Technology Features of Diamond Coating Deposition on a Carbide Tool
Abstract
:1. Introduction
2. Chemical Methods of Etching Cobalt on the Surface of WC-Co Substrate
- −
- The coating of an intermediate layer can prevent the diffusion of Co to the surface of the substrate;
- −
- The creation of stable intermetallic cobalt compounds. This method is implemented using gas or liquid phase reactions;
- −
3. Chemical Treatment of WC-Co Substrates with a High Cobalt Content
4. Physical-Mechanical Methods of W-Co Alloys Surface Pretreatment
5. Suppression of Co Diffusion and Increasing of DC Adhesion by Buffer Layers Formation
6. Two-Layer and Gradient Buffer Layers
7. Buffer Layers Based on Silicon Compounds
8. Buffer Layers Based on Tungsten and Tantalum
9. CVD Diamond Coatings Deposition by the Hot Thread Method
10. Diamond Coating by CVD with Activation of the Gas Phase by Plasma in a Microwave Discharge
11. The Diamond-Coated Carbide Tools for Processing Polymer Composite Materials
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faraz, A.; Biermann, D.; Weinet, K. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. Int. J. Mach. Tools Manuf. 2009, 49, 1185–1196. [Google Scholar] [CrossRef]
- Tsao, C.C.; Kuo, K.L.; Hsu, I.C. Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core-saw drill. Int. J. Adv. Manuf. Technol. 2012, 59, 617–622. [Google Scholar] [CrossRef]
- Iliescu, D.; Gethin, D.; Gutierrez, M.E.; Girot, F. Modeling and tool wear in drilling of CFRP. Int. J. Mach. Tools Manuf. 2010, 50, 204–213. [Google Scholar] [CrossRef]
- Tsao, C.C. Experimental study of drilling composite materials with step-core drill. Mater. Des. 2008, 29, 1740–1744. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Fyodorov, S.V.; Sitnikov, N.N.; Batako, A.D. Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. Int. J. Adv. Manuf. Technol. 2017, 90, 3421–3435. [Google Scholar] [CrossRef]
- Singla, A.; Singh, N.K.; Singh, Y.; Jangir, D.K. Micro and Nano-Crystalline Diamond Coatings of Co-cemented Tungsten Carbide Tools with Their Characterization. J. Bio Tribo Corros. 2021, 7, 35. [Google Scholar] [CrossRef]
- Tillmann, W. Trends and market perspectives for diamond tools in the construction industry. Int. J. Refract. Met. Hard Mater. 2000, 18, 301–306. [Google Scholar] [CrossRef]
- Kolber, T.; Koepf, A.; Haubner, R.; Hutter, H. WC-Co substrate surface pretreatments with aluminum compounds prior to polycrystalline CVD diamond deposition. Int. J. Refract. Met. Hard Mater. 1999, 17, 445–452. [Google Scholar] [CrossRef]
- Linnik, S.A.; Gaydaychuk, A.V.; Okhotnikov, V.V. Improvem ent to the adhesion of polycrystalline diamond films on WC-Co cemented carbides through ion etching of loosely bound growth centers. Surf. Coat. Technol. 2018, 334, 227–232. [Google Scholar] [CrossRef]
- Dumpala, R.; Chandran, M.; Rao, M.S.R. Engineered CVD diamond coatings for machining and tribological applications. J. Miner. 2015, 67, 1565–1577. [Google Scholar] [CrossRef]
- Park, B.S.; Baik, Y.J.; Lee, K.R.; Eun, K.Y.; Kim, D.H. Behaviour of Co binder phase during diamond deposition on WC-Co substrate. Diam. Relat. Mater. 1993, 2, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Deuerler, F.; Gruner, H.; Pohl, M.; Tikana, L. Wear mechanisms of diamond-coated tools. Surf. Coat. Technol. 2001, 142, 674–680. [Google Scholar] [CrossRef]
- Kubelka, S.; Haubner, R.; Lux, B.; Steiner, R.; Stingeder, G.; Grasserbauer, M. Influences of WC-Co hard metal substrate pre-treatments with boron and silicon on low pressure diamond deposition. Diam. Relat. Mater. 1994, 3, 1360–1369. [Google Scholar] [CrossRef]
- Li, Y.S.; Tang, Y.; Yang, Q.; Xiao, C.; Hirose, A. Diamond deposition on steel substrates with an Al interlayer. Int. J. Refract. Met. Hard Mater. 2009, 27, 417–420. [Google Scholar] [CrossRef]
- Haubner, R.; Kalss, W. Diamond deposition on hardmetal substrates: Comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 2010, 28, 75–483. [Google Scholar] [CrossRef]
- Ashkinazi, E.E.; Sedov, V.S.; Petrzhik, M.I.; Sovyk, D.N.; Khomich, A.A.; Ralchenko, V.G.; Vinogradov, D.V.; Tsygankov, P.A.; Ushakova, I.N.; Khomich, A.V. Effect of crystal structure on the tribological properties of diamond coatings on hard-alloy cutting tools. J. Frict. Wear 2017, 38, 252–258. [Google Scholar] [CrossRef]
- Ashkihazi, E.E.; Sedov, V.S.; Sovyk, D.N.; Khomich, A.A.; Bolshakov, A.P.; Ryzhkov, S.G.; Khomich, A.V.; Vinogradov, D.V.; Ralchenko, V.G.; Konov, V.I. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application. Diamond Relat. Mater. 2017, 75, 169–175. [Google Scholar] [CrossRef]
