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Abstract: The rapid development of new generation sequencing technology has deepened the
understanding of genomes and functional products. RNA-sequencing studies in mammals show
that approximately 85% of the DNA sequences have RNA products, for which the length greater
than 200 nucleotides (nt) is called long non-coding RNAs (lncRNA). LncRNAs now have been shown
to play important epigenetic regulatory roles in key molecular processes, such as gene expression,
genetic imprinting, histone modification, chromatin dynamics, and other activities by forming
specific structures and interacting with all kinds of molecules. This paper mainly discusses the
correlation between the structure and function of lncRNAs with the recent progress in epigenetic
regulation, which is important to the understanding of the mechanism of lncRNAs in physiological
and pathological processes.

Keywords: lncRNA structure; epigenetic regulation; RNA-protein binding motif; regulation
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1. Introduction

Recently, the rapid development and application of high-throughput sequencing technology
further steadies the key situation of the connecting link of RNA in the focal dogma [1,2]. Through
genome-wide human transcriptional studies, more and more new non-coding RNAs have been
found [3]. Emerging evidence shows that the finding of long non-coding RNAs (lncRNAs), a less
characterized class of molecules that are greater than 200 nucleotides (nt) in length, lead to the
gene number duplicated in the databases [4]. The noncode database includes 73,370 lncRNAs from
1229 organisms, up to now [5], More than 50,000 new RNA transcripts have been found for the human
genome in different tissue and cell types, most of which are lncRNAs, as well as plant and animal
studies [6,7]. All of those lncRNAs enrich the biological diversity of the ecosphere, and complicate the
studies of cell regulated mechanisms.

LncRNAs often form relatively stable secondary and higher structures, making them have
the ability to participate in cellular organization and regulation, such as DNA replication, RNA
transcription, protein translation, cell development, and cell differentiation [8,9]. The complex
structural features also give the potential for lncRNA in epigenetic process. LncRNAs could
influence changes in the gene expression or chromosome activity by a series of mechanisms, such
as inducing DNA and protein modification, recruiting protein, and RNA interaction etcetera [9,10].
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Some representative lncRNAs and their epigenetic functions are listed in Table 1. Combining the
epigenetic function with the plasticity, variability, and tissue specificity, lncRNAs are regarded to
be vital factors and biomarkers in disease genesis and diagnosis. Studies have demonstrated that
the dysregulation of lncRNAs can lead to numerous types of diseases, including cancer, diabetes,
cardiovascular disease, and some other complex disorders [11–13].

Table 1. The representative epigenetic regulation functions of long non-coding RNAs (lncRNAs).

LncRNA Function Reference
(PMID)

Airn Paternal specificity silencing 10988110
CCAT1-L Influence the expression of the MYC locus 27147598
CCAT1-S Influence the expression of the MYC locus 26254776

CDKN2B-HS1 Suppression of the expression of cancer associated CDKN2A/CDKN2B genes 20541999
GAS5 Suppress the expression of miR-21 20041488

GClnc1 Recruit WDR5 and KAT2A for specific histone modification 26289363

H19 Maternal expression, rapidly down-regulated in most tissues after birth. 28930564
20486113

HOTAIR Form multiple histone modifying complex involved in histone modification reactions 20616235
25866246

Linc-P21 Play important role in the P53 pathway and activated by P53 for cell apoptosis 20673990

MALAT1
Highly expressed in breast, colon, and prostate 24297251

Associated with many diseases 22425269
MIAT Regulate microvascular dysfunction 25587098
MEG3 Suppress cancer 20032057

Rsx Regulate the X chromosome silencing 12649488
SPA1 Hormone receptor co-activator 22362738

XIST Regulate the X chromosome silencing
21947263
11780141
20833368

This review will mainly consider the correlations of lncRNA structure and function in epigenetic
regulation, to provide useful information for understanding the cellular molecule interaction and
disease etiology.

