Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers?
Abstract
:1. Introduction
2. The Role of Micro-RNA in Gene Transcription and Translation
3. Micro RNA in Mood Disorders
Reference | Disorder | Tissue | Direction of Change | Altered miRNAs |
---|---|---|---|---|
Azevedo et al. 2016 [44] | MDD | ACC | Decrease | miR-184 and miR-34a |
Belzeaux et al. 2012 [47] | MDD | Blood | Increase | miR-589, miR-579, miR-941, miR-133a, miR-494, miR-107, miR-148a, miR-652, miR-425-3p |
MDD | Blood | Decrease | miR-517b, miR-636, miR-1243, miR-381, miR-200c | |
Camkurt et al. 2015 [48] | MDD (First episode) | Blood | Increase | miR-451a, miR-17-5p, miR-223-3p |
MDD (First episode) | Blood | Decrease | miR-320a | |
Fan et al. 2014 [49] | MDD | PBMCs | Increase | miRNA-26b, miRNA-1972, miRNA-4485, miRNA-4498, miRNA-4743 |
Fang et al. 2018 [50] | MDD | Plasma | Increase | miR-132, miR-124 |
Gururajan et al. 2016 [51] | MDD (Treatment resistant) | Blood | Decrease | let-b, let-c |
He et al. 2016 [52] | MDD | PBMCs | Increase | miR-124-3p |
Hung et al. 2019 [53] | MDD | PBMCs | Decrease | let-7e, miR-21-5p, miR-146a, miR-155 |
MDD | Monocytes | Decrease | miR-146a, miR-155 | |
Issler et al. 2014 [54] | MDD | Blood | Decrease | miR-135a |
MDD (suicide) | Brain Stem | Decrease | miR135a | |
Kuang et al. 2018 [45] | MDD | serum | Increase | miRNA-34a-5p, miRNA-221-3p |
MDD | serum | Decrease | miRNA-451a | |
Lopez et al. 2014 [46] | MDD | Broca’s Area | Increase | miR-1202 |
Maffioletti et al. 2016 [55] | MDD | Blood | Increase | miR-199a-5p, miR-345-5p, miR-330-3p, miR-425-3p, miR-24-3p, miR-29c-5p |
MDD | Blood | Decrease | let-7a-5p, let-7f-5p, let-7d-5p, miR-1915-3p | |
Mendes-Silva et al. 2019 [56] | MDD (late) | Plasma | Decrease | miR-184 |
Roy et al. 2017 [57] | MDD | Serum, DLPFC | Increase | miR-124-3p |
Song et al. 2015 [58] | MDD | CSF | Decrease | miR-16 |
Blood | Decrease | miR-16 | ||
Wan et al. 2015 [59] | MDD | CSF | Increase | miR-34a-5p, miR-221-3p, let-7d-3p |
MDD | CSF | Decrease | miR-451a | |
MDD | Serum | Increase | miR-125a-5p, miR-30a-5p, let-7d-3p, miR-34a-5p, miR-221-3p, miR-29b-3p, miR-10a-5p, miR-375, miR-155-5p, miR-33a-5p, miR-139-5p, miR-590-5p | |
MDD | Serum | Decrease | miR-185-5p, miR-106b-5p, miR-15Bb-5p, miR-451a | |
Zhang et al. 2020 [60] | MDD | Plasma | Decrease | miRNA-134 |
Amoah et al. 2020 [42] | BD | Orbitofrontal cortex | Increase | miR-223, miR-330-3p, miR-1260, miR-193b-3p |
Azevedo et al. 2016 [44] | BD | ACC | Decrease | miR-132, miR-133a, miR-212, miR-34a |
Banach et al. 2017 [61] | BD | Leucocyte | Decrease | leucocyte miR-499, miR-708 and miR-1908 |
Banigan et al. 2013 [39] | BD | DLPFC exosomes | Increase | miR-29c |
Bavamian et al. 2015 [62] | BD | Cerebellum | Increase | miR-34a |
Camkurt et al. 2020 [63] | BD | Plasma | Increase | miR-29a-3p, miR-106b-5p, miR-107, and miR-125a-3p |
BD (manic vs. euthymic) | Plasma | Increase | miR-106a-5p and miR-107 | |
Ceylan et al. 2020 [38] | BD | Plasma exosomes | Increase | miR-484, miR-652-3p, miR-142-3p, miR-126-3p, miR-301a-3p, miR-30b-5p, miR-15a-5p, miR-15a-5p |
BD | Plasma exosomes | Decrease | miR-185-5p, miR-25-3p, miR-92a-3p, mir-376b-3p, let-7i-5p | |
Choi et al. 2017 [40] | BD | ACC exosomes | Increase | miR-149 |
Fries et al. 2019 [41] | BD | Plasma exosomes | Increase | miR-4516, miR-29c-3p, miR-22-3p, miR-6808-5p, miR-7977, miR-142-3p, miR-1185-2-3p, miR-6791-5p, miR-3194-5p, miR-6090, miR-21-5p, miR-3135b, miR-92a-3p, miR-7975 |
BD | Plasma exosomes | Decrease | miR-1281, miR-6068, miR-8060, miR-4433a-5p, miR-1268b, miR-1238-3p, miR-133a-3p, miR-188-5p, miR-6775-5p, miR-6800-3p, miR-3620-5p, miR-5739, miR-451a, miR-1227-5p, miR-7108-5p, miR-671-5p, miR-6727-5p, miR-6125, miR-6821-5p | |
Lee et al. 2020 [64] | BDII | Serum | Increase | miR-7-5p, miR-23b-3p, miR-142-3p, miR-221-5p, miR-370-3p |
Maffioletti et al. 2016 [55] | BD | Blood | Increase | miR-140-3p, miR-30d-5p, miR-330-3p, miR-330-5p, miR-720-5p, miR-3158-3p, miR-4521-5p, miR-345-5p, miR-1973-5p, miR-378a-5p, miR-21-3p, miR-29c-5p |
BD | Blood | Decrease | miR-1915-5p, miR-1972-5p, miR-4440-5p, miR-4793-3p | |
Rong et al. 2011 [65] | BD (manic vs. euthymic) | Plasma | Decrease | miRNA-134 |
Tabano et al. 2019 [66] | BD (manic vs. control) | Plasma | Increase | miR-150-5p, miR-25-3p, miR-451a, miR-144-3p |
BD (manic vs. control) | Plasma | Decrease | miR-363-3p, miR-4454 + has-miR-7975, miR-873-3p, miR-548al, miR-598-3p, miR-4443, miR-551a, miR-6721-5p | |
Walker et al. 2015 [67] | BD | Blood | Increase | miRNA miR-15b, miR-132, miR-652 |
Wang et al. 2018 [68] | BD | Broca’s Area | Decrease | microRNA-124-3p |
Zhang et al. 2020a [60] | BD | Plasma | Decrease | miRNA-134 |
4. miR-124
5. miR-34a
6. miR-1202
7. Long Non-Coding RNA in Mood Disorders
8. Challenges in Using Non-Coding RNA as Diagnostic Biomarkers
9. Non-Coding RNA as Biomarkers of Drug Response
10. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Marvel, C.L.; Paradiso, S. Cognitive and neurological impairment in mood disorders. Psychiatr. Clin. N. Am. 2004, 27, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Lu, L.; Zhang, L.; Zhang, Q.; Ungvari, G.S.; Ng, C.H.; Yuan, Z.; Xiang, Y.; Wang, G.; Xiang, Y.-T. Prevalence of suicide attempts in bipolar disorder: A systematic review and meta-analysis of observational studies. Epidemiol. Psychiatr. Sci. 2019, 29, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, M.; Zeng, L.-N.; Lu, L.; Li, X.-H.; Ungvari, G.S.; Ng, C.H.; Chow, I.H.I.; Zhang, L.; Zhou, Y.; Ning, Y. Prevalence of suicide attempt in individuals with major depressive disorder: A meta-analysis of observational surveys. Psychol. Med. 2018, 49, 1691–1704. [Google Scholar] [CrossRef]
- Rubino, A.; Roskell, N.; Tennis, P.; Mines, D.; Weich, S.; Andrews, E. Risk of suicide during treatment with venlafaxine, citalopram, fluoxetine, and dothiepin: Retrospective cohort study. BMJ 2006, 334, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-León, S.; Janssens, A.C.J.; Ladd, A.M.G.-Z.; Del Favero, M.; Claes, S.J.; A Oostra, B.; Van Duijn, C.M. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry 2007, 13, 772–785. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- McGuffin, P.; Katz, R. The Genetics of Depression and Manic-Depressive Disorder. Br. J. Psychiatry 1989, 155, 294–304. [Google Scholar] [CrossRef]
- McGuffin, P.; Rijsdijk, F.; Andrew, M.; Sham, P.; Katz, R.; Cardno, A. The Heritability of Bipolar Affective Disorder and the Genetic Relationship to Unipolar Depression. Arch. Gen. Psychiatry 2003, 60, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Fritz, K.; Russell, A.M.T.; Allwang, C.; Kuiper, S.; Lampe, L.; Malhi, G.S. Is a delay in the diagnosis of bipolar disorder inevitable? Bipolar Disord. 2017, 19, 396–400. [Google Scholar] [CrossRef]
- Van Snellenberg, J.X.; De Candia, T. Meta-analytic Evidence for Familial Coaggregation of Schizophrenia and Bipolar Disorder. Arch. Gen. Psychiatry 2009, 66, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Crow, T.J. Nature of the genetic contribution to psychotic illness-a continuum viewpoint. Acta Psychiatr. Scand. 1990, 81, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.; Owen, M.J. Genomic insights into the overlap between psychiatric disorders: Implications for research and clinical practice. Genome Med. 2014, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandal, M.J.; Haney, J.R.; Parikshak, N.; Leppa, V.; Ramaswami, G.; Hartl, C.; Schork, A.J.; Appadurai, V.; Buil, A.; Werge, T.; et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 2018, 359, 693–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarr, E.; Udawela, M.; Dean, B. Changed cortical risk gene expression in major depression and shared changes in cortical gene expression between major depression and bipolar disorders. Aust. N. Z. J. Psychiatry 2019, 53, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Scarr, E.; Udawela, M.; Dean, B. Changed frontal pole gene expression suggest altered interplay between neurotransmitter, developmental, and inflammatory pathways in schizophrenia. npj Schizophr. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Gottschalk, M.G.; Wesseling, H.; Guest, P.C.; Bahn, S. Proteomic Enrichment Analysis of Psychotic and Affective Disorders Reveals Common Signatures in Presynaptic Glutamatergic Signaling and Energy Metabolism. Int. J. Neuropsychopharmacol. 2015, 18, 19. [Google Scholar] [CrossRef]
- Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [CrossRef]
- Venkatasubramanian, G.; Keshavan, M.S. Biomarkers in Psychiatry—A Critique. Ann. Neurosci. 2016, 23, 3–5. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Colpo, G.D.; Fries, G.R.; Bauer, I.E.; Selvaraj, S. Biomarkers for bipolar disorder: Current status and challenges ahead. Expert Rev. Neurother. 2018, 19, 67–81. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, D.; Zhang, L.; Ingvarsson, S.; Chen, H. Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs. PLoS ONE 2011, 6, e28730. [Google Scholar] [CrossRef] [Green Version]
- Alural, B.; Genc, S.; Haggarty, S.J. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 73, 87–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.V.D.; Krauskopf, J.; Ramaekers, J.; Kleinjans, J.; Prickaerts, J.; Briedé, J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lutz, P.-E.; Wang, Y.C.; Ragoussis, J.; Turecki, G. Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Transl. Psychiatry 2018, 8, 224. [Google Scholar] [CrossRef]
- Seki, T.; Yamagata, H.; Uchida, S.; Chen, C.; Kobayashi, A.; Kobayashi, M.; Harada, K.; Matsuo, K.; Watanabe, Y.; Nakagawa, S. Altered expression of long noncoding RNAs in patients with major depressive disorder. J. Psychiatr. Res. 2019, 117, 92–99. [Google Scholar] [CrossRef]
- Gibbons, A.; Udawela, M.; Dean, B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Non-Coding RNA 2018, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Kosik, K.S. The neuronal microRNA system. Nat. Rev. Neurosci. 2006, 7, 911–920. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human microRNA targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef] [Green Version]
