Development of Carbon-Based Support Using Biochar from Guava Seeds for Lipase Immobilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biochar Production
2.3. Determination of Hydrolytic Activity
2.4. Lipase Immobilization on Biochar by Physical Adsorption (PA)
2.5. Lipase Immobilization on Biochar by Covalent Binding (CB)
2.6. Determination of Optimal Enzyme Concentration for Support
2.7. Morphological and Physicochemical Properties
2.8. Effect of pH and Temperature on Activity
2.9. Thermal Stability
2.10. Determination of Kinetic Constants
2.11. Operational Stability
2.12. Desorption Test of Immobilized Lipase by Covalent Binding
3. Results and Discussion
3.1. Lipase Immobilization in Biochar
3.2. pH and Temperature Effects
3.3. Determination of Kinetic Parameters
3.4. Thermal Stability of the Free and Immobilized BCL on Biochar
3.5. Operational Stability
3.6. Morphological and Physical-Chemical Properties
3.6.1. Morphological Analysis (B.E.T.)
3.6.2. Scanning Electronic Microscopy (SEM)
3.6.3. Thermogravimetric Analysis (TG)
3.6.4. FT-IR Analysis
3.6.5. EDX Elemental Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, Y.X. Activated carbon from biomass sustainable sources. C 2021, 7, 39. [Google Scholar] [CrossRef]
- Pereira, B.S.; de Freitas, C.; Vieira, R.M.; Brienzo, M. Brazilian banana, guava, and orange fruit and waste production as a potential biorefinery feedstock. J. Mater. Cycles Waste Manag. 2022, 24, 2126–2140. [Google Scholar] [CrossRef]
- Iha, O.K.; Martins, G.B.; Ehlert, E.; Montenegro, M.A.; Sucupira, R.R.; Suarez, P.A. Extraction and characterization of passion fruit and guava oils from industrial residual seeds and their application as biofuels. J. Braz. Chem. Soc. 2018, 29, 2089–2095. [Google Scholar] [CrossRef]
- Santos, R.M.; Bispo, D.F.; Granja, H.S.; Sussuchi, E.M.; Ramos, A.L.D.; Freitas, L.S. Pyrolysis of the Caupi Bean Pod (Vigna unguiculata): Characterization of biomass and bio-oil. J. Braz. Chem. Soc. 2020, 31, 1125–1136. [Google Scholar] [CrossRef]
- Silveira-Junior, E.G.; Perez, V.H.; Justo, O.R.; David, G.F.; Simionatto, E.; de Oliveira, L.C.S. Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose 2021, 28, 71–79. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lyu, T. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, J.; Pan, M.; Hao, Y.; Hu, R.; Xiao, W.; Li, G.; Lyu, T. Valorisation of microalgae residues after lipid extraction: Pyrolysis characteristics for biofuel production. Biochem. Eng. J. 2022, 179, 108330. [Google Scholar] [CrossRef]
- Cheng, S.; Meng, M.; Xing, B.; Shi, C.; Nie, Y.; Xia, D.; Yi, G.; Zhang, C.; Xia, H. Preparation of valuable pyrolysis products from poplar waste under different temperatures by pyrolysis: Evaluation of pyrolysis products. Bioresour. Technol. 2022, 364, 128011. [Google Scholar] [CrossRef]
- Dewangan, S.; Bhatia, A.K.; Singh, A.K.; Carabineiro, S.A.C. Removal of Hydrophobic Contaminants from the Soil by Adsorption onto Carbon Materials and Microbial Degradation. C 2021, 7, 83. [Google Scholar] [CrossRef]
- Chen, W.H.; Hoang, A.T.; Nižetić, S.; Pandey, A.; Cheng, C.K.; Luque, R.; Nguyen, X.P. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Saf. Environ. Prot. 2022, 160, 704–733. [Google Scholar] [CrossRef]
- Bijoy, G.; Rajeev, R.; Benny, L.; Jose, S.; Varghese, A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. Chemosphere 2022, 307, 135759. [Google Scholar] [CrossRef] [PubMed]