2. The Genome Architecture of LncRNAs

The definition of lncRNA is the transcript that is longer than 200 nucleotides and without the
ability of encoding proteins. However, it would be too narrow and absolute if only the common feature
of length is used to classify lncRNAs from each other. According to the genome location, sequence,
morphology, structure, and function features, lncRNAs can be categorized into different groups.
LncRNAs can be divided into intergenic lncRNAs (lincRNAs) and intronic lncRNAs, from the level
of genome location, which occupy 98–99% of the human genome [14]. Another classification type is
considered regarding the product orientation of the DNA strand and divides lncRNAs into sense ones
and antisense ones. The focused research types are concentrated into lincRNAs and antisense lncRNAs,
especially for the crosslink of antisense lncRNAs and lincRNAs [15–17]. Other classification standards
depend on whether it is associated with a known DNA element, by which it can be divided into
enhancer associated lncRNAs, promoter associated lncRNAs, upstream antisense RNA, and telomeric
repeat RNA. Depending on whether the protein coding gene is related, it can be divided into natural
antisense RNA and cyclic annular intronic gene, etcetera [18]. Along with the development of lncRNA
annotation studies, the new classification is apt to introduce the function and structure information
of lncRNA to enhance the category stability. The concept of an RNA family is used to stand for the
functional and structural similarity of lncRNAs [19].

Each type of lncRNAs has its own complex and specific location. The location will sometimes
determine the function context of the lncRNA [20]. Figure 1 shows a slightly complex genome partition,
with sense and antisense non-coding sequences nested with coding sequences. LncRNAs that are
adjacent to coding genes or clustering with coding genes are comprehensively studied, and will
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provide some functional evidence for lncRNAs to annotate the mechanism of transcriptional and
epigenetic regulation. Many studies focused on the lncRNAs localization and function association.
The human cancer related transcription factor MYC coding gene is located in the region of 8q24, which
is surrounded by a number of non-coding regulatory elements [21]. The 515 kb upstream of the MYC
gene has a CCAT1 non-coding region on it, which mainly includes two types of lncRNA: CCAT1-S and
CCAT1-L. Recent research has shown that CCAT1-S and CCAT1-L are highly specific markers in some
tumor diseases, and knock down of the two loci can reduce the expression of the MYC locus. Therefore,
it suggests that CCAT1-S and CCAT1-L have potential Cis-regulation activity on the MYC locus [22].
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3. The Epigenetic Regulatory Activity of lncRNAs

LncRNA shows strong epigenetic function roles by the direct regulation or indirect interaction
with other molecules [23,24]. LncRNAs exhibit epigenetic characteristics that are similar to coding
genes, such as maternal effect, DNA methylation and histone modification activity, as well as
post-transcriptional regulation. H19 is a length of 2.3 kb of lncRNA, and only found in maternal
expression [25]. It is highly expressed during the development of vertebrate embryos, and is rapidly
down-regulated in most tissues after birth [26]. During the pathological mechanism study of gastric
cancer, it was found that lncRNA GClnc1 could be used as a molecular scaffold to recruit WDR5 and
KAT2A complexes for specific modifications of histones [27,28]. Another example is that HOTAIR
(HOX Transcript Antisense RNA) forms at least two histone modifying complexes that are involved
in histone modification reactions [29,30]. Additionally, lncRNAs have been proven to participate in
the methylation process of CpG islands. Since DNA methylation is suggested to be close to gene
proliferation, lncRNA is thought to play a significant role in epigenetic regulation in human cancer and
other diseases [31]. A lot of evidence also shows that lncRNA plays important roles in X chromosome
inactivation, gene imprinting, and gene silencing [32,33]. LncRNA Airn, with a length of 108 kb,
is transcribed by paternal alleles, which causes paternal specificity silencing by cis-regulation. Airn is
expressed at a specific imprinting site, recruiting G9a to H3K9 methylation residues, and silencing
IGF2R, SLC22A3 and SLC22A2 genes in the genome by a cis-regulation manner over paternal origin
of 300 kb [34]. Sometimes, lncRNA would even appear in the form of targeting vectors or the host
of epigenetic regulated factors [35,36]. The typical cases are competing endogenous RNAs (ceRNAs)
and the recently found tRNA-derived small RNAs (tsRNAs). The former is a large group of lncRNAs
that can competitively bind microRNAs with mRNA, and the latter is proven to be transported into
a fertilized egg by sperms and present an intergenerational epigenetic effect [36].
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The molecular biological research and CLIP-sequence data analysis shows that lncRNAs can
interact with a variety of protein molecules, and implies a potential mechanism of disease etiology.
The clip-db database stores 111 RNA binding proteins (RBPs) of 395 available clip datasets from
human, mouse, worm, and yeast [37]. These data are only the tip of the iceberg, and will be multiplied
soon. The interaction disorder of RNA-protein will get further attention, too. LncRNA P21 (linc-p21)
shows an important role in the P53 pathway and activated by P53 for cell apoptosis. Transcriptional
repression is also implemented by binding to ribonucleoprotein-K (hn-RNP-K) [38]. MALAT1 is highly
expressed in breast, colon, and prostate, and is shown to interact with the splicing regulation factor
(SR protein). The exceptional situation of RNA-protein interaction will lead to serious illness [39,40].