- Ashkinazi, E.E.; Ralchenko, V.G.; Konov, V.I.; Vinogradov, D.V.; Tsygankov, P.A.; Dryzhak, E.A.; Khomich, A.V. Frictional coefficients between aluminum-silicon alloy and cutting inserts with MPCVD diamond coatings. Russian Eng. Res. 2018, 38, 457–461. [Google Scholar] [CrossRef]
- Khomich, A.V.; Ashkinazi, E.E.; Sedov, V.S.; Sovyk, D.N.; Kozlova, M.V.; Vinogradov, D.V.; Tsygankov, P.A. Microwave CVD deposition and properties of nano/microcrystalline diamond multilayer coatings on tungsten carbide cutting tools. In Proceedings of the International Conference on Mechanical, System and Control Engineering, St. Petersburg, Russia, 19–21 May 2017; pp. 11–15. [Google Scholar]
- Khomich, A.A.; Ashkinazi, E.E.; Ralchenko, V.G.; Sedov, V.S.; Khmelnitski, R.A.; Poklonskaya, O.N.; Kozlova, M.V.; Khomich, A.V. Application of Raman spectroscopy for analyzing diamond coatings on a hard alloy. J. Appl. Spectrosc. 2017, 84, 312–318. [Google Scholar] [CrossRef]
- Manaud, J.P.; Poulon, A.; Gomez, S.; Le Petitcorps, Y.A. Comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC-Co tools. Surf. Coat. Technol. 2007, 202, 222–231. [Google Scholar] [CrossRef]
- Kazahaya, K.; Kawai, S.; Matsumoto, Y.; Ishibashi, K.; Imai, T. Diamond Film Coated Tool and Process for Producing the Same. Patent JP, WO2005011902A1, 31 July 2003. [Google Scholar]
- Mehlmann, A.K.; Fayer, A.; Dirnfeld, S.F.; Avigal, Y.; Porath, R.; Kochman, A. Nucleation and growth of diamond on cemented carbides by hot-filament chemical vapor deposition. Diamond Relat. Mater. 1993, 2, 317–322. [Google Scholar] [CrossRef]
- Sun, F.H.; Zhang, Z.M.; Chen, M.; Shen, H.S. Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools. Diam. Relat. Mater. 2003, 12, 711–718. [Google Scholar] [CrossRef]
- Barletta, M.; Rubino, G.; Gisario, A. Adhesion and wear resistance of CVD diamond coatings on laser treated WC-Co substrates. Wear 2011, 271, 2016–2024. [Google Scholar] [CrossRef]
- Sahoo, B.; Chattopadhyay, A.K. On effectiveness of various surface treatments on adhesion of HF-CVD diamond coating to tungsten carbide inserts. Diamond Relat. Mater. 2002, 11, 1660–1669. [Google Scholar] [CrossRef]
- Gomez, H.; Durham, D.; Xiao, X.; Lukitsch, M.; Luc, P.; Chou, K.; Sachdev, A.; Kumar, A. Adhesion analysis and dry machining performance of CVD diamond coatings deposited on surface modified WC-Co turning inserts. J. Mater. Process. Technol. 2012, 212, 523–533. [Google Scholar] [CrossRef]
- Xu, F.; Xu, J.H.; Yuen, M.F.; Zheng, L.; Lu, W.Z.; Zuo, D.W. Adhesion improvement of diamond coatings on cemented carbide with high cobalt content using PVD interlayer. Diamond Relat. Mater. 2013, 34, 70–75. [Google Scholar] [CrossRef]
- Lu, F.X.; Tang, W.Z.; Tong, Y.M.; Miao, J.Q.; He, L.F.; Li, C.M.; Chen, G.C. Novel pretreatment of hard metal substrate for better performance of diamond coated cutting tools. Diam. Relat. Mater. 2006, 15, 2039–2045. [Google Scholar] [CrossRef]
- Polini, R. Chemically vapor deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance. Thin Solid Film. 2006, 515, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Bouzakis, K.D.; Michailidis, N.; Skordaris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Annals Manuf. Technol. 2012, 6, 703–723. [Google Scholar] [CrossRef]
- Geng, C.L.; Tang, W.Z.; Hei, L.F.; Liu, S.T.; Lu, F.X. Fracture strength of two-step pretreated and diamond coated cemented carbide microdrills. Int. J. Refract. Met. Hard Mater. 2007, 25, 159–165. [Google Scholar] [CrossRef]
- Lei, X.; Shen, B.; Cheng, L.; Sun, F.; Ming, C. Influence of pretreatment and deposition parameters on the properties and cutting performance of NCD coated PCB micro drills. Int. J. Refract. Met. Hard Mater. 2014, 43, 30–41. [Google Scholar] [CrossRef]
- Settineri, L.; Bucciotti, F.; Cesano, F.; Faga, M.G. Surface properties of diamond coatings for cutting tools. CIRP Annals Manuf. Technol. 2007, 56, 573–576. [Google Scholar] [CrossRef]
- Mallika, K.; Komanduri, R. Diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD. Wear 1999, 224, 245–266. [Google Scholar] [CrossRef]
- Inspektor, A.; Oles, E.J.; Bauer, C.E. Theory and practice in diamond coated metal-cutting tools. Int. J. Refract. Met. Hard Mater. 1997, 15, 49–56. [Google Scholar] [CrossRef]
- Haubner, R.; Schubert, W.D.; Lux, B. Interactions of hard metal substrates during diamond deposition. Int. J. Refract. Met. Hard Mater. 1998, 16, 177–185. [Google Scholar] [CrossRef]