- Krichevsky, A.M.; King, K.S.; Donahue, C.P.; Khrapko, K.; Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003, 9, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Treadwell, J.; Zhang, D.; Ly, D.; McKinnell, I.; Walker, P.R.; Sikorska, M. Large-Scale Expression Analysis Reveals Distinct MicroRNA Profiles at Different Stages of Human Neurodevelopment. PLoS ONE 2010, 5, e11109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, F.; Zhang, B.; Zhang, K.; Zhang, F.; Huang, X.; Sun, N.; Ren, Y.; Sui, M.; Liu, P. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr. Res. 2010, 119, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Williamson, V.S.; Mamdani, M.; McMichael, G.O.; Kim, A.H.; Lee, D.; Bacanu, S.; Vladimirov, V.I. Expression quantitative trait loci (eQTLs) in microRNA genes are enriched for schizophrenia and bipolar disorder association signals. Psychol. Med. 2015, 45, 2557–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, W.-L.; Kao, C.-F.; Chuang, L.-C.; Kuo, P.-H. Incorporating information of microRNAs into pathway analysis in a genorne-wide association study of bipolar disorder. Front. Genet. 2012, 3, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinsky, G.V. SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle 2008, 7, 3564–3576. [Google Scholar] [CrossRef] [Green Version]
- Bangemann, K.; Schulz, W.; Wohlleben, J.; Weyergraf, A.; Snitjer, I.; Werfel, T.; Schmid-Ott, G.; Bohm, D. Depression and anxiety disorders among psoriasis patients. Protective and exacerbating factors. Hautarzt 2014, 65, 1056–1061. (In German) [Google Scholar] [CrossRef]
- Dwivedi, Y.; Roy, B.; Lugli, G.; Rizavi, H.; Zhang, H.; Smalheiser, N.R. Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: Relevance to depression pathophysiology. Transl. Psychiatry 2015, 5, e682. [Google Scholar] [CrossRef]
- Ceylan, D.; Tüfekci, K.U.; Keskinoğlu, P.; Genc, S.; Özerdem, A. Circulating exosomal microRNAs in bipolar disorder. J. Affect. Disord. 2019, 262, 99–107. [Google Scholar] [CrossRef]
- Banigan, M.G.; Kao, P.F.; Kozubek, J.A.; Winslow, A.R.; Medina, J.; Costa, J.; Schmitt, A.; Schneider, A.; Cabral, H.; Cagsal-Getkin, O.; et al. Differential Expression of Exosomal microRNAs in Prefrontal Cortices of Schizophrenia and Bipolar Disorder Patients. PLoS ONE 2013, 8, e48814. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.L.; Kao, P.F.; Itriago, E.; Zhan, Y.; Kozubek, J.A.; Hoss, A.G.; Banigan, M.G.; Vanderburg, C.R.; Rezvani, A.H.; Latourelle, J.C.; et al. miR-149 and miR-29c as candidates for bipolar disorder biomarkers. Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. 2017, 174, 315–323. [Google Scholar] [CrossRef]
- Fries, G.R.; Lima, C.N.; Valvassori, S.S.; Zunta-Soares, G.; Soares, J.C.; Quevedo, J. Preliminary investigation of peripheral extracellular vesicles’ microRNAs in bipolar disorder. J. Affect. Disord. 2019, 255, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Amoah, S.K.; Rodriguez, B.A.; Logothetis, C.N.; Chander, P.; Sellgren, C.M.; Weick, J.P.; Sheridan, S.D.; Jantzie, L.L.; Webster, M.J.; Mellios, N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020, 45, 656–665. [Google Scholar] [CrossRef]
- Shen, F.; Huang, W.L.; Jiang, C.M.; Wu, Z.H.; Xing, B.P.; Chen, W. A polymorphism in DICER1 gene is associated with major depressive disorder risk. Int. J. Clin. Exp. Med. 2017, 10, 12404–12411. [Google Scholar]
- Azevedo, J.A.; Carter, B.S.; Meng, F.; Turner, D.L.; Dai, M.; Schatzberg, A.F.; Barchas, J.D.; Jones, E.G.; Bunney, W.E.; Myers, R.M.; et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J. Psychiatr. Res. 2016, 82, 58–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, W.-H.; Dong, Z.-Q.; Tian, L.-T.; Li, J. MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz. J. Med. Biol. Res. 2018, 51, 9. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.P.; Lim, R.S.; Cruceanu, C.; Crapper, L.; Fasano, C.; LaBonte, B.; Maussion, G.; Yang, J.P.; Yerko, V.; Vigneault, E.; et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat. Med. 2014, 20, 764–768. [Google Scholar] [CrossRef]
- Belzeaux, R.; Bergon, A.; Jeanjean, V.; Loriod, B.; Formisano-Tréziny, C.; Verrier, L.; Loundou, A.; Baumstarck, K.; Boyer, L.; Gall, V.; et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl. Psychiatry 2012, 2, e185. [Google Scholar] [CrossRef] [PubMed]
- Camkurt, M.A.; Acar, S.; Coşkun, S.; Günes, M.; Güneş, S.; Yılmaz, M.F.; Gorur, A.; Tamer, L.; Yilmaz, M.F. Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. J. Psychiatr. Res. 2015, 69, 67–71. [Google Scholar] [CrossRef]
- Fan, H.-M.; Sun, X.-Y.; Guo, W.; Zhong, A.-F.; Niu, W.; Zhao, L.; Dai, Y.-H.; Guo, Z.-M.; Zhang, L.-Y.; Lu, J. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J. Psychiatr. Res. 2014, 59, 45–52. [Google Scholar] [CrossRef]
- Fang, Y.; Qiu, Q.; Zhang, S.; Sun, L.; Li, G.; Xiao, S.; Li, X. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J. Affect. Disord. 2018, 227, 745–751. [Google Scholar] [CrossRef]