LncRNAs can also interact with RNA molecules, such as mRNA, miRNA, ceRNA, which is
another type of post-transcription regulation. Multiple classes of lncRNA can interact with each other
to alter the gene expression abundance or transcription isoforms, as ceRNA is described previously.
The negative correlation between lncRNA specific transcript GAS5 and miR-21 are that they suppress
each other’s expression [41]. Zhang Z. and colleagues, in the 83 human disease-related lncRNAs real
time PCR studies, find that miR-21 is capable of suppressing the expression of GAS5 by targeting on the
binding site in exon 4. Zhang et al. also find that GAS5 can repress miR-21 expression. It is proven that
miR-21 expression will increase, when the expression of GAS5 is suppressed. As an important
type of ceRNA, circular RNA (circRNA), has received extensive attention. It often appears as
a molecular sponge to perform functions by post-transcriptional regulation. A large number of
tools to detect the cirRNAs and their probes have been developed, which provide useful information
for illuminating the biological mechanisms [42]. Another example shows that the different isoforms of
lncRNA-MIAT expressed in meiotic cells and mitotic anaphase retinal cells can regulate microvascular
dysfunction [43].

4. The Structural Basement of LncRNA in Epigenetic Regulation

Accumulating studies indicate that lncRNA structure is one of the most critical factors to
perform function. LncRNA secondary and higher structure is of great significance for exploring
the RNA molecular mechanism in the biological processes, such as the interaction between RNA
and bio-macromolecules, the characteristics of RNA family classification, and more [44–47]. Previous
studies found multiple sequence alignment, which implied that lincRNA sequences are relatively
conserved in certain RNA families, while they are not well-conserved for the total lncRNAs. However,
in the lncRNA structure studies, the trend is to be evolutionarily conserved across different species
resulting in a similar expression and function [48].

LncRNAs secondary structure is folded naturally through the approximate minimum free energy
mode and is affected by cell situation and inner environment. The secondary structure, resulting
from RNA interaction, includes stem, hairpin, bulge loop, inner loop, multi-branch loop, pseudoknot,
etcetera [49]. These secondary structures are related to each other and form tertiary structure by further
complementation of Watson—Crick base pairing, and leads to the fact that the RNA structure is coaxial
through the double helix, in a parallel or vertical manner [50]. Some lncRNA structure forms modular
features that are accompanied by a periodic motif, such as a sarcin-ricin loop, K-turn, and C-loop [51].
The structure of lncRNA has plasticity and enables itself to participate in many functions, such as
organization, catalysis, and regulation. Long strand RNA transcripts are more flexible and plastic,
so they may have more complex structures effective for molecular interaction and dynamic regulation,
and obtain the functions that are acting as the switch of the reaction, the basement of the protein,
and forming a structure motif of specific regulation [52].

