsdaleite | 97 | 90 | 99 | 94 | 443 | 432 | 521 | 1115 | 0.070 | 6.2 |
Diamond | 98 | 90 | 100 | 93 | 445 †† | 530 †† | 1138 | 0.074 | 6.4 |
6. Dynamic Properties from the Phonons
7. Electronic Band Structures and Density of States
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhattacharya, P.; Fornari, R.; Kamimura, H. (Eds.) Comprehensive Semiconductor Science and Technology; Reference work; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Ownby, P.D.; Yang, X.; Liu, J. Calculated X-ray diffraction data for diamond polytypes. J. Am. Ceram. Soc. 1992, 75, 1876–1883. [Google Scholar] [CrossRef]
- Lifshitz, Y.; Duan, X.F.; Shang, N.G.; Li, Q.; Wan, L.; Bello, I.; Lee, S.T. Epitaxial diamond polytypes on silicon. Nature 2001, 412, 404. [Google Scholar] [CrossRef]
- Wen, B.; Zhao, J.; Bucknum, M.J.; Yao, P.; Li, T. First-principles studies of diamond polytypes. Diam. Relat. Mater. 2008, 17, 356–364. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, X.; Su, D.S.; Centi, G.; Perathoner, S. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 2018, 47, 8438–8473. [Google Scholar] [CrossRef]
- Zhai, Z.; Huang, N.; Jiang, X. Progress in electrochemistry of hybrid diamond/sp2-C nanostructures. Curr. Opin. Electrochem. 2022, 32, 100884. [Google Scholar] [CrossRef]
- Hu, M.; Huang, Q.; Zhao, Z.; Xu, B.; Yu, D.; He, J. Superhard and high-strength yne-diamond semimetals. Diam. Relat. Mater. 2014, 46, 15–20. [Google Scholar] [CrossRef]
- Matar, S.F. C5 as simplest ultrahard allotrope with mixed sp2/sp3 carbon hybridizations from first principles. arXiv 2022, arXiv:2210.04210. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar]
- Perdew, J.; Burke, K.; Ernzerhof, M. The Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes, 2nd ed.; Cambridge University Press: New York, NY, USA, 1986. [Google Scholar]
- Blöchl, P.E.; Jepsen, O.; Anderson, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special k-points for Brillouin zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Voigt, W. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annal. Phys. 1889, 274, 573–587. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Eyert, V. The Augmented Spherical Wave Method, Lect. Notes Phys. 849; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Brazhkin, V.V.; Solozhenko, V.L. Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. J. Appl. Phys. 2019, 125, 130901. [Google Scholar] [CrossRef]
- Mukhanov, V.A.; Kurakevych, O.O.; Solozhenko, V.L. The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties. J. Superhard Mater. 2008, 30, 368–378. [Google Scholar] [CrossRef]
- Mazhnik, E.; Oganov, A.R. A model of hardness and fracture toughness of solids. J. Appl. Phys. 2019, 126, 125109. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Lyakhov, A.O.; Oganov, A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B 2011, 84, 092103. [Google Scholar] [CrossRef]
- Matar, S.F.; Solozhenko, V.L. Crystal chemistry and ab initio prediction of ultrahard rhombohedral B2N2 and BC2N. Solid State Sci. 2021, 118, 106667. [Google Scholar] [CrossRef]
- Solozhenko, V.L.; Le Godec, Y. A hunt for ultrahard materials. J. Appl. Phys. 2019, 126, 230401. [Google Scholar] [CrossRef]
- Bindzus, N.; Straasø, T.; Wahlberg, N.; Becker, J.; Bjerg, L.; Lock, N.; Dippel, A.-C.; Iversen, B.B. Experimental determination of core electron deformation in diamond. Acta Cryst. A 2014, 70, 39–48. [Google Scholar] [CrossRef]