- Haubner, R.; Lux, B. On the formation of diamond coatings on WC/Co hard metal tools. Int. J. Refract. Met. Hard Mater. 1996, 14, 111–118. [Google Scholar] [CrossRef]
- Polini, R.; Bravi, F.; Casadei, F.; D’Antonio, P.; Traversa, E. Effect of substrate grain size and surface treatments on the cutting properties of diamond coated Co-cemented tungsten carbide tools. Diamond Relat. Mater. 2002, 11, 726–730. [Google Scholar] [CrossRef]
- Yang, T.; Wei, Q.; Qi, Y.; Wang, Y.; Xie, Y.; Luo, J.; Yu, Z. Microstructure evolution of thermal spray WC-Co interlayer during hot. J. Alloy. Compd. 2015, 639, 659–668. [Google Scholar] [CrossRef]
- Kim, S.; Seo, B.; Son, S.-H. Dissolution behavior of cobalt from WC-Co hard metal scraps by oxidation and wet milling process. Hydrometallurgy 2014, 143, 28–33. [Google Scholar] [CrossRef]
- Norafifah, H.; Noordina, M.Y.; Izman, S.; Kurniawan, D. Acid pretreatment of WC-Co for surface roughening and cobalt removal prior to CVD diamond coating. Appl. Mech. Mater. 2013, 315, 592–596. [Google Scholar] [CrossRef]
- Kim, J.S.; Park, Y.M.; Bae, M.K.; Kim, C.W.; Kim, D.W.; Shin, D.C.; Kim, T.G. Cutting performance of tungsten carbide tools coated with diamond thin films after etching for various times. Mod. Phys. Lett. B 2018, 32, 1850236. [Google Scholar] [CrossRef]
- Lin, C.-R.; Bendao, M.-K.; Liou, C.-W. Effects of surface modification on improvement of diamond coating on tungsten carbide cutting tool. Int. J. Mech. Eng. Robot. Res. 2016, 5, 168–171. [Google Scholar] [CrossRef]
- Rugoczky, P.; Lassy, G.; Lakatos, J. Characterization of the structure of WC-Co composite support layer of diamond coatings. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 60–65. [Google Scholar]
- Zhou, H.; Li, M.; Yuan, B. Mechanical property and characterization on diamond films deposited on WC-Co substrates. Mater. Sci. Forum 2016, 874, 333–338. [Google Scholar] [CrossRef]
- Vieira da Silva Neto, J.; Rodríguez, L.A.A.; Fraga Mariana, A.C.; André, C.; Raonei, A.C.; Evaldo, J.; Airoldi, V.J.T. WC-Co substrate preparation and deposition conditions for high adhesion of CVD diamond coating. Rev. Bras. Apl. Vácuo 2016, 35, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, C.; He, W.; Sun, F. Co evolutions for WC-Co with different Co contents during pretreatment and HFCVD diamond film growth processes. Trans. Nonfer. Met. Soc. China 2018, 28, 469–486. [Google Scholar] [CrossRef]
- Tönshoff, H.K.; Mohlfeld, A.; Gey, C.; Winkler, J. Mechanical pretreatment for improved adhesion of diamond coatings. Surf. Coat. Technol. 1999, 116–119, 440–446. [Google Scholar] [CrossRef]
- Neves, D.; Diniz, A.E.; Lima, M.S.F. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating. Appl. Surf. Sci. 2013, 282, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Deuerler, F.; Woehrl, N.; Buck, V. Characterization of nanostructured diamond coatings on various hard metal surfaces. Int. J. Refract. Met. Hard Mater. 2006, 24, 392–398. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Ananth, A.; Khan, J.; Srinivas, G. Ar+H2 plasma etching for improved adhesion of PVD coatings on steel substrates. Vacuum 2012, 86, 1165–1173. [Google Scholar] [CrossRef]
- Xu, Z.; Lev, L.; Lukitsch, M.; Kumar, A. Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates. Diam. Relat. Mater. 2007, 16, 461–466. [Google Scholar] [CrossRef]
- Arroyo, J.M.; Diniz, A.E.; Lima, M.S.F. Cemented carbide surface modifications using laser treatment and its effects on hard coating adhesion. Surf. Coat. Technol. 2010, 204, 2410–2416. [Google Scholar] [CrossRef]
- Neves, D.; Diniz, A.E.; Lima, M.S.F. Efficiency of the laser texturing on the adhesion of the coated twist drills. J. Mater. Process. Technol. 2006, 179, 139–145. [Google Scholar] [CrossRef]
- Xu, Z.; Kumar, A.; Lev, L.; Lukitsch, M.; Sikder, A. Adhesion improvement of CVD diamond coatings on WC-Co substrates for machining applications. Mater. Res. Soc. Symp. 2005, 843, T3.33. [Google Scholar] [CrossRef]
- Veillere, A.; Guillemet, T.; Xie, Z.Q.; Zuhlke, C.A.; Alexander, D.R.; Silvain, J.F.; Heintz, J.-M.; Chandra, N.; Lu, Y.F. Influence of WC-Co substrate pretreatment on diamond film deposition by laser-assisted combustion synthesis. ACS Appl. Mater. Interfaces 2011, 3, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Creasey, S.; Lewis, D.B.; Smith, I.J.; Munz, W.D. SEM image analysis of droplet formation during metal ion etching by a steered arc discharge. Surf. Coat. Technol. 1997, 97, 163–175. [Google Scholar] [CrossRef]
