Fullerene Polymers: A Brief Review
Abstract
:1. Introduction
2. Pearl Necklace Polymers
3. Charm Bracelet Polymers
4. Organometallic Polymers
5. Crosslinked Polymers
6. End-Capped Polymers
7. Star-Shaped Polymers
8. Supramolecular Polymers
9. All-Carbon Polymers
10. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Z.-X.; Fu, S.; Wu, W.; Zhu, D. Polymers containing fullerene or carbon nanotube structures. Prog. Polym. Sci. 2004, 29, 1079–1141. [Google Scholar] [CrossRef]
- Giacalone, F.; Martín, N. Fullerene polymers: Synthesis and properties. Chem. Rev. 2006, 106, 5136–5190. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, F. Fullerene-containing polymers. In Fullerenes: Principles and Applications, 2nd ed.; Puente, F.L.D.L., Nierengarten, J.-F., Eds.; Royal Society of Chemistry: Cambridge, UK, 2011; pp. 125–161. [Google Scholar]
- Grądzka, E.; Wysocka-Żołopa, M.; Winkler, K. Fullerene-based conducting polymers: n-Dopable materials for charge storage application. Adv. Energy Mater. 2020, 10, 2001443. [Google Scholar] [CrossRef]
- Ravi, P.; Dai, S.; Wang, C.; Tam, K.C. Fullerene containing polymers: A review on their synthesis and supramolecular behavior in solution. J. Nanosci. Nanotechnol. 2007, 7, 1176–1196. [Google Scholar] [CrossRef] [PubMed]
- Winkler, K.; Balch, A.L. Electrochemically formed two-component films comprised of fullerene and transition-metal components. C. R. Chim. 2006, 9, 928–943. [Google Scholar] [CrossRef]
- Suzuki, T.; Li, Q.; Khemani, K.C.; Wudl, F. Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): Two-pearl sections of pearl necklace polymers. J. Am. Chem. Soc. 1992, 114, 7300–7301. [Google Scholar] [CrossRef]
- Loy, D.A.; Assink, R.A. Synthesis of a fullerene C60-p-xylylene copolymer. J. Am. Chem. Soc. 1992, 114, 3977–3978. [Google Scholar] [CrossRef]
- Samal, S.; Choi, B.J.; Geckeler, K.E. The first water-soluble main-chain polyfullerene. Chem. Commun. 2000, 1373–1374. [Google Scholar] [CrossRef]
- Raissi, M.; Erothu, H.; Ibarboure, E.; Bejbouji, H.; Cramail, H.; Cloutet, E.; Vignau, L.; Hiorns, R.C. Main-chain poly(fullerene) multiblock copolymers as organic photovoltaic donor-acceptors and stabilizers. J. Mater. Chem. A 2017, 5, 7533–7544. [Google Scholar] [CrossRef]
- Stephen, M.; Dowland, S.; Gregori, A.; Ramanitra, H.H.; Santos Silva, H.; Combe, C.M.S.; Bégué, D.; Dagron-Lartigau, C.; Morse, G.E.; Genevičius, K.; et al. Main-chain fullerene and dye oligomers: Towards alternating fullerene polymers for organic photovoltaics. Polym. Int. 2017, 66, 388–398. [Google Scholar] [CrossRef]
- Silva, H.S.; Ramanitra, H.H.; Bregadiolli, B.A.; Tournebize, A.; Bégué, D.; Dowland, S.A.; Chassé, T. In situ generation of fullerene from a poly(fullerene). J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1434–1452. [Google Scholar] [CrossRef]
- Olah, G.A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N.J.; Sensharma, D.K.; Prakash, G.K.S. Polyarenefullerenes, C60(H-Ar)n, obtained by acid-catalyzed fullerenation of aromatics. J. Am. Chem. Soc. 1991, 113, 9387–9388. [Google Scholar] [CrossRef]
- Shi, S.; Khemani, K.C.; Chan, L.Q.; Wudl, F. A polyester and polyurethane of diphenyl C61: Retention of fulleroid properties in a polymer. J. Am. Chem. Soc. 1992, 114, 10656–10657. [Google Scholar] [CrossRef]
- Geckeler, K.E.; Hirsch, A.J. Polymer-bound C60. J. Am. Chem. Soc. 1993, 115, 3850–3851. [Google Scholar] [CrossRef]
- Wu, H.; Li, F.; Lin, Y.; Cai, R.; Wu, H.; Tong, R.; Qian, S. Fullerene-functionalized polycarbonate: Synthesis under microwave irradiation and nonlinear optical property. Polym. Eng. Sci. 2006, 46, 399–405. [Google Scholar] [CrossRef]
- Okamura, H.; Miyazono, K.; Minoda, M.; Miyamoto, T. Preparation of water-soluble pullulans bearing pendant C60 and their aqueous solubility. Macromol. Rapid Commun. 1999, 20, 41–45. [Google Scholar] [CrossRef]