- González, M.E.; Cea, M.; Sangaletti, N.; González, A.; Toro, C.; Diez, M.C.; Moreno, N.; Querol, X.; Navia, R. Biochar Derived from Agricultural and Forestry Residual Biomass: Characterization and Potential Application for Enzymes Immobilization. J. Biobased Mater. Bioenergy 2013, 7, 724–732. [Google Scholar] [CrossRef]
- Mota, D.A.; Santos, J.C.B.; Faria, D.; Lima, Á.S.; Krause, L.C.; Soares, C.M.F.; Ferreira-Dias, S. Synthesis of Dietetic Structured Lipids from Spent Rhizopus oryzae Lipase on Biochar and Hybrid Support. Processes 2020, 8, 1542. [Google Scholar] [CrossRef]
- da Silva, C.K.H.; Polidoro, A.S.; Ruschel, P.M.C.; Thue, P.S.; Jacques, R.A.; Lima, É.C.; Fernandes, A.N. Laccase covalently immobilized on avocado seed biochar: A high-performance biocatalyst for acetaminophen sorption and biotransformation. J. Environ. Chem. Eng. 2022, 10, 7731. [Google Scholar]
- Zhao, J.; Ma, M.; Yan, X.; Zhang, G.; Xia, J.; Zeng, Z.; Gong, D. Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production. Food Chem. 2022, 379, 132148. [Google Scholar] [CrossRef]
- Anastasescu, C.; Preda, S.; Rusu, A.; Culita, D.; Plavan, G.; Strungaru, S.; Calderon-Moreno, J.; Munteanu, C.; Gifu, C.; Enache, M.; et al. Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity. Molecules 2018, 23, 1362. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.L.; Faria, E.L.P.; Figueiredo, R.T.; Fricks, A.T.; Zanin, G.M.; Santos, O.A.A.; Lima, Á.S.; Soares, C.M.F. Use of polyethylene glycol in the process of sol–gel encapsulation of Burkholderia cepacia lipase. J. Therm. Anal. 2014, 117, 301–306. [Google Scholar] [CrossRef]
- Kapoor, M.; Gupta, M.N. Lipase promiscuity and its biochemical applications. Process Biochem. 2012, 47, 555–569. [Google Scholar] [CrossRef]
- Barbosa, A.d.S.; Silva, M.A.d.O.; Carvalho, N.B.; Mattedi, S.; Iglesias, M.A.; Fricks, A.T.; Lima, Á.S.; Franceschi, E.; Soares, C.M.F. Immobilization of lipase by encapsulation in silica aerogel. Química Nova 2014, 37, 969–976. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Almeida, L.C.; Barbosa, A.S.; Fricks, A.T.; Freitas, L.S.; Lima, Á.S.; Soares, C.M.F. Use of conventional or non-conventional treatments of biochar for lipase immobilization. Process Biochem. 2017, 61, 124–129. [Google Scholar] [CrossRef]
- Soares, C.M.F.; De Castro, H.F.; De Moraes, F.F.; Zanin, G.M. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl. Biochem. Biotechnol. 1999, 79, 745–758. [Google Scholar] [CrossRef]
- Simões, A.S.; Mori, R.Y.; Faria, R.; de Castro, H.F.; Mendes, A.A. Desempenho da matriz híbrida SiO2-quitosana na imobilização da lipase microbiana de Candida rugosa. Química Nova 2011, 34, 33–38. [Google Scholar] [CrossRef]
- Cabrera-Padilla, R.Y.; Lisboa, M.C.; Fricks, A.T.; Franceschi, E.; Lima, A.S.; Silva, D.P.; Soares, C.M.F. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): A new eco-friendly support. J. Ind. Microbiol. Biotechnol. 2012, 39, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Fachin, D.; Van Loey, A.M.; Ly Nguyen, B.; Verlent, I.; Indrawati, I.; Hendrickx, M.E. Comparative study of the inactivation kinetics of pectinmethylesterase in tomato juice and purified form. Biotechnol. Prog. 2002, 18, 739–744. [Google Scholar] [CrossRef]
- Soares, C.M.F.; Santana, M.H.A.; Zanin, G.M.; de Castro, H.F. Covalent coupling method for lipase immobilization on controlled pore silica in the presence of nonenzymatic proteins. Biotechnol. Prog. 2003, 19, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Palomo, J.M.; Ortiz, C.; Fernández-Lorente, G.; Fuentes, M.; Guisán, J.M.; Fernández-Lafuente, R. Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzym. Microb. Technol. 2005, 36, 447–454. [Google Scholar] [CrossRef]