- Wei, R.; Vajo, J.J.; Matossian, J.N.; Gardos, M.N. Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools. Surf. Coat. Technol. 2002, 158–159, 465–472. [Google Scholar] [CrossRef]
- Alves, S.M.; Albano, W.; de Oliveira, A.J. Improvement of coating adhesion on cemented carbide tools by plasma etching. J. Braz. Soc. Mech. Sci. Eng. 2016, 39, 845–856. [Google Scholar] [CrossRef]
- Shen, X.; Wang, X.; Sun, F.; Ding, C. Sandblasting pretreatment for deposition of diamond films on WCCo hard metal substrates. Diam. Relat. Mater. 2017, 73, 7–14. [Google Scholar] [CrossRef]
- Ahmed, W.; Sein, H.; Ali, N.; Gracio, J.; Woodwards, R. Diamond films grown on cemented WC-Co dental burs using an improved CVD method. Diamond Relat. Mater. 2003, 12, 1300–1306. [Google Scholar] [CrossRef]
- Deuerler, F.; Vandenberg, H.; Tabersky, R.; Freundlieb, A.; Pies, M.; Buck, V. Pretreatment of substrate surface for improved adhesion of diamond films on hard metal cutting tools. Diamond Relat. Mater. 1996, 5, 1478–1489. [Google Scholar] [CrossRef]
- Tonshoff, H.K.; Mohlfeld, A.; Gey, C.; Winkler, J. Surface modification of cemented carbide cutting tools for improved adhesion of diamond coatings. Surf. Coat. Technol. 1998, 108, 543–550. [Google Scholar] [CrossRef]
- Buck, V.; Deuerler, F. Enhanced nucleation of diamond films on pretreated substrates. Diamond Relat. Mater. 1998, 7, 1544–1552. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Chattopadhyay, A.; Chattopadhyay, A.K. Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts. Appl. Surf. Sci. 2008, 254, 3721–3733. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A. Deposition and characterization of diamond coatings on WC-Co cutting tools with W/Al interlayer. Diamond Relat. Mater. 2010, 19, 496–499. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A. Study of carbideforming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates. Thin Solid Film. 2010, 519, 1606–1610. [Google Scholar] [CrossRef]
- Polini, R.; Barletta, M.; Cristofanilli, G. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers. Thin Solid Film. 2010, 519, 1629–1635. [Google Scholar] [CrossRef]
- Hei, H.; Shen, Y.; Ma, J.; Li, X.; Yu, S.; Tang, B.; Tang, W. Effect of substrate temperature on SiC interlayers for diamond coatings deposition on WC-Co substrates. Vacuum 2014, 109, 15–20. [Google Scholar] [CrossRef]
- Endler, I.; Leonhardt, A.; Scheibe, H.J.; Born, R. Interlayers for diamond deposition on tool materials. Diamond Relat. Mater. 1996, 5, 299–303. [Google Scholar] [CrossRef]
- Baldus, H.; Jansen, M. Novel high-performance ceramicsamorphous inorganic networks from molecular precursors. Angew. Chem. Int. Edit. 1997, 36, 328–343. [Google Scholar] [CrossRef]
- Claudia, F. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 2012, 294, 61–79. [Google Scholar]
- Cui, Y.X.; Shen, B.; Sun, F.H. Diamond deposition on WC-Co substrate with amorphous SiC interlayer. Surf. Eng. 2014, 30, 237–243. [Google Scholar] [CrossRef]
- Cui, Y.X.; Shen, B.; Sun, F.H. Influence of amorphous ceramic interlayers on tribological properties of CVD diamond films. Appl. Surf. Sci. 2014, 313, 918–925. [Google Scholar] [CrossRef]
- Fan, F.; Tang, W.; Liu, S.; Hei, L.; Li, C.; Chen, G.; Lu, F. An effort to enhance adhesion of diamond coatings to cemented carbide substrates by introducing Si onto the interface. Surf. Coat. Technol. 2006, 200, 6727–6732. [Google Scholar] [CrossRef]
- Fischer, M.; Chandran, M.; Akhvlediani, R.; Hoffman, A. Interplay between adhesion and interfacial properties of diamond films deposited on WC-10%Co substrates using a CrN interlayer. Diamond Relat. Mater. 2016, 70, 167–172. [Google Scholar] [CrossRef]
- Wei, Q.; Yu, Z.M.; Ashfold, M.N.R.; Ye, J.; Ma, L. Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition. Appl. Surf. Sci. 2010, 256, 4357–4364. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Wan, B.; Yang, L.; Yang, Q. Deposition of diamond coatings on Fe-based substrates with Al and Al/AlN interlayers. Surf. Coat. Technol. 2015, 284, 139–144. [Google Scholar] [CrossRef]
- Xiao, X.; Sheldon, B.W.; Konca, E.; Lev, L.C.; Lukitsch, M.J. The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond Relat. Mater. 2009, 18, 1114–1117. [Google Scholar] [CrossRef]
- Petrikowski, K.; Fenker, M.; Gaebler, J.; Hagemann, A.; Pleger, S.; Schaefer, L. Study of CrNx and NbC interlayers for HFCVD diamond deposition onto WC-Co substrates. Diam. Relat. Mater. 2013, 33, 38–44. [Google Scholar] [CrossRef]