- Li, Z.; Qin, J. A new postfunctional method to synthesize C60-containing polysiloxanes. J. Appl. Polym. Sci. 2003, 89, 2068–2071. [Google Scholar] [CrossRef]
- Yan, H.; Chen, S.; Lu, M.; Zhu, X.; Li, Y.; Wu, D.; Tu, Y.; Zhu, X. Side-chain fullerene polyesters: A new class of high refractive index polymers. Mater. Horiz. 2014, 1, 247–250. [Google Scholar] [CrossRef]
- Hawker, C.J. A simple and versatile method for the synthesis of C60 copolymers. Macromolecules 1994, 27, 4836–4837. [Google Scholar] [CrossRef]
- Chen, X.; Gholamkhass, B.; Han, X.; Vamvounis, G.; Holdcroft, S. Polythiophene-graft-styrene and polythiophene-graft-(styrene-graft-C60) copolymers. Macromol. Rapid Commun. 2007, 28, 1792–1796. [Google Scholar] [CrossRef]
- Zhang, N.; Schricker, S.R.; Wudl, F.; Prato, M.; Maggini, M.; Scorrano, G. A new C60 polymer via ring-opening metathesis polymerization. Chem. Mater. 1995, 7, 441–442. [Google Scholar] [CrossRef]
- Ball, Z.T.; Sivula, K.; Fréchet, J.M.J. Well-defined fullerene-containing homopolymers and diblock copolymers with high fullerene content and their use for solution-phase and bulk organization. Macromolecules 2006, 39, 70–72. [Google Scholar] [CrossRef]
- Biglova, Y.N.; Mustafin, A.G.; Torosyan, S.A.; Biglova, R.Z.; Miftakhov, M.S. Ring-opening metathesis polymerization (ROMP) of fullerene-containing monomers in the presence of a first-generation Grubbs catalyst. Kinet. Catal. 2017, 58, 111–121. [Google Scholar] [CrossRef]
- Iwamoto, Y.; Yamakoshi, Y. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chem. Commun. 2006, 4805–4807. [Google Scholar] [CrossRef] [PubMed]
- Yamakoshi, Y.; Aroua, S.; Nguyen, T.M.D.; Iwamoto, Y.; Ohnishi, T. Water-soluble fullerene materials for bioapplications: Photoinduced reactive oxygen species generation. Faraday Discuss. 2014, 173, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Biglova, Y.N.; Mustafin, A.G.; Miftakhov, M.S. Physicochemical characteristics of the radical copolymerization of fullerene-containing methacrylates with vinyl monomers. Russ. J. Phys. Chem. B 2017, 11, 324–329. [Google Scholar] [CrossRef]
- Drees, M.; Hoppe, H.; Winder, C.; Neugebauer, H.; Sariciftci, N.S.; Schwinger, W.; Schaffler, F.; Topf, C.; Scharber, M.C.; Zhu, Z.; et al. Stabilization of the nanomorphology of polymer–fullerene ‘‘bulk heterojunction’’ blends using a novel polymerizable fullerene derivative. J. Mater. Chem. 2005, 15, 5158–5163. [Google Scholar] [CrossRef]
- Sivula, K.; Ball, Z.T.; Watanabe, N.; Frechet, J.M.J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: Fullerene solar cells. Adv. Mater. 2006, 18, 206–210. [Google Scholar] [CrossRef]
- Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K. Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules 2012, 45, 6424–6437. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, X.; Wang, J.; Wang, J.L.; Wu, S.C.; Yang, S.P.; Li, W.S. Polymerizable C70 derivatives with acrylate functionality for efficient and stable solar cells. Tetrahedron 2019, 75, 4676–4685. [Google Scholar] [CrossRef]
- Nagashima, H.; Nakaoka, A.; Saito, Y.; Kato, M.; Kawanishi, T.; Itoh, K. C60Pd: The first organometallic polymer of buckminsterfullerene. Chem. Commun. 1992, 377–379. [Google Scholar] [CrossRef]
- Nagashima, H.; Nahaoka, A.; Tajima, S.; Saito, Y.; Itoh, K. Catalytic-hydrogenation of olefins and acetylenes over C60Pdn. Chem. Lett. 1992, 21, 1361–1364. [Google Scholar] [CrossRef]
- Brancewicz, E.; Grądzka, E.; Winkler, K. Comparison of electrochemical properties of two-component C60-Pd polymers formed under electrochemical conditions and by chemical synthesis. J. Solid State Electrochem. 2013, 17, 1233–1245. [Google Scholar] [CrossRef]