- Krishnan, R.S. Raman spectrum of diamond. Nature 1945, 155, 171. [Google Scholar] [CrossRef]
- Matar, S.F. Crystal chemistry rationale and DFT investigations of novel hard tetragonal C6 built from tetrahedral C(sp3) lattice embedding allene-like sp2 linear tricarbon. ChemArxiv 2022. [Google Scholar] [CrossRef]
- Arita, R.; Ikeda, H. Is Fermi-surface nesting the origin of superconductivity in iron pnictides?: A fluctuation–exchange-approximation study. J. Phys. Soc. Japan 2009, 78, 113707. [Google Scholar] [CrossRef]
- Dugdale, S.B. Life on the edge: A beginner’s guide to the Fermi surface. Phys. Scr. 2016, 91, 053009. [Google Scholar] [CrossRef]
(a) 4H, 6H and 8H Polytypes [2] (Presently Calculated Values Are in Parentheses) | |||
P63/mmc N°194 | Polytype 4H: C8 | Polytype 6H: C12 | Polytype 8H: C16 |
a, Å | 2.522 (2.511) | 2.522 (2.514) | 2.522 (2.516) |
c, Å | 8.237 (8.279) | 12.356 (12.394) | 16.474 (16.505) |
C1(4e) 0 0 z | 0.0938 (0.093) | 0.1875 (0.187) | 0.0469 (0.047) |
C2(4f) 1/3 2/3 z | 0.1563 (0.156) | 0.5208 (0.521) | 0.0781 (0.0780) |
C3(4f) 1/3 2/3 z | – | 0.6458 (0.645) | 0.1719 (0.1710) |
C4(4f) 1/3 2/3 z | – | – | 0.797 (0.797) |
Volume, Å3 | 45.376 (45.25) | 68.064 (67.87) | 90.75 (90.45) |
dC1(tet)-C2(tet), Å | 1.544 | 1.544 | 1.544 |
Etotal, eV | −72.68 | −109.06 | −145.43 |
Ecoh/atom, eV | −2.49 | −2.49 | −2.49 |
(b) Hybrid C8, C14 and C16 | |||
P63/mmc No. 194 | C10 | C14 | C18 |
a, Å | 2.496 | 2.500 | 2.502 |
c, Å | 11.178 | 15.233 | 19.396 |
C(2a) (trig) | 0 0 0 | – | 0 0 0 |
C(2b) (trig) | – | 0 0 ¼ | – |
C1(4e) 0 0 z | 0.3692 | 0.1541 | 0.0753 |
C2(4f) 1/3 2/3 z | 0.1807 | 0.5171 | 0.1035 |
C3(4f) 1/3 2/3 z | – | 0.6180 | 0.1828 |
C4(4f) 1/3 2/3 z | – | – | 0.7903 |
Volume, Å3 | 60.307 | 82.451 | 105.14 |
dC1(tet)-C2(tet), Å | 1.545 | 1.544 | 1.536 |
dC(tet)-C(trig), Å | 1.462 | 1.462 | 1.461 |
Etotal, eV | −84.94 | −121.45 | −157.73 |
Ecoh/atom, eV | −1.89 | −2.08 | −2.16 |
C11 | C12 | C13 | C33 | C44 | BV | GV | |
---|---|---|---|---|---|---|---|
Polytype 4H: C8 | 1190 | 105 | 37 | 1271 | 542 | 445 | 557 |
Hybrid C10 | 922 | 101 | 39 | 1469 | 410 | 408 | 440 |
Polytype 6H: C12 | 1129 | 160 | 43 | 1256 | 485 | 445 | 502 |
Hybrid C14 | 972 | 93 | 69 | 1343 | 439 | 417 | 467 |
Polytype 8H: C16 | 1152 | 99 | 48 | 1211 | 526 | 432 | 539 |
Hybrid C18 | 1012 | 90 | 45 | 1325 | 461 | 412 | 488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, S.F.; Eyert, V.; Solozhenko, V.L. Novel Ultrahard Extended Hexagonal C10, C14 and C18 Allotropes with Mixed sp2/sp3 Hybridizations: Crystal Chemistry and Ab Initio Investigations. C 2023, 9, 11. https://doi.org/10.3390/c9010011
Matar SF, Eyert V, Solozhenko VL. Novel Ultrahard Extended Hexagonal C10, C14 and C18 Allotropes with Mixed sp2/sp3 Hybridizations: Crystal Chemistry and Ab Initio Investigations. C. 2023; 9(1):11. https://doi.org/10.3390/c9010011
Chicago/Turabian StyleMatar, Samir F., Volker Eyert, and Vladimir L. Solozhenko. 2023. "Novel Ultrahard Extended Hexagonal C10, C14 and C18 Allotropes with Mixed sp2/sp3 Hybridizations: Crystal Chemistry and Ab Initio Investigations" C 9, no. 1: 11. https://doi.org/10.3390/c9010011
APA StyleMatar, S. F., Eyert, V., & Solozhenko, V. L. (2023). Novel Ultrahard Extended Hexagonal C10, C14 and C18 Allotropes with Mixed sp2/sp3 Hybridizations: Crystal Chemistry and Ab Initio Investigations. C, 9(1), 11. https://doi.org/10.3390/c9010011