To understand the relationship between the structure and function of lncRNA, it is necessary
to recognize the structure of RNA accurately. The methods of exploring RNA structure are
mainly through bioinformatics algorithms, biochemical methods, and enzyme-probe based RNA
structurome methods [53–55]. The computational prediction of the secondary structure is based on two
viewpoints: the minimum free energy model and the multiple sequence alignment [56]. Mainstream
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prediction software for the secondary structure prediction, include Pfold, RNAfold, RNAstructure,
and more [19,57–59]. The toolkits for identifying the tertiary structure contain FaRNA, NAST, 3DRNA,
and so forth [60–62]. LncRNA structure prediction, with the development of RNA-sequence and
high-throughput sequencing, comes into the era of structurome, and the efficiency and accuracy will
be improved [63,64]. Recently, a great deal of significant progress has been made in the study of
RNA modification, especially for the N6-methyladenosine (m6A). Series of important computational
methods, such as Ensemble Support Vector Machines, improve the detecting level, and will further
deepen the understanding of RNA structure [65].

Some progress has been made in the study of the correlations between the structure and function
of lncRNAs, and some useful evidence to explain the complex regulation mechanism in the cell cycle
and disease genesis has been found. The 2.2 kb length lncRNA HOTAIR has four sub domains, two of
which have been confirmed to be highly conserved protein binding regions [66]. These structured
regions play important roles in the function achievement of HOTAIR, and the structure motif features
obtain the computational research certification. LncRNA MEG3 is proven to have the ability to
suppress cancer, and the functional maintenance is dependent on the structural characteristics [67].
The recent study shows that the main component of human hormone receptor co-activator is lncRNAs
SPA1. Through chemistry and enzyme analysis, four distinguishing structure domains are found on
SPA1 and keep the functional activity [68]. The development of the experimental and computational
technology of RNA structure identification will enable specific descriptions of the RNA structure
to be possible, and more accurate lncRNAs correlations between structures and functions will be
obtained [69,70].

5. The Models of LncRNA Structure Mediated Epigenetic Regulation

The features of lncRNAs, such as diversity, structuring, conservation, and plasticity, determine
their complex functional roles in the biological process [71]. The variability, flexibility, and variety
of structural features of lncRNAs in the genomic dynamics lead them to be significant components
in epigenetic regulation [72]. A series of studies present that lncRNA structure induced epigenetic
regulatory mechanisms are accomplished mainly by three different processes. First, it could use the
allostery effect to match different regulation proteins. Second, it could act as a molecular scaffold to
recruit chromatin modifying proteins. Third, it could use repeat elements to affect the expression of
their surrounding genes [73,74].