- Gururajan, A.; E Naughton, M.; Scott, K.; O’Connor, R.M.; Moloney, G.M.; Clarke, G.; Dowling, J.; Walsh, A.; Ismail, F.; Shorten, G.; et al. MicroRNAs as biomarkers for major depression: A role for let-7b and let-7c. Transl. Psychiatry 2016, 6, e862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Liu, X.; Jiang, K.; Peng, D.; Hong, W.; Fang, Y.; Qian, Y.; Yu, S.; Li, H. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J. Psychiatr. Res. 2016, 78, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-Y.; Wu, M.-K.; Tsai, M.-C.; Huang, Y.-L.; Kang, H.-Y. Aberrant Expression of Intracellular let-7e, miR-146a, and miR-155 Correlates with Severity of Depression in Patients with Major Depressive Disorder and Is Ameliorated after Antidepressant Treatment. Cells 2019, 8, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issler, O.; Haramati, S.; Paul, E.D.; Maeno, H.; Navon, I.; Zwang, R.; Gil, S.; Mayberg, H.S.; Dunlop, B.W.; Menke, A.; et al. MicroRNA 135 Is Essential for Chronic Stress Resiliency, Antidepressant Efficacy, and Intact Serotonergic Activity. Neuron 2014, 83, 344–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffioletti, E.; Cattaneo, A.; Rosso, G.; Maina, G.; Maj, C.; Gennarelli, M.; Tardito, D.; Chiavetto, L.B. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J. Affect. Disord. 2016, 200, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes-Silva, A.; Fujimura, P.T.; Silva, J.R.D.C.; Teixeira, A.L.; Vieira, E.M.; Guedes, P.H.G.; Barroso, L.S.S.; Nicolau, M.; Ferreira, J.D.; Bertola, L.; et al. Brain-enriched MicroRNA-184 is downregulated in older adults with major depressive disorder: A translational study. J. Psychiatr. Res. 2019, 111, 110–120. [Google Scholar] [CrossRef]
- Roy, B.; Dunbar, M.; Shelton, R.C.; Dwivedi, Y. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder. Neuropsychopharmacology 2016, 42, 864–875. [Google Scholar] [CrossRef] [Green Version]
- Song, M.-F.; Dong, J.-Z.; Wang, Y.-W.; He, J.; Ju, X.; Zhang, L.; Zhang, Y.-H.; Shi, J.-F.; Lv, Y.-Y. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J. Affect. Disord. 2015, 178, 25–31. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y.; Wang, X.-B.; Wu, J.; Liu, K.; Zhou, J.; Liu, L.; Zhang, C. Identification of Differential MicroRNAs in Cerebrospinal Fluid and Serum of Patients with Major Depressive Disorder. PLoS ONE 2015, 10, e0121975. [Google Scholar] [CrossRef]
- Zhang, H.-P.; Liu, X.-L.; Chen, J.; Cheng, K.; Bai, S.-J.; Zheng, P.; Zhou, C.-J.; Wang, W.; Wang, H.-Y.; Zhong, L.-M.; et al. Circulating microRNA 134 sheds light on the diagnosis of major depressive disorder. Transl. Psychiatry 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Banach, E.; Dmitrzak-Weglarz, M.; Pawlak, J.; Kapelski, P.; Szczepankiewicz, A.; Rajewska-Rager, A.; Slopien, A.; Skibinska, M.; Czerski, P.; Hauser, J. Dysregulation of miR-499, miR-708 and miR-1908 during a depression episode in bipolar disorders. Neurosci. Lett. 2017, 654, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Bavamian, S.; Mellios, N.; LaLonde, J.; Fass, D.M.; Wang, J.; Sheridan, S.D.; Madison, J.M.; Zhou, F.; Rueckert, E.H.; Barker, D.; et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol. Psychiatry 2015, 20, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Camkurt, M.A.; Karababa, I.F.; Erdal, M.E.; Kandemir, S.B.; Fries, G.R.; Bayazıt, H.; Ay, M.E.; Kandemir, H.; Ay Özlem, I.; Coşkun, S.; et al. MicroRNA dysregulation in manic and euthymic patients with bipolar disorder. J. Affect. Disord. 2019, 261, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lu, R.-B.; Wang, L.-J.; Chang, C.-H.; Lu, T.; Wang, T.-Y.; Tsai, K.-W. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Liu, T.B.; Yang, K.J.; Yang, H.C.; Wu, D.H.; Liao, C.P.; Hong, F.; Yang, H.Z.; Wan, F.; Ye, X.Y.; et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J. Psychiatr. Res. 2011, 45, 92–95. [Google Scholar] [CrossRef]
- Tabano, S.; Caldiroli, A.; Terrasi, A.; Colapietro, P.; Grassi, S.; Carnevali, G.S.; Fontana, L.; Serati, M.; Vaira, V.; Altamura, A.C.; et al. A miRNome analysis of drug-free manic psychotic bipolar patients versus healthy controls. Eur. Arch. Psychiatry Clin. Neurosci. 2019. [Google Scholar] [CrossRef]
- Walker, R.; Rybka, J.; Anderson, S.M.; Torrance, H.S.; Boxall, R.; Sussmann, J.E.; Porteous, D.J.; McIntosh, A.M.; Evans, K.L. Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J. Psychiatr. Res. 2015, 62, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, G.; Yang, Z.; Liu, X.; Xie, P. Downregulation of microRNA-124-3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. Int. J. Mol. Med. 2017, 41, 493–500. [Google Scholar] [CrossRef]
- Wang, S.-S.; Mu, R.-H.; Li, C.-F.; Dong, S.-Q.; Geng, D.; Liu, Q.; Yi, L.-T. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 417–425. [Google Scholar] [CrossRef]
- Higuchi, F.; Uchida, S.; Yamagata, H.; Abe-Higuchi, N.; Hobara, T.; Hara, K.; Kobayashi, A.; Shintaku, T.; Itoh, Y.; Suzuki, T.; et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J. Neurosci. 2016, 36, 7253–7267. [Google Scholar] [CrossRef]