- Almeida, L.C.; Barbosa, M.S.; de Jesus, F.A.; Santos, R.M.; Fricks, A.T.; Freitas, L.S.; Soares, C.M. Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: An experimental and molecular docking study. Biotechnol. Appl. Biochem. 2021, 68, 801–808. [Google Scholar] [CrossRef]
- Mendes, A.A.; Barbosa, B.C.M.; Soares, C.M.F.; da Silva, M.L.C.P.; de Castro, H.F. Atividade e estabilidade operacional de lipase imobilizada em fosfato de zircônio na ausência e presença de polietilenoglicol. Acta Sci. Technol. 2006, 28, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, R.; Ravindra, P. Characterization of cross linked Burkholderia cepacia lipase in alginate and κ-carrageenan hybrid matrix. J. Taiwan Inst. Chem. Eng. 2013, 44, 545–551. [Google Scholar] [CrossRef]
- Silva, G.S.; Oliveira, P.C.; Giordani, D.S.; de Castro, H.F. Chitosan/siloxane hybrid polymer: Synthesis, characterization and performance as a support for immobilizing enzyme. J. Braz. Chem. Soc. 2011, 22, 1407–1417. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R.Y. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. Int. J. Biol. Macromol. 2018, 115, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, N.B.; Vidal, B.T.; Barbosa, A.S.; Pereira, M.M.; Mattedi, S.; Freitas, L.D.S.; Lima, Á.S.; Soares, C.M.F. Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int. J. Mol. Sci. 2018, 19, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef]
- Pereira, E.B.; Zanin, G.M.; Castro, H.F. Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Braz. J. Chem. Eng. 2003, 20, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.M.; de Paula, A.V.; Silva, G.d.S.; de Castro, H.F. Determinação das propriedades catalíticas em meio aquoso e orgânico da lipase de Candida rugosa imobilizada em celulignina quimicamente modificada por carbonildiimidazol. Química Nova 2006, 29, 710–718. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, S.; Jiang, L.; Zou, B.; Yang, J.; Huang, H. Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15. Process Biochem. 2012, 47, 2291–2299. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Li, J.; Hao, D.; Su, Z.; Ma, G. Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess Biosyst. Eng. 2015, 38, 2107–2115. [Google Scholar] [CrossRef]
- Guncheva, M.; Zhiryakova, D. Catalytic properties and potential applications of Bacillus lipases. J. Mol. Catal. B Enzym. 2011, 68, 1–21. [Google Scholar] [CrossRef]
- Kneževi, Z.D.; Šiler-marinkovi, S.S.; Mojovi, L.V. Immobilized lipases as practical catalysts. Acta Period. Technol. 2004, 280, 151–164. [Google Scholar] [CrossRef]
- Li, N.; Xia, Q.; Niu, M.; Ping, Q.; Xiao, H. Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater. Sci. Rep. 2018, 8, 13947. [Google Scholar] [CrossRef] [PubMed]
- Brígida, A.I.S.; Pinheiro, Á.D.T.; Ferreira, A.L.O.; Gonçalves, L.R.B. Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber. Appl. Biochem. Biotechnol. 2008, 146, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Cristóvão, R.O.; Tavares, A.P.M.; Brígida, A.I.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A.; Coelho, M.A.Z. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J. Mol. Catal. B Enzym. 2011, 72, 6–12. [Google Scholar] [CrossRef]