Allostery, which is determined by relatively active chemical attributes, is one of the most important
characters for lncRNA to perform the epigenetic regulatory function. It will alter the structure of
lncRNA to bring about or take off the structural binding regions of proteins in a certain space and
time situation (Figure 2A). LncRNAs can fold regularly into some different structures, which gives the
opportunity to lncRNA to carry out the function of molecular switching and change the activation of
genome regions [75]. A certain cellular environment can have HOXC clusters, originated as HOTAIR,
which are able to change its conformation and combine with the PRC2 factor to target the HOXD
clusters by a trans-regulating manner, then inhibit the histone modifications [76–78]. The longer
sequences show lncRNAs tend to keep a large number of protein binding sites, when compared
with other RNAs, which provide a much wider space for the allostery effect to affect a series of
protein interactions and molecular regulations [79]. The allostery effect also can be induced by
the polymorphisms or mutations of lncRNAs, which frequently presents in the physiological or
pathological processes [80,81].
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LncRNA, acting as molecular scaffolds, is introduced by multiple structure motifs [74]. These motifs
have the ability to recruit multiple proteins to combine with the lncRNA by forming stable
ribonucleoproteins (Figure 2B) [82]. Two-thirds of the components for the ribosome of eukaryotic
cells are noncoding RNAs, and these RNAs consist of two subunits. Approximately 86 proteins combine
with a 1.9 kb and a 4.7 kb region of two RNA strands, which makes ribosomes exhibit a highly structured
and rigid scaffold. LncRNA CDKN2B-HS1 can recruit the Suz12 subunit of PRC complexes and CBX7
subunit of PRC1 complexes to combine with the H3K27 modification locus and mediate the suppression
of the expression of cancer associated CDKN2A/CDKN2B genes [83]. Some evidence shows that the
chromatin modifying proteins have the ability to bind with different lncRNAs, and some lncRNAs can
form structures in different regions of itself to bind multiple proteins, so as to perform their function for
histone modifications [84]. There are two functional structure motifs at the 5′ and 3′ end of HOTAIR.
The 5′ end motif has the ability to connect to the methyltransferase activity fragment EZH2 of the
PRC protein. The 3′ end has the ability to recruit lysine demethylases. The combination of these two
motifs will lead to catalyzing demethylation of H3K4 and achieve the objective of gene expression
regulation [29]. More and more new epigenetic regulatory mechanisms that are similar to the RNA
scaffold have been found. Some lncRNAs can also perform their functions by acting as a cis-functional
element, and a trans-regulatory factor, simultaneously. The lncRNA can bind with the promoter of
dihydrofolate reductase DHFR and form the DNA–RNA three-helix structure to suppress the gene
expression. Correspondingly, it could directly bind to the transcription factor TF2B to prevent the
formation of transcriptional initiation complexes and interfere with the DHFR transcription [85].

Another effect of the LncRNA structure affecting epigenetic regulation is the functional region
repeat elements, which will induce proteins and RNAs to perform the inactivity of gene and chromatin
(Figure 2C). Xist contains several modular structure regions, including A-repeat and C-repeat, each of
which has its own function in X chromosome activity regulation. The A-repeat region, which is located
at the 5′ end, contains nine repeating elements and forms two stem loop structures to recruit PRC1
combination. One of the stem loops is the AUCG hairpin loop, which is extremely important for
Xist to perform its function for X chromosome silencing [79]. The C-repeat region combines with
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hnRNPU and YY1, to participate in the interaction of Xist and the X chromosome. Another typical
case is lncRNA Rsx. Although Rsx has evolved independently and has no homology with Xist, it has
the similar function to Xist by sharing the functional enrichment repeat sequences, repeat elements,
and conserved stem loop motif at the 5′ end [86–88].

6. Summary and Expectation

LncRNAs have been extensively studied, and many new techniques have been applied to lncRNA
sequencing and structure analysis, including some genome-wide strategies. Numerous evidence
indicates that the structural features of lncRNAs are crucial to understanding their functions and
roles in physiology and pathology. This article mainly discusses the lncRNA structural and functional
activity in the epigenetic regulation process. It shows that diverse and complex progress is contained in
the level of different epigenetic regulatory styles, such as methylation, histone modification, and gene
imprinting. It also presents the overall perspective of the structural and functional features of lncRNAs
in the epigenetic regulatory process, especially the key mechanism that is induced by allostery, scaffold,
and repeat elements, in the current research situation.

Although, the time and number of the lncRNAs structure and function correlation research in
epigenetic regulation is limited, and most of the accurate lncRNA structure and function should be
further annotated, the study of the lncRNA epigenetic effect has huge potential for a breakthrough
in cellular and disease research. More effort is needed, at least in the field of regulatory protein
binding site identification, the functional sequence motif screening, the lncRNA leading multiple
factors synergistic regulation, and the lncRNA allostery mechanism in different advances of molecular
interaction, by which a full prospect will be presented in the future.
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