- Maroof, H.; Salajegheh, A.; Smith, R.A.; Lam, A.K.-Y.; Ariana, A. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp. Mol. Pathol. 2014, 97, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Lei, L.; Wang, Y.; Yang, C.; Liu, Z.; Li, X.; Zhang, K. Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J. Affect. Disord. 2016, 194, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol. 2013, 23, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Stevens, F.L.; Hurley, R.A.; Taber, K.H. Anterior Cingulate Cortex: Unique Role in Cognition and Emotion. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 120–125. [Google Scholar] [CrossRef]
- Sanches, M.; Keshavan, M.S.; Brambilla, P.; Soares, J.C. Neurodevelopmental basis of bipolar disorder: A critical appraisal. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1617–1627. [Google Scholar] [CrossRef]
- Gheysarzadeh, A.; Sadeghifard, N.; Afraidooni, L.; Pooyan, F.; Mofid, M.R.; Valadbeigi, H.; Bakhtiari, H.; Keikhavani, S. Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J. Res. Med. Sci. 2018, 23, 69. [Google Scholar] [CrossRef]
- Dadkhah, T.; Rahimi-Aliabadi, S.; Jamshidi, J.; Ghaedi, H.; Taghavi, S.; Shokraeian, P.; Akhavan-Niaki, H.; Tafakhori, A.; Ohadi, M.; Darvish, H. A genetic variant in miRNA binding site of glutamate receptor 4, metabotropic (GRM4) is associated with increased risk of major depressive disorder. J. Affect. Disord. 2017, 208, 218–222. [Google Scholar] [CrossRef]
- Gibbons, A.S.; Brooks, L.; Scarr, E.; Dean, B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J. Affect. Disord. 2012, 136, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- McOmish, C.E.; Pavey, G.; Gibbons, A.; Hopper, S.; Udawela, M.; Scarr, E.; Dean, B. Lower 3H LY341495 binding to mGlu2/3 receptors in the anterior cingulate of subjects with major depressive disorder but not bipolar disorder or schizophrenia. J. Affect. Disord. 2016, 190, 241–248. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Abdelmohsen, K.; Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 2014, 34, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Rashid, F.; Shah, A.; Shan, G. Long Non-coding RNAs in the Cytoplasm. Genom. Proteom. Bioinform. 2016, 14, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.-H.; Abdelmohsen, K.; Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 2012, 425, 3723–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawyer, I.A.; Dundr, M. Chromatin loops and causality loops: The influence of RNA upon spatial nuclear architecture. Chromosoma 2017, 126, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA Structural Characteristics in Epigenetic Regulation. Int. J. Mol. Sci. 2017, 18, 2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burenina, O.Y.; Oretskaya, T.S.; Kubareva, E.A. Non-coding RNAs As Transcriptional Regulators In Eukaryotes. Acta Naturae 2017, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.C.; Wang, X.Y.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017, 3, eaao2110. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Sun, X.; Niu, W.; Kong, L.; He, M.; Zhong, A.; Chen, S.; Jiang, K.; Zhang, L.; Cheng, Z. Long Non-Coding RNA: Potential Diagnostic and Therapeutic Biomarker for Major Depressive Disorder. Med. Sci. Monit. 2016, 22, 5240–5248. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhu, X.; Niu, W.; Kong, L.; Yao, G. Bioinformatics Analysis of Altered lncRNAs in Peripheral Blood Molecular Cells from Major Depressive Disorder (MDD) Patients. Int. J. Blood Res. Disord. 2018, 5, 034. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Niu, W.; Kong, L.; He, M.; Jiang, K.; Chen, S.; Zhong, A.; Li, W.; Lu, J.; Zhang, L.-Y. Long noncoding RNA expression in peripheral blood mononuclear cells and suicide risk in Chinese patients with major depressive disorder. Brain Behav. 2017, 7, e00711. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, B.; Wang, L.; Hu, H.; Yao, C.; Cai, Z.; Cui, X. Therapeutic Antidepressant Potential of NONHSAG045500 in Regulating Serotonin Transporter in Major Depressive Disorder. Med. Sci. Monit. 2018, 24, 4465–4473. [Google Scholar] [CrossRef]
- Voleti, B.; Duman, R.S. The Roles of Neurotrophic Factor and Wnt Signaling in Depression. Clin. Pharmacol. Ther. 2011, 91, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Liao, Y.; Li, L.; Zhang, X.; Wu, Z. Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/β-catenin signaling pathway. J. Integr. Neurosci. 2018, 17, 203–215. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, L.; Cui, X.; Niu, W.; Kong, L.; He, M.; Jiang, K.; Chen, S.; Zhong, A.; Li, W. Long noncoding RNAs: New evidence for overlapped pathogenesis between major depressive disorder and generalized anxiety disorder. Indian J. Psychiatry 2017, 59, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-I.; Liu, C.-Y.; Yang, C.-H.; Gan, S. Comorbidity with more anxiety disorders associated with a poorer prognosis persisting at the 10-year follow-up among patients with major depressive disorder. J. Affect. Disord. 2019, 260, 97–104. [Google Scholar] [CrossRef]
- Cui, X.; Niu, W.; Kong, L.; He, M.; Jiang, K.; Chen, S.; Zhong, A.; Li, W.; Lu, J.; Zhang, L. Can lncRNAs be indicators for the diagnosis of early onset or acute schizophrenia and distinguish major depressive disorder and generalized anxiety disorder?-A cross validation analysis. Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. 2017, 174, 335–341. [Google Scholar] [CrossRef]
