Porphyrin MOF-Derived Porous Carbons: Preparation and Applications
Abstract
:1. Introduction
Porphyrin-Based MOF Porous Carbons
2. Porous Carbons from Porphyrin-Based MOFs
2.1. Metal-Free Mof-Derived PC
2.2. Metal MOF-Derived PC Materials
2.2.1. Single Active Site MOF-Derived PC Materials
2.2.2. Bimetallic MOF-Derived PC Materials
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407. [Google Scholar] [CrossRef]
- Wang, P.-L.; Xie, L.-H.; Joseph, E.A.; Li, J.-R.; Su, X.-O.; Zhou, H.-C. Metal–Organic Frameworks for Food Safety. Chem. Rev. 2019, 119, 10638–10690. [Google Scholar] [CrossRef]
- Mendes, R.F.; Figueira, F.; Leite, J.P.; Gales, L.; Almeida Paz, F.A. Metal–organic frameworks: A future toolbox for biomedicine? Chem. Soc. Rev. 2020, 49, 9121–9153. [Google Scholar] [CrossRef]
- Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, M.; Li, G.; Liu, H.; Chen, J.; An, T.; Yamashita, H. Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci. Nano 2019, 6, 1006–1025. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Figueira, F.S.; Barbosa, J.F.; Mendes, R.S.; Braga, S.A. Almeida Paz, F. Virus meet metal-organic frameworks: A nanoporous solution to a world-sized problem? Mater. Today 2020. [Google Scholar] [CrossRef]
- Mohanty, A.; Jaihindh, D.; Fu, Y.-P.; Senanayak, S.P.; Mende, L.S.; Ramadoss, A. An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. J. Power Sources 2021, 488, 229444. [Google Scholar] [CrossRef]
- Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coord. Chem. Rev. 2016, 307, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Liu, W.; Yin, X.-B. Metal–organic frameworks for electrochemical applications. TrAC Trends Anal. Chem. 2016, 75, 86–96. [Google Scholar] [CrossRef]
- Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290. [Google Scholar] [CrossRef]
- Cai, Z.-X.; Wang, Z.-L.; Kim, J.; Yamauchi, Y. Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Adv. Mater. 2019, 31, 1804903. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, J.; Zhu, R.; Pang, H. The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J. Mater. Chem. A 2019, 7, 15519–15540. [Google Scholar] [CrossRef]
- Xiao, X.; Zou, L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331. [Google Scholar] [CrossRef]
- Yi, F.-Y.; Zhang, R.; Wang, H.; Chen, L.-F.; Han, L.; Jiang, H.-L.; Xu, Q. Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods 2017, 1, 1700187. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Kirlikovali, K.O.; Van Le, Q.; Jang, H.W.; Varma, R.S.; Farha, O.K.; Shokouhimehr, M. Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Cryst. Growth Des. 2020, 20, 7034–7064. [Google Scholar] [CrossRef]
- Calbo, J.; Golomb, M.J.; Walsh, A. Redox-active metal–organic frameworks for energy conversion and storage. J. Mater. Chem. A 2019, 7, 16571–16597. [Google Scholar] [CrossRef]
- D’Alessandro, D.M. Exploiting redox activity in metal–organic frameworks: Concepts, trends and perspectives. Chem. Commun. 2016, 52, 8957–8971. [Google Scholar] [CrossRef] [Green Version]
- Zha, Q.; Rui, X.; Wei, T.; Xie, Y. Recent advances in the design strategies for porphyrin-based coordination polymers. CrystEngComm 2014, 16, 7371–7384. [Google Scholar] [CrossRef] [Green Version]
- Scandola, F.; Chiorboli, C.; Prodi, A.; Iengo, E.; Alessio, E. Photophysical properties of metal-mediated assemblies of porphyrins. Coord. Chem. Rev. 2006, 250, 1471–1496. [Google Scholar] [CrossRef]