- Brígida, A.I.S.; Pinheiro, Á.D.T.; Ferreira, A.L.O.; Pinto, G.A.S.; Gonçalves, L.R.B. Immobilization of Candida antarctica lipase B by covalent attachment to green coconut fiber. Appl. Biochem. Biotechnol. 2007, 137-140, 67–80. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Cavalcante, G.P.; Ferreira, A.L.O.; Gonçalves, L.R.B. Immobilization of Candida antarctica lipase type B by adsorption on activated carbon. Chem. Biochem. Eng. Q. 2008, 22, 125–133. [Google Scholar]
- Schoevaart, R.; Wolbers, M.W.; Golubovic, M.; Ottens, M.; Kieboom, A.P.G.; van Rantwijk, F.; van der Wielen, L.A.M.; Sheldon, R.A. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 2004, 87, 754–762. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Bernal, C.; Escobar, S.; Wilson, L.; Illanes, A.; Mesa, M. Carbonaceous–siliceous composite materials as immobilization support for lipase from Alcaligenes sp.: Application to the synthesis of antioxidants. Carbon 2014, 74, 96–103. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Collins, S.E.; Lassalle, V.; Ferreira, M.L. FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM IM and chitosan-immobilized RML. J. Mol. Catal. B Enzym. 2011, 72, 220–228. [Google Scholar] [CrossRef]
- Papadimitriou, S.A.; Achilias, D.S.; Bikiaris, D.N. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. Int. J. Pharm. 2012, 430, 318–327. [Google Scholar] [CrossRef] [PubMed]
Km (mM) | Vmax (µmol g−1·min−1) | |
---|---|---|
Free BCL | 665 | 3333 |
Physical Adsorption (PA) | 219 | 2000 |
Covalent binding (CB) | 369 | 2500 |
Assay | Specific Superficial Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (Å) |
---|---|---|---|
Biochar | 77 ± 2 | 0.052 ± 0.002 | 18 ± 1 |
Physical Adsorption (PA) | 60 ± 1 | 0.040 ± 0.001 | 18 ± 1 |
Covalent Binding (CB) | 63 ± 1 | 0.041 ± 0.001 | 18 ± 1 |
Assay | Area I (25–200 °C) | Area II (200–600 °C) | Area III (600–1000 °C) |
---|---|---|---|
Free BCL | 8.32 | 82.32 | 9.16 |
Biochar | 7.2 | 11.4 | 47.74 |
Physical Adsorption (PA) | 6.8 | 8.78 | 30.89 |
Covalent Binding (CB) | 6.99 | 21.07 | 24.11 |
Elements (%) | Biochar | PA | CB |
---|---|---|---|
K | 0.014 ± 0.006 | 0.222 ± 0.005 | 0.176 ± 0.006 |
Fe | 0.009 ± 0.004 | 0.003 ± 0.002 | ND (*) |
Zn | 0.002 ± 0.001 | 0.001 ± 0.001 | ND (*) |
Cu | 0.002 ± 0.002 | 0.001 ± 0.001 | ND (*) |
Cl | ND | ND | 0.065 ± 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, L.C.; de Jesus, F.A.; Wiltshire, F.M.S.; Santos, R.M.; Fricks, A.T.; Freitas, L.d.S.; Pereira, M.M.; Lima, Á.S.; Soares, C.M.F. Development of Carbon-Based Support Using Biochar from Guava Seeds for Lipase Immobilization. C 2022, 8, 64. https://doi.org/10.3390/c8040064
de Almeida LC, de Jesus FA, Wiltshire FMS, Santos RM, Fricks AT, Freitas LdS, Pereira MM, Lima ÁS, Soares CMF. Development of Carbon-Based Support Using Biochar from Guava Seeds for Lipase Immobilization. C. 2022; 8(4):64. https://doi.org/10.3390/c8040064
Chicago/Turabian Stylede Almeida, Lays C., Felipe A. de Jesus, Flávia M. S. Wiltshire, Roberta M. Santos, Alini T. Fricks, Lisiane dos S. Freitas, Matheus M. Pereira, Álvaro S. Lima, and Cleide M. F. Soares. 2022. "Development of Carbon-Based Support Using Biochar from Guava Seeds for Lipase Immobilization" C 8, no. 4: 64. https://doi.org/10.3390/c8040064
APA Stylede Almeida, L. C., de Jesus, F. A., Wiltshire, F. M. S., Santos, R. M., Fricks, A. T., Freitas, L. d. S., Pereira, M. M., Lima, Á. S., & Soares, C. M. F. (2022). Development of Carbon-Based Support Using Biochar from Guava Seeds for Lipase Immobilization. C, 8(4), 64. https://doi.org/10.3390/c8040064