- Issler, O.; Van Der Zee, Y.Y.; Ramakrishnan, A.; Wang, J.; Tan, C.; Loh, Y.-H.E.; Purushothaman, I.; Walker, D.M.; Lorsch, Z.S.; Hamilton, P.J.; et al. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020, 106, 912–926. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, H.; Xu, J.; Wang, W.; Wu, Y.; Wu, X. LINC00473 contributes to the radioresistance of esophageal squamous cell carcinoma by regulating microRNA-497-5p and cell division cycle 25A. Int. J. Mol. Med. 2020, 46, 571–582. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, X.; Li, Z.; Li, J.; Lin, X.; Hu, Z.; Cui, Y. Linc00473 potentiates cholangiocarcinoma progression by modulation of DDX5 expression via miR-506 regulation. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Xu, S.L. LINC00473 promotes lung adenocarcinoma progression by regulating miR-1294/ROBO1 axis. J. Biol. Regul. Homeost. Agents 2020, 34. [Google Scholar] [CrossRef]
- Kendler, K.S.; Gardner, C.O. Sex differences in the pathways to major depression: A study of opposite-sex twin pairs. Am. J. Psychiatry 2014, 171, 426–435. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S. Sex differences in unipolar depression: Evidence and theory. Psychol. Bull. 1987, 101, 259–282. [Google Scholar] [CrossRef] [PubMed]
- Sayad, A.; Taheri, M.; Omrani, M.D.; Fallah, H.; Oskooei, V.K.; Ghafouri-Fard, S. Peripheral expression of long non-coding RNAs in bipolar patients. J. Affect. Disord. 2019, 249, 169–174. [Google Scholar] [CrossRef]
- Ghafelehbashi, H.; Kakhki, M.P.; Kular, L.; Moghbelinejad, S.; Ghafelehbashi, S.H. Decreased Expression of IFNG-AS1, IFNG and IL-1B Inflammatory Genes in Medicated Schizophrenia and Bipolar Patients. Scand. J. Immunol. 2017, 86, 479–485. [Google Scholar] [CrossRef]
- Luykx, J.J.; Giuliani, F.; Giuliani, G.; Veldink, J.H. Giuliani Coding and Non-Coding RNA Abnormalities in Bipolar Disorder. Genes 2019, 10, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotake, Y.; Kitagawa, K.; Ohhata, T.; Sakai, S.; Uchida, C.; Niida, H.; Naemura, M.; Kitagawa, M. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein. Anticancer Res. 2016, 36, 1605–1611. [Google Scholar] [PubMed]
- Zhang, H.; Li, H.; Ge, A.; Guo, E.; Liu, S.; Zhang, L. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b. Biomed. Pharmacother. 2018, 101, 663–669. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Su, D.-M.; Guan, L.-N.; Mu, W.-H.; Yu, M.; Ma, X.; Yang, R.-J. lncRNA TUG1 modulates proliferation, apoptosis, invasion, and angiogenesis via targeting miR-29b in trophoblast cells. Hum. Genom. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, S.I. Lithium and the Other Mood Stabilizers Effective in Bipolar Disorder Target the Rat Brain Arachidonic Acid Cascade. ACS Chem. Neurosci. 2014, 5, 459–467. [Google Scholar] [CrossRef]
- Bavaresco, D.V.; Colonetti, T.; Grande, A.J.; Colom, F.; Valvassori, S.S.; Quevedo, J.; Da Rosa, M.I. Efficacy of Celecoxib Adjunct Treatment on Bipolar Disorder: Systematic Review and Meta-Analysis. CNS Neurol. Disord. Drug Targets 2019, 18, 19–28. [Google Scholar] [CrossRef]
- Johnstone, M.; Thomson, P.A.; Hall, J.; McIntosh, A.M.; Lawrie, S.M.; Porteous, D.J. DISC1 in Schizophrenia: Genetic Mouse Models and Human Genomic Imaging. Schizophr. Bull. 2010, 37, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Gargari, B.N.; Zahirodin, A.; Ghaderian, S.M.H.; Farsani, Z.S. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci. Lett. 2019, 696, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, D.; Kuroda, K.; Tanaka, M.; Namba, T.; Iizuka, Y.; Taya, S.; Shinoda, T.; Hikita, T.; Muraoka, S.; Iizuka, M.; et al. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat. Neurosci. 2015, 18, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Scarr, E.; Millan, M.J.; Bahn, S.; Bertolino, A.; Turck, C.W.; Kapur, M.S.; Möller, H.-J.; Dean, B. Biomarkers for Psychiatry: The Journey from Fantasy to Fact, a Report of the 2013 CINP Think Tank: Figure 1. Int. J. Neuropsychopharmacol. 2015, 18, pyv042. [Google Scholar] [CrossRef] [Green Version]
- I Fried, E.; Nesse, R.M. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 2014, 172, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieta, E.; Phillips, M.L. Deconstructing Bipolar Disorder: A Critical Review of its Diagnostic Validity and a Proposal for DSM-V and ICD-11. Schizophr. Bull. 2007, 33, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Galasko, D.; Golde, T.E. Biomarkers for Alzheimer’s disease in plasma, serum and blood - conceptual and practical problems. Alzheimer’s Res. Ther. 2013, 5, 10. [Google Scholar] [CrossRef]