- Leng, F.; Gerber, I.C.; Lecante, P.; Bacsa, W.; Miller, J.; Gallagher, J.R.; Moldovan, S.; Girleanu, M.; Axet, M.R.; Serp, P. Synthesis and structure of ruthenium-fullerides. RSC Adv. 2016, 6, 69135–69148. [Google Scholar] [CrossRef] [Green Version]
- Goclon, J.; Winkler, K.; Margraf, J.T. Theoretical investigation of interactions between palladium and fullerene in polymer. RSC Adv. 2017, 7, 2202–2210. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.Y.; Zhou, X.M.; Mutyala, S.; Huang, X.C. High catalytic activity of C60Pdn encapsulated in metal-organic framework UiO-67, for tandem hydrogenation reaction. Chem. A Eur. J. 2018, 24, 19141–19145. [Google Scholar] [CrossRef]
- Sugawara, Y.; Hiltebrandt, K.; Blasco, E.; Barner-Kowollik, C. Polymer-fullerene network formation via light-induced crosslinking. Macromol. Rapid Commun. 2016, 37, 1466–1471. [Google Scholar] [CrossRef]
- Chen, J.; Luo, K.; Zhu, J.; Yu, J.; Wang, Y.; Hu, Z. Reversibly cross-linked fullerene/polyamide composites based on Diels-Alder reaction. Compos. Sci. Technol. 2019, 176, 9–16. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, Y.; Wang, X.; Tan, H.R.; Xu, J. Photoresponsive thermoelectric materials derived from fullerene-C60 PEDOT hybrid polymers. ACS Appl. Energy Mater. 2020, 3, 6726–6734. [Google Scholar] [CrossRef]
- Karsten, B.P.; Bouwer, R.K.M.; Hummelen, J.C.; Williams, R.M.; Janssen, R.A.J. Charge separation and (triplet) recombination in diketopyrrolopyrrole–fullerene triads. Photochem. Photobiol. Sci. 2010, 9, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.W.; Jo, J.W.; Jo, W.H. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Adv. Mater. 2011, 23, 1782–1787. [Google Scholar] [CrossRef]
- Raïssi, M.; Erothu, H.; Ibarboure, E.; Cramail, H.; Vignau, L.; Cloutet, E.; Hiorns, R.C. Fullerene-capped copolymers for bulk heterojunctions: Device stability and efficiency improvements. J. Mater. Chem. A 2015, 3, 18207–18221. [Google Scholar] [CrossRef]
- Isakova, A.; Burton, C.; Nowakowski, D.J.; Topham, P.D. Diels–Alder cycloaddition and raft chain end functionality: An elegant route to fullerene end-capped polymers with control over molecular mass and architecture. Polym. Chem. 2017, 8, 2796–2805. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, L.V. Star-shaped polymers with fullerene C60 branching center. Russ. Chem. Bull. 2012, 61, 907–925. [Google Scholar] [CrossRef]
- Samulski, E.T.; DeSimone, J.M.; Hunt, M.O.; Menceloglu, Y.Z.; Jarnagin, R.C.; York, G.A.; Labat, K.B.; Wang, H. Flagellenes nanophase-separated, polymer-substituted fullerenes. Chem. Mater. 1992, 4, 1153–1157. [Google Scholar] [CrossRef]
- Ederlé, Y.; Mathis, C. Grafting of anionic polymers onto C60 in polar and nonpolar solvents. Macromolecules 1997, 30, 2546–2555. [Google Scholar] [CrossRef]
- Xu, G.; Han, Y.; Sun, M.; Bo, Z.; Chen, C.J. Synthesis and characterization of star polyfluorenes with a C60 core. Polym. Sci. Part A Polym. Chem. 2007, 45, 4696–4706. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Rostovtseva, V.A.; Pientka, Z.; Vinogradova, L.V.; Polotskaya, G.A. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core. Petrol. Chem. 2018, 58, 296–303. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Shugurov, S.M.; Larkina, A.A.; Faikov, I.I.; Tataurov, M.V.; Rostovtseva, V.A. Effect of star-shaped modifiers on the transport properties of polymer composites in the butan-1-ol dehydration process. Russ. J. Gen. Chem. 2019, 89, 2082–2091. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Larkina, A.A.; Tataurov, M.V.; Vinogradova, L.V.; Polotskaya, G.A. Hybrid macromolecular stars with fullerene(C60) core included in polyphenyleneisophthalamide membranes for n-butanol dehydration. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 54–60. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Liang, P.; Zhang, H.-Y. Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew. Chem. Int. Ed. 2004, 43, 2690–2694. [Google Scholar] [CrossRef]