- Xu, F.; Yuen, M.F.; He, B.; Wang, C.D.; Zhao, X.R.; Tang, X.L.; Zuo, D.W.; Zhang, W.J. Microstructure and tribological properties of cubic boron nitride films on Si3N4 inserts via boron-doped diamond buffer layers. Diam. Relat. Mater. 2014, 49, 9–13. [Google Scholar] [CrossRef]
- Gowri, M.; Li, H.; Kacsich, T.; Schermer, J.J.; van Enckevort, W.J.P.; ter Meulen, J.J. Critical parameters in hot filament chemical vapor deposition of diamond films on tool steel substrates with CrN interlayers. Surf. Coat. Technol. 2007, 201, 4601–4608. [Google Scholar] [CrossRef]
- Raghuveer, M.S.; Yoganand, S.N.; Jagannadham, K.; Lemaster, R.L.; Bailey, J. Improved CVD diamond coatings on WC-Co tool substrates. Wear 2001, 253, 1194–1206. [Google Scholar] [CrossRef]
- Hojman, E.; Akhvlediani, R.; Layyous, A.; Hoffman, A. Diamond CVD film formation onto WC-Co substrates using a thermally nitrided Cr diffusion-barrier. Diam. Relat. Mater. 2013, 39, 65–72. [Google Scholar] [CrossRef]
- Hojman, E.; Akhvlediani, R.; Alagem, E.; Hoffman, A. Cobalt out-diffusion and carbon phase composition at the WC-10% Co/diamond film interface investigated by XPS, SEM, Raman and SIMS. Phys. Stat. Sol. A 2012, 209, 1726–1731. [Google Scholar] [CrossRef]
- Chandran, M.; Hoffman, A. Diamond film deposition on WC-Co and steel substrates with a CrN interlayer for tribological applications. J. Phys. D Appl. Phys. 2016, 49, 13002. [Google Scholar] [CrossRef]
- Fischer, M.; Chandran, M.; Akhvlediani, R.; Hoffman, A. The influence of deposition temperature on the adhesion of diamond films deposited on WC-Co substrates using a Cr-N interlayer. Phys. Stat. Sol. A 2015, 212, 2628–2635. [Google Scholar] [CrossRef]
- Linnik, S.A.; Gaydaychuk, A.V.; Barishnikov, E.Y. The feasibility of usage TiN and CrN barrier sublayers for improving the adhesion of polycrystalline diamond films on WC-Co hard alloys. Key Eng. Mater. 2016, 685, 583–586. [Google Scholar] [CrossRef]
- Liu, M.N.; Bian, Y.B.; Zheng, S.J.; Zhu, T.; Chen, Y.G.; Chen, Y.L.; Wang, J.S. Growth and mechanical properties of diamond films on cemented carbide with buffer layers. Thin Solid Film. 2015, 584, 165–169. [Google Scholar] [CrossRef]
- Ye, F.; Mohammadtaheri, M.; Li, Y.; Shiri, S.; Yang, Q.; Chen, N. Diamond nucleation and growth on WC-Co inserts with Cr2O3-Cr interlayer. Surf. Coat. Technol. 2018, 340, 190–198. [Google Scholar] [CrossRef]
- Liu, W.; Man, W.; Cao, Y.; Lyu, J.; Sun, J.; Yu, J.; Dai, D. The influence on the performance of CVD diamond coatings by the treatment of hydrogen peroxide. Vacuum 2018, 152, 91–96. [Google Scholar] [CrossRef]
- Spear, K.E. Diamond-ceramic coating of the future. J. Amer. Ceram. Soc. 1989, 72, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, C.; Berg, G.; Broszeit, E.; Berger, C. Datensammlung zu Hartstoffeigenschaften. Mater. Und Werkst. 1997, 28, 59–76. [Google Scholar] [CrossRef]
- Gao, J.; Hei, H.; Zheng, K.; Gao, X.; Liu, X.; Tang, B.; He, Z.; Yu, S. On the use of Mo/Mo2C gradient interlayers in diamond deposition onto cemented carbide substrates. Surf. Rev. Lett. 2016, 23, 1550109. [Google Scholar] [CrossRef]
- Gao, J.; Hei, H.; Zheng, K.; Wang, R.; Shen, Y.; Liu, X.; Tang, B.; He, Z.; Yu, S. Design and synthesis of diffusionmodified HfC/HfC-SiC bilayer system onto WC-Co substrate for adherent diamond deposition. J. Alloys Comp. 2016, 705, 376–383. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Ma, L.; Yang, G.; Wang, C. Investigation of thick CVD diamond film with SiC interlayer on tungsten carbide for possible usage in geologic explorations. Vacuum 2013, 94, 53–56. [Google Scholar] [CrossRef]
- Hei, H.; Ma, J.; Li, X.; Yu, S.; Tang, B.; Shen, Y.; Tang, W. Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer. Surf. Coat. Technol. 2015, 261, 272–277. [Google Scholar] [CrossRef]
- Yu, S.W.; Fan, P.W.; Tang, W.Z.; Li, X.J.; Hu, H.L.; Hei, H.J.; Zhang, S.K.; Lu, F.X. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates. Thin Solid Film. 2011, 520, 828–832. [Google Scholar] [CrossRef]
- Cabral, G.; Gäbler, J.; Lindner, J.; Grácio, J.; Polini, R. A study of diamond film deposition on WC-Co inserts for graphite machining: Effectiveness of SiC interlayers prepared by HFCVD. Diam. Relat. Mater. 2008, 17, 1008–1014. [Google Scholar] [CrossRef]
