Editorial for Special Issue “Nanoporous Carbons for Hydrogen Sorption and Electrochemical Energy Storage”
- Morais et al. [12] developed Fe,N-doped, glucose-derived carbon nanotube hybrids, demonstrating enhanced electrocatalytic activity for the ORR through synergetic incorporation of Fe and N.
- Asare et al. [13] introduced algae-derived carbon obtained via hydrothermal liquefaction as a sustainable electrode material, highlighting its excellent long-term supercapacitor performance following KOH activation.
- Lima et al. [14] produced polypyrrole-doped activated biochar from wood waste, offering a sustainable pathway to high-performance supercapacitor electrodes.
- Ritopecki et al. [15] applied Density Functional Theory to study the impact of B concentration and surface oxidation in B-doped graphene, revealing significant improvements in Na and Al ion storage capacities.
- Wan et al. [16] reported the fabrication of Ni2Co layered double hydroxide nanosheets on carbon substrates for water splitting, showcasing low overpotentials and high performance for both HER and OER through enhanced electron transfer.
- Gavrilov et al. [17] explored diammonium hydrogen phosphate-impregnated activated carbon fibers, achieving selective oxygen reduction to hydrogen peroxide while optimizing capacitive behavior.
- Colin et al. [18] presented fluorinated S-doped graphene as a cathode material for high-energy lithium batteries, attaining outstanding power and energy densities.
- Knabl et al. [19] synthesized Co-doped nanoporous graphene via plasma treatment, achieving multifunctionality for both OER-driven water splitting and supercapacitor applications.
- Kim et al. [20] demonstrated the promising performance of MXene-coated carbon nanofibers as pseudocapacitive electrodes, combining high specific capacitance with excellent stability.
Conflicts of Interest
References
- Kothandam, G.; Singh, G.; Guan, X.; Lee, J.M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J.; Kumar, P.; et al. Recent advances in carbon-based electrodes for energy storage and conversion. Adv. Sci. 2023, 10, 2301045. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Han, J.; Zhang, C.; Ling, G.; Kang, F.; Yang, Q.H. Dimensionality, function and performance of carbon materials in energy storage devices. Adv. Energy Mater. 2022, 12, 2100775. [Google Scholar] [CrossRef]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V.J.E.S. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43. [Google Scholar] [CrossRef]
- Kostoglou, N.; Koczwara, C.; Stock, S.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T.; Paris, O.; Rebholz, C.; Mitterer, C. Nanoporous polymer-derived activated carbon for hydrogen adsorption and electrochemical energy storage. Chem. Eng. J. 2022, 427, 131730. [Google Scholar] [CrossRef]
- Gadipelli, S.; Howard, C.A.; Guo, J.; Skipper, N.T.; Zhang, H.; Shearing, P.R.; Brett, D.J. Superior multifunctional activity of nanoporous carbons with widely tunable porosity: Enhanced storage capacities for carbon-dioxide, hydrogen, water, and electric charge. Adv. Energy Mater. 2020, 10, 1903649. [Google Scholar] [CrossRef]
- Benzigar, M.R.; Talapaneni, S.N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Wu, Y.C.; Lin, Z.; Taberna, P.L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Tang, J.; Kim, J.; Kaneti, Y.V.; Kang, Y.M.; Sugahara, Y.; Yamauchi, Y. Rational design and construction of nanoporous iron-and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1380–1393. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Rhan Kim, A.; Karthikeyan, S.; Yoo, D.J. Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions. Nanomaterials 2019, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Lin, J.; Wang, J.; Ding, B.; Zhang, X.; Alshehri, S.M.; Ahamd, T.; Salunkhe, R.R.; Hossain, S.A.; Khan, J.H.; et al. Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem.–A Eur. J. 2018, 24, 6127–6132. [Google Scholar] [CrossRef] [PubMed]
- Morais, R.G.; Rey-Raap, N.; Figueiredo, J.L.; Pereira, M.F.R. Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction. C 2024, 10, 47. [Google Scholar] [CrossRef]
- Asare, K.; Mali, A.; Hasan, M.F.; Agbo, P.; Shahbazi, A.; Zhang, L. Algae Derived Carbon from Hydrothermal Liquefaction as Sustainable Carbon Electrode Material for Supercapacitor. C 2024, 10, 51. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; dos Reis, G.S.; Lassi, U.; Lima, E.C.; Dotto, G.L.; de Oliveira, H.P. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C 2023, 9, 59. [Google Scholar] [CrossRef]
- Ritopecki, M.S.; Skorodumova, N.V.; Dobrota, A.S.; Pašti, I.A. Density Functional Theory Analysis of the Impact of Boron Concentration and Surface Oxidation in Boron-Doped Graphene for Sodium and Aluminum Storage. C 2023, 9, 92. [Google Scholar] [CrossRef]
- Wan, Z.; Tang, P.; Dai, L.; Yang, Y.; Li, L.; Liu, J.; Yang, M.; Deng, G. Highly Effective Electrochemical Water Splitting with Enhanced Electron Transfer between Ni2Co Layered Double Hydroxide Nanosheets Dispersed on Carbon Substrate. C 2023, 9, 94. [Google Scholar] [CrossRef]
- Gavrilov, N.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Exploring the Impact of DAHP Impregnation on Activated Carbon Fibers for Efficient Charge Storage and Selective O2 Reduction to Peroxide. C 2023, 9, 105. [Google Scholar] [CrossRef]
- Colin, M.; Farhat, H.; Chen, S.; Petit, E.; Flahaut, E.; Guérin, K.; Dubois, M. High Energy Density Primary Lithium Battery with Fluorinated S-Doped Graphene. C 2024, 10, 3. [Google Scholar] [CrossRef]
- Knabl, F.; Kostoglou, N.; Gupta, R.K.; Tarat, A.; Hinder, S.; Baker, M.; Rebholz, C.; Mitterer, C. Plasma-Treated Cobalt-Doped Nanoporous Graphene for Advanced Electrochemical Applications. C 2024, 10, 31. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, S.A.; Han, Y.S.; Jung, K.-H. Supercapacitor Performance of MXene-Coated Carbon Nanofiber Electrodes. C 2024, 10, 32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostoglou, N.; Rebholz, C. Editorial for Special Issue “Nanoporous Carbons for Hydrogen Sorption and Electrochemical Energy Storage”. C 2025, 11, 39. https://doi.org/10.3390/c11020039
Kostoglou N, Rebholz C. Editorial for Special Issue “Nanoporous Carbons for Hydrogen Sorption and Electrochemical Energy Storage”. C. 2025; 11(2):39. https://doi.org/10.3390/c11020039
Chicago/Turabian StyleKostoglou, Nikolaos, and Claus Rebholz. 2025. "Editorial for Special Issue “Nanoporous Carbons for Hydrogen Sorption and Electrochemical Energy Storage”" C 11, no. 2: 39. https://doi.org/10.3390/c11020039
APA StyleKostoglou, N., & Rebholz, C. (2025). Editorial for Special Issue “Nanoporous Carbons for Hydrogen Sorption and Electrochemical Energy Storage”. C, 11(2), 39. https://doi.org/10.3390/c11020039