- Figueira, F.M.R.; Pereira, P.; Silva, S.A.S.; Cavaleiro, J.P.C.; Tome, J. Porphyrins and Phthalocyanines Decorated with Dendrimers: Synthesis and Biomedical Applications. Curr. Org. Synth. 2014, 11, 110–126. [Google Scholar] [CrossRef]
- Figueira, F.; Cavaleiro, J.A.S.; Tomé, J.P.C. Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies. J. Porphyr. Phthalocyanines 2011, 15, 517–533. [Google Scholar] [CrossRef]
- Figueira, F.; Rodrigues, J.M.M.; Farinha, A.A.S.; Cavaleiro, J.A.S.; Tomé, J.P.C. Synthesis and anion binding properties of porphyrins and related compounds. J. Porphyr. Phthalocyanines 2016, 20, 950–965. [Google Scholar] [CrossRef]
- Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.S.D.K.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem. Rev. 2015, 115, 10261–10306. [Google Scholar] [CrossRef]
- Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar] [CrossRef]
- Auwärter, W.; Écija, D.; Klappenberger, F.; Barth, J.V. Porphyrins at interfaces. Nat. Chem. 2015, 7, 105–120. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, H.-Y.; Zheng, H.; Zhang, W.; Cao, R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 2021, 50, 2540–2581. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, Z.; Zhang, C.; Chen, W. Advanced Electrocatalysts Based on Metal–Organic Frameworks. ACS Omega 2020, 5, 2495–2502. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.-H.; Gu, Z.-G.; Zhang, J. Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale 2020, 12, 12712–12730. [Google Scholar] [CrossRef]
- Kitagawa, S.; Noro, S.-I.; Nakamura, T. Pore surface engineering of microporous coordination polymers. Chem. Commun. 2006, 701–707. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef] [Green Version]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef] [Green Version]
- Castro, K.A.D.F.; Figueira, F.; Almeida Paz, F.A.; Tomé, J.P.C.; da Silva, R.S.; Nakagaki, S.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Simões, M.M.Q. Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst. Dalton Trans. 2019, 48, 8144–8152. [Google Scholar] [CrossRef]
- Pereira, C.F.; Liu, Y.; Howarth, A.; Figueira, F.; Rocha, J.; Hupp, J.T.; Farha, O.K.; Tomé, J.P.C.; Almeida Paz, F.A. Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Appl. Nano Mater. 2019, 2, 465–469. [Google Scholar] [CrossRef]
- Pereira, C.F.; Figueira, F.; Mendes, R.F.; Rocha, J.; Hupp, J.T.; Farha, O.K.; Simões, M.M.Q.; Tomé, J.P.C.; Paz, F.A.A. Bifunctional Porphyrin-Based Nano-Metal–Organic Frameworks: Catalytic and Chemosensing Studies. Inorg. Chem. 2018, 57, 3855–3864. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed. 2021, 60, 5010–5035. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, S. Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. Biosensors 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, Q.; Xue, H.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318. [Google Scholar] [CrossRef]
- Yu, F.; Bai, X.; Liang, M.; Ma, J. Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem. Eng. J. 2021, 405, 126960. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.-F.; Li, C.; Xu, Q. Bimetallic metal–organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Wang, W.; Cao, D. Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater. 2018, 28, 1704537. [Google Scholar] [CrossRef]
- Peh, S.B.; Wang, Y.; Zhao, D. Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustain. Chem. Eng. 2019, 7, 3647–3670. [Google Scholar] [CrossRef]