- Srikanth, V.V.S.S.; Staedler, T.; Jiang, X. Structural and compositional analyses of nanocrystallinediamond/β-SiC composite films. Appl. Phys. A Mater. Sci. Process. 2008, 91, 149–155. [Google Scholar] [CrossRef]
- Tian, Q.; Huang, N.; Yang, B.; Zhuang, H.; Wang, C.; Zhai, Z.; Li, J.; Jia, X.; Liu, L.; Jiang, X. Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate. J. Mater. Sci. Technol. 2017, 33, 1097–1106. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, X.; Liu, F.; Wang, Y.-H. Low-temperature β-SiC interlayer for diamond film on cemented carbide. Surf. Eng. 2017, 33/1, 20–26. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, W.; Shen, B.; Sun, F. A study of CVD diamond deposition on cemented carbide ball-end milling tools with high cobalt content using amorphous ceramic interlayers. Diam. Relat. Mater. 2015, 59, 21–29. [Google Scholar] [CrossRef]
- Poklonskaya, O.N.; Khomich, A.A. Raman scattering in a diamond crystal implanted by high-energy nickel ions. J. Appl. Spectrosc. 2013, 80/5, 715–720. [Google Scholar] [CrossRef]
- Haubner, R.; Lindlbauer, A.; Lux, B. Diamond nucleation and growth on refractory metals using microwave plasma deposition. Int. J. Refract. Met. Hard Mater. 1996, 14, 119–125. [Google Scholar] [CrossRef]
- Faure, C.; Teulé-Gay, L.; Manaud, J.; Poulon-Quintin, A. Mechanisms of time-modulated polarized nano-crystalline diamond growth. Surf. Coat. Technol. 2013, 222, 97–103. [Google Scholar] [CrossRef]
- Rong, W.; Hei, H.; Zhong, Q.; Shen, Y.; Liu, X.; Wang, X.; Zhou, B.; He, Z.; Yu, S. Nanostructured TaxC interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide. Appl. Surf. Sci. 2015, 359, 41–47. [Google Scholar] [CrossRef]
- Yu, S.; Gao, J.; Li, X.; Ma, D.; Hei, H.; Shen, Y.; Rong, W.; Liu, X.; Ne, Z.; Tang, B. Effect of substrate temperature on tantalum carbides interlayers synthesized onto WC-Co substrates for adherent diamond deposition. Surf. Rev. Lett. 2019, 26/2, 1850138. [Google Scholar] [CrossRef]
- Poulon-Quintin, A.; Faure, C.; Teulé-Gay, L.; Manaud, J.P. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings. Appl. Surf. Sci. 2015, 331, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Yu, Z.; Ashfold, M.; Chen, Z. Effects of thickness and cycle parameters on fretting wear behavior of CVD diamond coatings on steel substrates. Surf. Coat. Technol. 2010, 205, 158–167. [Google Scholar] [CrossRef]
- Dumpala, R.; Kumar, N.; Kumaran, C.R.; Dash, S.; Ramamoorthy, B.; Rao, M.S.R. Adhesion characteristics of nano- and micro-crystalline diamond coatings: Raman stress mapping of the scratch tracks. Diam. Relat. Mater. 2014, 44, 71–77. [Google Scholar] [CrossRef]
- Dumpala, R.; Ramamoorthy, B.; Rao, M.S.R. Graded composite diamond coatings with top-layer nanocrystallinityand interfacial integrity: Crosssectional Raman mapping. Appl. Surf. Sci. 2014, 289, 545–550. [Google Scholar] [CrossRef]
- Fraga, M.A.; Contin, A.; Rodríguez, L.A.A.; Vieira, J.; Campos, R.A.; Corat, E.J.; Airoldi, V.J.T. Nano- and microcrystalline diamond deposition on pretreated WC-Co substrates: Structural properties and adhesion. Mater. Res. Express 2016, 3, 025601. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Liu, S.; Xiong, L.; Weng, J.; Cui, X. Effects of surface pretreatment on nucleation and growth of ultra-nanocrystalline diamond films. Plasma Sci. Technol. 2015, 17, 496–501. [Google Scholar] [CrossRef]
- Liu, Y.; Du, M.; Zhang, M.; Wei, Q.; Yu, Z.; Li, X. Growth of diamond coatings on functionally graded cemented carbides. Int. J. Refract. Met. Hard Mater. 2015, 49, 307–313. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, F.; Xu, J.; Tang, X.; Liu, Y.; Zuo, D. Preparation and cutting performance of boron-doped diamond coating on cemented carbide cutting tools with high cobalt content. Int. J. Chem. Molecul. Nucl. Mater. Metallurg. Eng. 2015, 9, 577–580. [Google Scholar]
- Srinivasan, B.; Rao, M.S.R.; Rao, B.C. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy. J. Phys. D Appl. Phys. 2017, 50, 015302. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, K.; Wang, S.; Chen, S.; Chen, X. Influence of pretreatment on diamond-coated tool nucleation and mashining performance. Surf. Rev. Lett. 2018, 25, 1850020. [Google Scholar]
- Zhou, H.; Yuan, B.; Lyu, J.; Jiang, N. A novel approach of deposition for uniform diamond films on circular saw blades. Plasma Sci. Technol. 2017, 19, 115502. [Google Scholar] [CrossRef]
- Amirhaghi, S.; Reehal, H.S.; Plappert, E.; Bajic, Z.; Wood, R.J.K.; Wheeler, D.W. Growth and erosive wear performance of diamond coatings on WC substrates. Diam. Relat. Mater. 1999, 8, 845–849. [Google Scholar] [CrossRef]