- Mompeón, A.; Ortega-Paz, L.; Vidal-Gómez, X.; Costa, T.J.; Pérez-Cremades, D.; Garcia-Blas, S.; Brugaletta, S.; Sanchis, J.; Sabate, M.; Novella, S.; et al. Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: A systematic and paired comparative analysis. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Y.; Cho, J.-H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA Spectrum between Serum and Plasma. PLoS ONE 2012, 7, e41561. [Google Scholar] [CrossRef]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large differences in small RNA composition between human biofluids. Cell Rep. 2018, 25, 251496. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, S.S.; Nygaard, A.-B.; Christensen, T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia—An exploratory study. Transl. Neurodegener. 2016, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Denk, J.; Oberhauser, F.; Kornhuber, J.; Wiltfang, J.; Fassbender, K.; Schroeter, M.L.; Volk, A.E.; Diehl-Schmid, J.; Prudlo, J.; Danek, A.; et al. Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS ONE 2018, 13, e0197329. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Wan, Q.; Li, L.; Jin, H.; Liu, Y.-H.; Wang, Y.; Zhang, G. MicroRNAs as Potential Biomarkers for Diagnosing Cancers of Central Nervous System: A Meta-analysis. Mol. Neurobiol. 2014, 51, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Kuiperij, H.B.; Claassen, J.A.; Kusters, B.; Verbeek, M.M. MicroRNAs in Alzheimer’s disease: Differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol. Aging 2014, 35, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Sancesario, G.M.; Bernardini, S. AD biomarker discovery in CSF and in alternative matrices. Clin. Biochem. 2019, 72, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Belzeaux, R.; Lin, R.; Turecki, G. Potential Use of MicroRNA for Monitoring Therapeutic Response to Antidepressants. CNS Drugs 2017, 31, 253–262. [Google Scholar] [CrossRef]
- Lopez, J.P.; Kos, A.; Turecki, G. Major depression and its treatment. Curr. Opin. Psychiatry 2018, 31, 7–16. [Google Scholar] [CrossRef]
- Nelson, J.C. Treatment of antidepressant nonresponders: Augmentation or switch? J. Clin. Psychiatry 1998, 59, 35–41. [Google Scholar]
- Ananth, J.; Engelsmann, F.; Kiriakos, R.; Kolivakis, T. Prediction of lithium response. Acta Psychiatr. Scand. 1979, 60, 279–286. [Google Scholar] [CrossRef]
- Chen, H.; Wang, N.; Burmeister, M.; McInnis, M.G. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int. J. Neuropsychopharmacol. 2009, 12, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Creson, T.K.; Austin, D.R.; Shaltiel, G.; McCammon, J.; Wess, J.; Manji, H.K.; Chen, G. Lithium treatment attenuates muscarinic M1 receptor dysfunction. Bipolar Disord. 2011, 13, 238–249. [Google Scholar] [CrossRef]
- Croce, N.; Bernardini, S.; Caltagirone, C.; Angelucci, F. Lithium/Valproic Acid Combination and l-Glutamate Induce Similar Pattern of Changes in the Expression of miR-30a-5p in SH-SY5Y Neuroblastoma Cells. Neuromol. Med. 2014, 16, 872–877. [Google Scholar] [CrossRef]
- Hunsberger, J.G.; Chibane, F.L.; Elkahloun, A.G.; Henderson, R.; Singh, R.; Lawson, J.; Cruceanu, C.; Nagarajan, V.; Turecki, G.; Squassina, A.; et al. Novel integrative genomic tool for interrogating lithium response in bipolar disorder. Transl. Psychiatry 2015, 5, e504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Zhang, Y.; Pang, K.; Kang, H.; Park, H.; Lee, Y.; Lee, B.; Lee, H.-J.; Kim, W.-K.; Geum, D.; et al. Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses. Exp. Neurobiol. 2016, 25, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Zainal, N.Z.; Kanagasundram, S.; Zain, S.M.; Mohamed, Z. Preliminary examination of microRNA expression profiling in bipolar disorder I patients during antipsychotic treatment. Am. J. Med. Genet. Part B: Neuropsychiatr. Genet. 2016, 171, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, C.; Papadima, E.M.; Melis, C.; Congiu, D.; Loizedda, A.; Orrù, N.; Calza, S.; Orru, S.; Carcassi, C.; Severino, G.; et al. Whole Genome Expression Analyses of miRNAs and mRNAs Suggest the Involvement of miR-320a and miR-155-3p and their Targeted Genes in Lithium Response in Bipolar Disorder. Int. J. Mol. Sci. 2019, 20, 6040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squassina, A.; Niola, P.; Lopez, J.P.; Cruceanu, C.; Pisanu, C.; Congiu, D.; Severino, G.; Ardau, R.; Chillotti, C.; Alda, M.; et al. MicroRNA expression profiling of lymphoblasts from bipolar disorder patients who died by suicide, pathway analysis and integration with postmortem brain findings. Eur. Neuropsychopharmacol. 2020, 34, 39–49. [Google Scholar] [CrossRef]
- Zhou, R.; Yuan, P.; Wang, Y.; Hunsberger, J.G.; Elkahloun, A.; Wei, Y.; Damschroder-Williams, P.; Du, J.; Chen, G.; Manji, H.K. Evidence for Selective microRNAs and Their Effectors as Common Long-Term Targets for the Actions of Mood Stabilizers. Neuropsychopharmacology 2008, 34, 1395–1405. [Google Scholar] [CrossRef]
- Malhi, G.; Tanious, M.; Das, P.; Coulston, C.M.; Berk, M. Potential Mechanisms of Action of Lithium in Bipolar Disorder. CNS Drugs 2013, 27, 135–153. [Google Scholar] [CrossRef]
- Ayano, G. Bipolar disorders and valproate: Pharmacokinetics, pharmacodynamics and therapeutic effects and indications of valproate: Review of articles. Bipolar Disord. 2016, 2, 109. [Google Scholar] [CrossRef]