- Zhang, X.; Wasson, M.C.; Shayan, M.; Berdichevsky, E.K.; Ricardo-Noordberg, J.; Singh, Z.; Papazyan, E.K.; Castro, A.J.; Marino, P.; Ajoyan, Z.; et al. A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coord. Chem. Rev. 2021, 429, 213615. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J.-L.; Sun, X. Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. Adv. Energy Mater. 2020, 10, 2001561. [Google Scholar] [CrossRef]
- Osmieri, L. Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Yang, L.; Ma, X.; Jiang, J.; Yu, S.-H.; Jiang, H.-L. Metal–Organic Framework-Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chem. Eur. J. 2016, 22, 3470–3477. [Google Scholar] [CrossRef]
- Chang, T.-H.; Young, C.; Lee, M.-H.; Salunkhe, R.R.; Alshehri, S.M.; Ahamad, T.; Islam, M.T.; Wu, K.C.W.; Hossain, M.S.A.; Yamauchi, Y.; et al. Synthesis of MOF-525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chem. Asian J. 2017, 12, 2857–2862. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, X.-J.; Tong, H.-Y.; Huang, Y.-B.; Cao, R. Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorg. Chem. Commun. 2020, 114, 107825. [Google Scholar] [CrossRef]
- Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Zhao, X.; Bu, F.; Feng, P. New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. J. Am. Chem. Soc. 2015, 137, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Volosskiy, B.; Fei, H.; Zhao, Z.; Lee, S.; Li, M.; Lin, Z.; Papandrea, B.; Wang, C.; Huang, Y.; Duan, X. Tuning the Catalytic Activity of a Metal–Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 26769–26774. [Google Scholar] [CrossRef]
- Mei, H.-M.; Li, S.; Dong, J.-R.; Zhang, L.; Su, C.-Y. Porphyrinic Metal-Organic Frameworks Derived Carbon-Based Nanomaterials for Hydrogen Evolution Reaction. ChemistrySelect 2020, 5, 10988–10995. [Google Scholar] [CrossRef]
- Hua, X.; Luo, J.; Shen, C.; Chen, S. Hierarchically porous Fe–N–C nanospindles derived from a porphyrinic coordination network for oxygen reduction reaction. Catal. Sci. Technol. 2018, 8, 1945–1952. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Y.; Cong, Y.; Qin, J.; Zhai, Z.; Wang, X.; Gao, R.; Zhang, G.; Guo, X.; Song, Y. Pyrolysis-driven synthesis of nanoscale carambola-like carbon decorated with atomically dispersed Fe sites toward efficient oxygen reduction reaction. Catal. Sci. Technol. 2020, 10, 7160–7164. [Google Scholar] [CrossRef]
- Wu, X.; Dong, J.; Qiu, M.; Li, Y.; Zhang, Y.; Zhang, H.; Zhang, J. Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc–air batteries. Nanoscale Horizons 2020, 5, 359–365. [Google Scholar] [CrossRef]
- Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S.-H.; Jiang, H.-L. From Metal–Organic Frameworks to Single-Atom Fe Implanted N-doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angew. Chem. Int. Ed. 2018, 57, 8525–8529. [Google Scholar] [CrossRef]
- Meng, D.-L.; Chen, C.-H.; Yi, J.-D.; Wu, Q.; Liang, J.; Huang, Y.-B.; Cao, R. Migration-Prevention Strategy to Fabricate Single-Atom Fe Implanted N-Doped Porous Carbons for Efficient Oxygen Reduction. Research 2019, 2019, 1768595. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Zhang, R.; Wan, G.; Yang, W.; Wan, X.; Zhou, H.; Shui, J.; Yu, S.-H.; Jiang, H.-L. Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831. [Google Scholar] [CrossRef]
- Guo, X.; Du, H.; Qu, F.; Li, J. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543. [Google Scholar] [CrossRef]