- Amirhaghi, S.; Reehal, H.S.; Wood, R.J.K.; Wheeler, D.W. Diamond coatings on tungsten carbide and their erosive wear properties. Surf. Coat. Technol. 2001, 135, 126–138. [Google Scholar] [CrossRef]
- Xu, Z.; Lev, L.; Lukitsch, M.; Kumar, A. Deposition of adherent diamond coating on WC-Co substrate. Mater. Res. Soc. Symp. Proc. 2006, 890, 6. [Google Scholar] [CrossRef]
- Hu, J.; Chou, Y.K.; Thompson, R.G.; Burgess, J.; Street, S. Characterizations of nano-crystalline diamond coating cutting tools. Surf. Coat. Technol. 2007, 202, 1113–1117. [Google Scholar] [CrossRef]
- Hu, J.; Chou, Y.K.; Thompson, R.G. Nanocrystalline diamond coating tools for machining high-strength Al alloys. Int. J. Refract. Met. Hard Mater. 2008, 26, 135–144. [Google Scholar] [CrossRef]
- Chou, Y.K.; Thompson, R.G.; Kumar, A. CVD-diamond technologies for dry drilling applications. Thin Solid Film. 2010, 518, 7487–7491. [Google Scholar] [CrossRef]
- Johnston, J.M.; Baker, P.; Catledge, S.A. Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diam. Relat. Mater. 2016, 69, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.M.; Catledge, S.A. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition. Appl. Surf. Sci. 2016, 364, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Ziyao, Y.; Guo, Y.; Giang, X.; Li, C.; Liu, L.; Yang, B.; Song, H.; Zhai, Z.; Lu, Z.; Li, H.; et al. New multilayered diamond/β-SiC composite architectures for high-performance hard coating. Mater. Design. 2020, 186, 108207. [Google Scholar]
- Tsao, C.C.; Hocheng, H. Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int. J. Mach. Tools Manuf. 2004, 44, 1085–1090. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos. Struct. 2003, 59, 481–487. [Google Scholar] [CrossRef]
- Shyha, I.; Soo, S.L.; Aspinwall, D.; Bradley, S. Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. J. Mater. Process. Technol. 2010, 210, 1023–1034. [Google Scholar] [CrossRef]
- Karpat, Y.; Deǧer, B.; Bahtiyar, O. Drilling thick fabric woven CFRP laminates with double point angle drills. J. Mater. Process. Technol. 2012, 212, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Abrão, A.M.; Faria, P.E.; Rubio, J.C.C.; Reis, P.; Davim, J.P. Drilling of fiber reinforced plastics. A Review. J. Mater. Process. Technol. 2007, 186, 1–7. [Google Scholar] [CrossRef]
- Tsao, C.C.; Hocheng, H. Effect of eccentricity of twist drill and candle stick drill on delamination in drilling composite materials. Int. J. Mach. Tools Manuf. 2005, 45, 125–130. [Google Scholar] [CrossRef]
- Köpf, A.; Feistritzer, S.; Udier, K. Diamond coated cutting tools for machining of non-ferrous metals and fibre reinforced polymers. Int. J. Refract. Met. Hard Mater. 2006, 24, 354–359. [Google Scholar] [CrossRef]
- Ahmad, J.S.; Sridhar, G. Edge trimming of CFRP composites with diamond coated tools: Edge wear and surface characteristics. In Proceedings of the General Aviation Technology Conference and Exhibit, Wichita, KS, USA, 16–28 April 2002. SAE Technical Papers. [Google Scholar] [CrossRef]
- Duboust, N.; Melis, D.; Pinna, C.; Ghadbeig, H.; Collis, A.; Ayvar-Soberanis, S.; Kerrigan, K. Machining of carbon fiber: Optical surface damage characterization and tool wear study. Procedia CIRP 2016, 45, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.J.; Chang, W.X.; Bin, S.; Hong, S.F. Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP. Int. J. Refract. Met. Hard Mater. 2013, 41, 285–292. [Google Scholar]
- Tsao, C.C. Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP). Int. J. Adv. Manufactur. Technol. 2008, 37, 23–28. [Google Scholar] [CrossRef]
- Zhang, L.B.; Wang, L.J.; Liu, X.Y. A mechanical model for predicting critical thrust forces in drilling composite laminates. J. Eng. Manuf. 2001, 215, 135–146. [Google Scholar] [CrossRef]
- Hocheng, H.; Tsao, C.C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J. Mater. Process. Technol. 2003, 140, 335–339. [Google Scholar] [CrossRef]
- Shyha, I.S.; Aspinwall, D.K.; Soo, S.L.; Bradley, S. Drill geometry and operating effects when cutting small diameter holes in CFRP. Int. J. Mach. Tools Manuf. 2009, 49, 1008–1014. [Google Scholar] [CrossRef]
- Rawat, S.; Attia, H. Wear mechanisms and tool life management of WC-Co drills during dry high speed drilling of woven carbon fibre composites. Wear 2009, 267, 1022–1030. [Google Scholar] [CrossRef]