- Isla, H.; Pérez, E.M.; Martín, N. High degree of polymerization in a fullerene-containing supramolecular polymer. Angew. Chem. 2014, 126, 5735–5739. [Google Scholar] [CrossRef]
- Hirao, T.; Fukuta, K.; Haino, T. Supramolecular approach to polymer-shape transformation via calixarene–fullerene complexation. Macromolecules 2020, 53, 3563–3570. [Google Scholar] [CrossRef]
- Rao, A.M.; Zhou, P.; Wang, K.-A.; Hager, G.T.; Holden, J.M.; Wang, Y.; Lee, W.T.; Bi, X.-X.; Eklund, P.C.; Cornett, D.S.; et al. Photoinduced polymerization of solid C60 films. Science 1993, 259, 955–957. [Google Scholar] [CrossRef]
- Iwasa, Y.; Arima, T.; Fleming, R.M.; Siegrist, T.; Zhou, O.; Haddon, R.C.; Rothberg, L.J.; Lyons, K.B.; Carter, H.L.; Hebard, A.F.; et al. New phases of C60 synthesized at high pressure. Science 1994, 264, 1570–1574. [Google Scholar] [CrossRef]
- Nuñez-Regueiro, M.; Marques, L.; Hodeau, J.-L.; Berthoux, O.; Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 1995, 74, 278–281. [Google Scholar] [CrossRef]
- Agafonov, V.; Davydov, V.A.; Kashevarova, L.S.; Rakhmanina, A.V.; Kahn-Harari, A.; Dubois, P.; Céolin, R.; Szwarc, H. ‘Low-pressure’ orthorhombic phase formed from pressure-treated C60. Chem. Phys. Lett. 1997, 267, 193–198. [Google Scholar] [CrossRef]
- Le Parc, R.; Levelut, C.; Haines, J.; Davydov, V.A.; Rakhmanina, A.V.; Papoular, R.J.; Agafonov, V. In situ X-ray powder diffraction study of one-dimensional polymeric C60 phase transformation under high-pressure. Chem. Phys. Lett. 2007, 438, 63–66. [Google Scholar] [CrossRef]
- Blank, V.D.; Buga, S.G.; Dubitsky, G.A.; Serebryanaya, N.R.; Popov, M.Y.; Sundqvist, B. High pressure polymerized phases of C60. Carbon 1998, 36, 319–343. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Serebryanaya, N.R.; Mavrin, B.N. The superhard crystalline three-dimensional polymerized C60 phase. Chem. Phys. Lett. 2000, 316, 199–204. [Google Scholar] [CrossRef]
- Talyzin, A.; Langenhorst, F.; Dubrovinskaia, N.; Dub, S.; Dubrovinsky, L. Structural characterization of the hard fullerite phase obtained at 13 GPa and 830 K. Phys. Rev. B 2005, 71, 115424. [Google Scholar] [CrossRef]
- Pei, C.Y.; Feng, M.N.; Yang, Z.X.; Yao, M.G.; Yuan, Y.; Li, X.; Hu, B.W.; Shen, M.; Chen, B.; Sundqvist, B.; et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate. Carbon 2017, 124, 490–505. [Google Scholar] [CrossRef]
- Yamanaka, S.; Kubo, A.; Inumaru, K.; Komaguchi, K.; Kini, N.S.; Inoue, T.; Irifune, T. Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 2006, 96, 076602. [Google Scholar] [CrossRef] [Green Version]
- Laranjeira, J.; Marques, L.; Mezouar, M.; Melle-Franco, M.; Strutyński, K. Bonding frustration in the 9.5 GPa fcc polymeric C60. Phys. Stat. Sol. Rapid Res. Lett. 2017, 11, 1700343. [Google Scholar] [CrossRef]
- Laranjeira, J.; Marques, L. C60 structures: Structural, electronic and elastic properties. Mater. Today Commun. 2020, 23, 100906. [Google Scholar] [CrossRef]
- Brazhkin, V.V.; Lyapin, A.G.; Popova, S.V.; Klyuev, Y.A.; Naletov, A.M. Mechanical properties of the 3D polymerized, sp2-sp3 amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C60 under high pressure. J. Appl. Phys. 1998, 84, 219–226. [Google Scholar] [CrossRef]
- Pei, C.; Wang, L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extrem. 2019, 4, 028201. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, P.J.F. Fullerene Polymers: A Brief Review. C 2020, 6, 71. https://doi.org/10.3390/c6040071
Harris PJF. Fullerene Polymers: A Brief Review. C. 2020; 6(4):71. https://doi.org/10.3390/c6040071
Chicago/Turabian StyleHarris, Peter J. F. 2020. "Fullerene Polymers: A Brief Review" C 6, no. 4: 71. https://doi.org/10.3390/c6040071
APA StyleHarris, P. J. F. (2020). Fullerene Polymers: A Brief Review. C, 6(4), 71. https://doi.org/10.3390/c6040071