- Zhang, R.; Jiao, L.; Yang, W.; Wan, G.; Jiang, H.-L. Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. J. Mater. Chem. A 2019, 7, 26371–26377. [Google Scholar] [CrossRef]
- Fang, X.; Jiao, L.; Yu, S.-H.; Jiang, H.-L. Metal–Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media. ChemSusChem 2017, 10, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Ni, B.; Ou, Y.; Lin, H.; Zhang, S.; Li, C.; Zhuang, J.; Hu, W.; Wang, X. Nanosheet-Assembled Hierarchical Carbon Nanoframeworks Bearing a Multiactive Center for Oxygen Reduction Reaction. Small Methods 2018, 2, 1800068. [Google Scholar] [CrossRef]
- Fang, X.; Jiao, L.; Zhang, R.; Jiang, H.-L. Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 23852–23858. [Google Scholar] [CrossRef] [PubMed]
MOF | Carbonization Temperature (Atmosphere, Time) | S(BET) (m2g−1) | Catalytic Activity | Ref | ||
---|---|---|---|---|---|---|
Nitrophenol Reduction | ||||||
Activation Energy (kJ·mol−1) | Pseudo-First-Order Kinetics (s−1) | |||||
ZrPCN-224 | 700 °C (N2, 1 h) | 1089 | 26.4 | 5.3 × 10−3 | [48] | |
Electrochemical Capacitor | ||||||
Current density (Ag−1) | Capacitance (F·g−1) | Electrolyte | ||||
ZrMOF-525 | 800 °C (N2, 1 h) | 786 | 2 | 425 | 1 M H2SO4 | [49] |
Carbon Dioxide Electroreduction | ||||||
Faradaic Efficiency (%) | Potential (vs. RHE) | Electrolyte | ||||
ZrPCN-222 | 800 °C (N2, 2 h) | 37 | 13 | −1.0 | 0.5 M KHCO3 | [50] |
ZrPCN-224 | 1000 °C (N2, 2 h) | 289 | 14 | −0.8 | 0.5 M KHCO3 | |
Oxygen Reduction Reaction (ORR) | ||||||
E1/2 (V vs. RHE) | Electron transfer number (electrons) | electrolyte | ||||
ZrCPM-99(Fe) | 700 °C (N2, 2 h) | 399 | 0.80 | 4 | 0.1 M KOH | [51] |
0.87 | 4 | 0.1 M HClO4 | ||||
ZrPCN-222(Cu) | 900 °C (N2 and 1% Air, 2 h) | 240 | 4 | 0.1 M KOH | [52] | |
ZrPCN-222(Fe) | 700 °C (Ar, 2 h) | 594 | 0.87 | 0.1 M KOH | [55] | |
0.79 | 0.1 M HClO4 | |||||
800 °C (N2, 2 h) | 433 | 0.82 | 4 | 0.1 M KOH | [56] | |
800 °C (N2, 2 h) | 532 | 0.89 | 4 | 0.1 M KOH | [57] | |
0.78 | 4 | 0.1 M HClO4 | ||||
800 °C (N2, 2 h) | 1615 | 0.90 | 4 | 0.1 M KOH | [59] | |
0.80 | 4 | 0.1 M HClO4 | ||||
ZrPCN-224(Fe) | 800 °C (Ar, 1 h) | 554 | 0.87 | 4 | 0.1 M KOH | [54] |
0.76 | 4 | 0.1 M HClO4 | ||||
900 °C (N2, 2 h) | 430 | 0.89 | 4 | 0.1 M KOH | [58] | |
0.76 | 4 | 0.1 M HClO4 | ||||
ZrPCN-224 (FeCo) | 900 °C (N2, 2 h) | 0.87 | 4 | 0.1 M KOH | [62] | |
0.74 | 4 | 0.1 M HClO4 | ||||
ZrPCN-221(NiFe) | 800 °C (N2, 3 h) | 557 | 0.83 | 4 | 0.1 M KOH | [63] |
Nitrogen Reduction Reaction (NRR) | ||||||
Faradaic Efficiency (%) | Ammonia yield Rate (−0.05 V vs. RHE mol·cm−2·s−1) | |||||
ZrPCN-222(Fe) | 800 °C (N2, 2 h) | 1615 | 4.51 | 1.56 × 10−11 | [61] | |
Oxygen Evolution Reaction (OER) | ||||||
Current Density (mA·cm−2) | Overpotential (mV) | |||||
FePCN-600(Ni) | 700 °C (N2, 2 h) | 59 | 10 | 240 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueira, F.; Paz, F.A.A. Porphyrin MOF-Derived Porous Carbons: Preparation and Applications. C 2021, 7, 47. https://doi.org/10.3390/c7020047
Figueira F, Paz FAA. Porphyrin MOF-Derived Porous Carbons: Preparation and Applications. C. 2021; 7(2):47. https://doi.org/10.3390/c7020047
Chicago/Turabian StyleFigueira, Flávio, and Filipe A. Almeida Paz. 2021. "Porphyrin MOF-Derived Porous Carbons: Preparation and Applications" C 7, no. 2: 47. https://doi.org/10.3390/c7020047
APA StyleFigueira, F., & Paz, F. A. A. (2021). Porphyrin MOF-Derived Porous Carbons: Preparation and Applications. C, 7(2), 47. https://doi.org/10.3390/c7020047