- Mu, J.; Xu, J.H.; Chen, Y.; Fu, Y.C. CFRP drilling with brazed diamond core drill. Sol. Stat. Phenom. 2011, 175, 27–32. [Google Scholar] [CrossRef]
- Wang, Y.G.; Yan, X.P.; Chen, X.G.; Sun, C.Y.; Liu, G. Cutting performance of carbon fiber reinforced plastics using PCD tool. Adv. Mater. Res. 2011, 215, 14–18. [Google Scholar] [CrossRef]
- Heaney, P.J.; Sumant, A.V.; Torres, C.D.; Carpick, R.W.; Pfefferkorn, F.E. Diamond coatings for micro end mills: Enabling the dry machining of aluminum at the micro-scale. Diam. Relat. Mater. 2008, 17, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Davim, J.P.; Mata, F. Chemical vapour deposition (CVD) diamond coated tools performance in machining of PEEK composites. Mater. Des. 2008, 29, 1568–1574. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, B.; Sun, F.-H. Fabrication and drilling tests of chemical vapor deposition diamond coated drills in machining carbon fiber reinforced plastics. J. Shanghai Jiaotong Univ. Sci. 2013, 18, 394–400. [Google Scholar] [CrossRef]
- An, Q.; Ming, W.; Cai, X.; Chen, M. Effects of tool parameters on cutting force in orthogonal machining of T700/LT03A unidirectional carbon fiber reinforced polymer laminates. J. Reinforc. Plast. Compos. 2015, 34, 591–602. [Google Scholar] [CrossRef]
Substrate | CTE 10−6 sm−1 (0 °C) |
---|---|
WC | 3.8 |
WC-Co | 4.6–5 |
W | 4.3 |
Co | 12 |
Ta | 6.5 |
Cr | 5.8 |
Diamond | 1.2 |
Si | 5.1 |
Graphite | 1.5 |
TaC | 4.6 |
Reference | Pretreatment type | Process |
---|---|---|
[21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] | Selective dissolution of cobalt with aggressive chemicals | Murakami reagent (K3[Fe(CN)6]:KOH:H2O in a ratio of 1:1:10) and then in a solution of peroxide mono sulfuric acid H2SO5 (Caro’s acid) |
[37,38] | Combined heat treatment (heating WC-Co at 1000 °C in an atmosphere of 0.25% CH4/H2) with subsequent selective removal of cobalt in Caro’s acid | |
[25,39] | Treating with microwave CO2–O2 plasma at 900 °C. As a result of plasma action, CoWO4 and WO3 compounds formed and removed in an alkaline solution | |
[42] | etching for 1 h in a modified mixture (65 vol.% HNO3 + 32 vol.% H2O2) in an ultrasonic bath | |
[43] | Ultrasonic treatment in a mixture of 10 mL 98% H2SO4 + 30 mL 38% H2O2 | |
[25,37,38,52,53,54,55,58,59,60] | Physical-mechanical | The laser and plasma irradiation |
[49] | The impact hydrotreatment | |
[50,51] | The shot blasting with solid particles (SiO2 or Al2O3) and ultrasonic cavitation | |
[61] | The sandblasting + acid etching | |
[50] | The mechanical treatment with diamond powders | |
[56] | The chemical etching, sandblasting, and creation of a carbide-forming metal layer | |
[57] | The chemical etching pretreatment, laser etching, and acid treatment pooled plasma and chemical etching of WC-Co, followed by laser etching | |
[27,52,80,85,86,87] | The buffer layers formation | The Cr/CrN/Cr buffer layer, Cr, and CrC |
[71] | The buffer layers TiN, TiC, (TiSi)N, Si3N4, a-SiC, and a-SiCxNy | |
[21] | The CrN, ZrN, NbN, and TaN with a thickness of 1 µm | |
[16,17,18,19,20,67,77] | W | |
[78,79] | Al | |
[82] | Si3N4 | |
[81] | NbC | |
[21,81,83] | TiN, Ti(CN) | |
[21,106] | Ta | |
[108] | The mixtures of Ta2C and TaC | |
[110] | TaN/ZrN | |
[89] | The magnetron sputtering CrN and TiN layers | |
[48] | The buffer layers of TiB2 with a thickness of about 0.1–1 µm | |
[97,98,102,103] | SiC buffer layer | |
[96] | HfC/HfC-SiC | |
[95] | The gradient coatings from Mo/Mo2C | |
[75,104] | The amorphous buffer films, a-SiO2 and a-SiC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashkinazi, E.; Fedorov, S.; Khomich, A.; Rogalin, V.; Bolshakov, A.; Sovyk, D.; Grigoriev, S.; Konov, V. Technology Features of Diamond Coating Deposition on a Carbide Tool. C 2022, 8, 77. https://doi.org/10.3390/c8040077
Ashkinazi E, Fedorov S, Khomich A, Rogalin V, Bolshakov A, Sovyk D, Grigoriev S, Konov V. Technology Features of Diamond Coating Deposition on a Carbide Tool. C. 2022; 8(4):77. https://doi.org/10.3390/c8040077
Chicago/Turabian StyleAshkinazi, Evgeny, Sergey Fedorov, Alexander Khomich, Vladimir Rogalin, Andrey Bolshakov, Dmitry Sovyk, Sergey Grigoriev, and Vitaly Konov. 2022. "Technology Features of Diamond Coating Deposition on a Carbide Tool" C 8, no. 4: 77. https://doi.org/10.3390/c8040077
APA StyleAshkinazi, E., Fedorov, S., Khomich, A., Rogalin, V., Bolshakov, A., Sovyk, D., Grigoriev, S., & Konov, V. (2022). Technology Features of Diamond Coating Deposition on a Carbide Tool. C, 8(4), 77. https://doi.org/10.3390/c8040077