- Zhang, Z.; Convertini, P.; Shen, M.; Xu, X.; Lemoine, F.; De La Grange, P.; Andres, U.A.; Stamm, S. Valproic Acid Causes Proteasomal Degradation of DICER and Influences miRNA Expression. PLoS ONE 2013, 8, e82895. [Google Scholar] [CrossRef] [Green Version]
- Maloney, B.; Balaraman, Y.; Liu, Y.; Chopra, N.; Edenberg, H.J.; Kelsoe, J.; Nurnberger, J.I.; Lahiri, D.K. Lithium alters expression of RNAs in a type-specific manner in differentiated human neuroblastoma neuronal cultures, including specific genes involved in Alzheimer’s disease. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Sánchez, C.; Reines, E.H.; Montgomery, S.A. A comparative review of escitalopram, paroxetine, and sertraline. Int. Clin. Psychopharmacol. 2014, 29, 185–196. [Google Scholar] [CrossRef]
- Xie, L.; Chen, J.; Ding, Y.-M.; Gui, X.-W.; Wu, L.-X.; Tian, S.; Wu, W. MicroRNA-26a-2 maintains stress resiliency and antidepressant efficacy by targeting the serotonergic autoreceptor HTR1A. Biochem. Biophys. Res. Commun. 2019, 511, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Nyholt, D.R. Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders. Hum. Genet. 2016, 136, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, S.N.; Vöhringer, P.A. The heterogeneity of depression: An old debate renewed. Acta Psychiatr. Scand. 2011, 124, 497. [Google Scholar] [CrossRef] [PubMed]
Reference | Drug | Tissue | Direction of Change | miRNAs |
---|---|---|---|---|
Belzeaux et al. 2012 [47] | Various AD (8 weeks) | PBMCs | Increase | miR-20b-3p, miR-433, miR-409-3p, miR-410, miR-485-3p, miR-133a, miR-145 |
Various AD (8 weeks) | PBMCs | Decrease | miR-331-5p | |
Bocchio-Chiavetto et al. 2013 [73] | Escitalopram (12 weeks) | Blood | Increase | miR-130b, miR-505, miR-29b-2, miR-26b, miR-22, miR-26a, miR-664, miR-494, let-7d, let-7g, let-7f, miR-629, miR-106b, let-7e, miR-103, miR-191, miR-128, miR-502-3p, miR-374b, miR-132, miR-30d, miR-500, miR-589, miR-183, miR-574-3p, miR-140-3p, miR-335, miR-361-5p |
Escitalopram (12 weeks) | Blood | Decrease | miR-34c-5p and miR-770-5p | |
Chen et al. 2009 [129] | Lithium (4 days) (16 days) | Lymphoblastoid cells | Increase | miR-221, miR-152, miR-15a, miR-155, miR-181c, miR-34a miR-221, miR-152, miR-155 and miR-34a |
Lithium (4 days) | Lymphoblastoid cells | Decrease | miR-494 | |
Creson et al. 2011 [130] | Lithium (5 weeks) | Rat frontal cortex | Decrease | let-7b |
Croce et al. 2014 [131] | Lithium + Valproate (48 h) | SH-SY5Y neuroblastoma cells | Decrease | miR-30a-5p |
Fang et al. 2018 [50] | Citalopram (8 weeks) | Plasma | Decrease | miR-132 |
Citalopram (8 weeks) | Plasma | Increase | miR-124 | |
Hung et al. 2019 [53] | Various (4 weeks) | PBMCs | Increase | let-7e, miR-223, miR-146a, miR-155 |
Various (4 weeks) | Monocytes | Increase | let-7e, miR-21-5p, miR-145, miR-146a, miR-155 | |
Hunsberger et al. 2015 [132] | Lithium (7 days) | BD-derived lymphoblastoid cells | Decrease | let-7 |
Issler et al. 2014 [54] | Imipramine (3 weeks) | Mouse brain stem | Increase | miR-135a |
Fluoxetine (3 weeks) | Mouse brain stem | Increase | miR-135a | |
Kim et al. 2016 [133] | Valproate (7 days) | BD derived neuroprogenitor cells | Decrease | miR-1908-5p |
Valproate (7 days) | Control derived neuroprogenitor cells | Increase | miR-1908-5p | |
Kuang et al. 2018 [45] | Paroxetine (8 weeks) | serum | Increase | miRNA-451a |
Paroxetine (8 weeks) | serum | Decrease | miRNA-34a-5p, miRNA-221-3p | |
Lim et al. 2016 [134] | Asenapine (12 weeks) | Blood | Increase | miR-18a-5p, miR-19b-3p, miR-145-5p, miR-27a-3p, miR-148b-3p, miR-210-3p, miR-17-3p, miR-30b-5p, miR-106b-5p, miR-339-5p, miR-106a-5p, miR-20a-5p, miR-17-5p, miR-15a-5p |
Asenapine (12 weeks) | Blood | Decrease | miR-92b-5p, miR-1343-5p | |
Pisanu et al. 2019 [135] | Lithium (7 days) | Li Responder derived lymphoblastoid cells | Increase | miR-320a |
Lithium (7 days) | Li Responder derived lymphoblastoid cells | Decrease | miR-155-3p | |
Rong et al. 2011 [65] | Lithium | Plasma | Increase | miRNA-134 |
Squassina et al. 2020 [136] | Lithium (7 days) | BD derived lymphoblastoid cells | Decrease | miR-186-5p, miR-423-5p |
Zhou et al. 2009 [137] | Lithium (4 weeks) | Rat hippocampus | Decrease | let-7b, let-7c, miR-128a, miR-30c, miR-34a, miR-22, miR24a |
Lithium (4 weeks) | Rat hippocampus | Increase | miR144 | |
Valproate (4 weeks) | Rat hippocampus | Decrease | let-7b, let-7c, miR-128a, miR-30c, miR-34a, miR-22 | |
Valproate (4 weeks) | Rat hippocampus | Increase | miR144 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibbons, A.; Sundram, S.; Dean, B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Non-Coding RNA 2020, 6, 33. https://doi.org/10.3390/ncrna6030033
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Non-Coding RNA. 2020; 6(3):33. https://doi.org/10.3390/ncrna6030033
Chicago/Turabian StyleGibbons, Andrew, Suresh Sundram, and Brian Dean. 2020. "Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers?" Non-Coding RNA 6, no. 3: 33. https://doi.org/10.3390/ncrna6030033
APA StyleGibbons, A., Sundram, S., & Dean, B. (2020). Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Non-Coding RNA, 6(3), 33. https://doi.org/10.3390/ncrna6030033