A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases
(This article belongs to the Section Small Non-Coding RNA)
Abstract
:1. Introduction
2. Results
2.1. Search and Selection
2.2. Study and Participant Characteristics
2.2.1. Human Studies
2.2.2. Murine Studies
2.3. The Most Dysregulated miRNA Signatures in Kidney Diseases
2.4. The Most Dysregulated miRNA Signatures in an Early and Late Stage of CKD
2.5. The Most Dysregulated Renal miRNAs in Murine CKD
2.6. Gene Set Enrichment Analysis
2.7. Risk of Bias Assessment
2.7.1. Risk of Bias Assessment in Human CKD Studies
2.7.2. Risk of Bias Assessment in Murine Experimental Models of CKD Studies
3. Discussion
3.1. The Most Dysregulated miRNA Signatures in Kidney Diseases
3.2. miRNA Signature-Related Molecular Pathways
3.3. Limitations of Our Study
4. Materials and Methods
4.1. Search Strategy and Selection Process
4.2. Eligibility Criteria
4.3. Data Collection and Synthesis Process
4.4. Meta-Analysis
4.5. Subgroup Analysis
4.6. Target Gene Prediction and Enrichment Analysis
4.7. Risk of Bias Assessment for Individual Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, A.; Chertow, G.W.; Luyckx, V.; Marsden, P.A.; Skorecki, K.; Taal, M.W. Brenner & Rector’s the Kidney, 2-Volume Set 11th Edition; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Bidin, M.Z.; Shah, A.M.; Bidin, M.Z.; Shah, A.M. Blood and Urine Biomarkers in Chronic Kidney Disease: An Update. Clin. Chim. Acta 2019, 495, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Gluba-Brzózka, A.; Franczyk, B.; Jabłonowski, Z.; Ciałkowska-Rysz, A. Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. Int. J. Mol. Sci. 2017, 18, 1702. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Foreman, K.J.; Marquez, N. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016-40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Zürbig, P.; Dihazi, H.; Metzger, J.; Thongboonkerd, V.; Vlahou, A. Urine Proteomics in Kidney and Urogenital Diseases: Moving Towards Clinical Applications. Proteom. Clin. Appl. 2011, 5, 256–268. [Google Scholar] [CrossRef]
- Xi, Y.; Nakajima, G.O.; Gavin, E.; Morris, C.G.; Kudo, K.; Hayashi, K.; Ju, J. Systematic Analysis of microRNA Expression of Rna Extracted from Fresh Frozen and Formalin-Fixed Paraffin-Embedded Samples. RNA 2007, 13, 1668–1674. [Google Scholar] [CrossRef]
- Zankar, S.; Trentin-Sonoda, M.; Viñas, J.L.; Rodriguez, R.A.; Bailey, A.; Allan, D.; Burns, K.D. Therapeutic Effects of Micro-Rnas in Preclinical Studies of Acute Kidney Injury: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 9100. [Google Scholar] [CrossRef]
- Mall, C.; Rocke, D.M.; Durbin-Johnson, B.; Weiss, R.H. Stability of miRNA in Human Urine Supports Its Biomarker Potential. Biomark. Med. 2013, 7, 623–631. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
- Gholaminejad, A.; Abdul Tehrani, H.; Gholami Fesharaki, M. Identification of Candidate microRNA Biomarkers in Renal Fibrosis: A Meta-Analysis of Profiling Studies. Biomarkers 2018, 23, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Jeong, S.; Han, N.; Oh, J.M.; Oh, K.H.; Kim, I.W. Identification of Differentially Expressed miRnas Associated with Chronic Kidney Disease-Mineral Bone Disorder. Front. Med. 2017, 11, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Gholaminejad, A.; Abdul Tehrani, H.; Gholami Fesharaki, M. Identification of Candidate microRNA Biomarkers in Diabetic Nephropathy: A Meta-Analysis of Profiling Studies. J. Nephrol. 2018, 31, 813–831. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Leung, S.W. Identification of microRNA Biomarkers in Type 2 Diabetes: A Meta-Analysis of Controlled Profiling Studies. Diabetologia 2015, 58, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Roointan, A.; Gholaminejad, A.; Roointan, A.; Gholaminejad, A. Candidate microRNA Biomarkers in Lupus Nephritis: A Meta-Analysis of Profiling Studies in Kidney, Blood and Urine Samples. Mol. Diagn. Ther. 2022, 27, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Trionfini, P.; Benigni, A.; Trionfini, P.; Benigni, A. microRNAs in Kidney Physiology and Disease. Nat. Rev. Nephrol. 2015, 11, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Gogtay, N.J. Therapeutic Nucleic Acids: Current Clinical Status. Br. J. Clin. Pharmacol. 2016, 82, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Kolde, R.; Laur, S.; Kolde, R.; Laur, S. Robust Rank Aggregation for Gene List Integration and Meta-Analysis. Bioinformatics 2012, 28, 573–580. [Google Scholar] [CrossRef]
- Griff, O.L.; Melck, A.; Jones, S.J.; Wiseman, S.M. Meta-Analysis and Meta-Review of Thyroid Cancer Gene Expression Profiling Studies Identifies Important Diagnostic Biomarkers. J. Clin. Oncol. 2006, 24, 5043–5051. [Google Scholar] [CrossRef]
- Gholaminejad, A.; Zare, N.; Dana, N.; Shafie, D.; Mani, A.; Javanmard, S.H. A Meta-Analysis of microRNA Expression Profiling Studies in Heart Failure. Heart Fail. Rev. 2021, 26, 997–1021. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, P.; Tin, A.; Grove, M.L.; Ma, J.; Boerwinkle, E.; Coresh, J.; Chakravarti, A. microRNAs in the miR-17 and miR-15 Families Are Downregulated in Chronic Kidney Disease with Hypertension. PLoS ONE 2017, 12, e0176734. [Google Scholar] [CrossRef] [PubMed]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal miRna Signature in Type Ii Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef]
- Ramezani, A.; Devaney, J.M.; Cohen, S.; Wing, M.R.; Scott, R.; Knoblach, S.; Singhal, R.; Howard, L.; Kopp, J.B.; Raj, D.S. Circulating and Urinary microRNA Profile in Focal Segmental Glomerulosclerosis: A Pilot Study. Eur. J. Clin. Investig. 2015, 45, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Quiroz, E.; Pacheco-Lugo, L.; Navarro-Quiroz, R.; Lorenzi, H.; España-Puccini, P.; Díaz-Olmos, Y.; Almendrales, L.; Olave, V.; Gonzalez-Torres, H.; Diaz-Perez, A.; et al. High-Throughput Sequencing Reveals Circulating miRnas as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. PLoS ONE 2016, 11, e0166202. [Google Scholar] [CrossRef] [PubMed]
- Costa-Reis, P.; Russo, P.A.; Zhang, Z.; Colonna, L.; Maurer, K.; Gallucci, S.; Schulz, S.W.; Kiani, A.N.; Petri, M.; Sullivan, K.E. The Role of microRNAs and Human Epidermal Growth Factor Receptor 2 in Proliferative Lupus Nephritis. Arthritis Rheumatol. 2015, 67, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Krasoudaki, E.; Banos, A.; Stagakis, E.; Loupasakis, K.; Drakos, E.; Sinatkas, V.; Zampoulaki, A.; Papagianni, A.; Iliopoulos, D.; Boumpas, D.T.; et al. Micro-Rna Analysis of Renal Biopsies in Human Lupus Nephritis Demonstrates up-Regulated miR-422a Driving Reduction of Kallikrein-Related Peptidase 4. Nephrol. Dial. Transplant. 2016, 31, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Flores-Chova, A.; Martinez-Arroyo, O.; Riffo-Campos, A.L.; Ortega, A.; Forner, M.J.; Cortes, R. Plasma Exosomal Non-Coding Rna Profile Associated with Renal Damage Reveals Potential Therapeutic Targets in Lupus Nephritis. Int. J. Mol. Sci. 2023, 24, 7088. [Google Scholar] [CrossRef] [PubMed]
- Sun, I.O.; Bae, Y.U.; Lee, H.; Kim, H.; Jeon, J.S.; Noh, H.; Choi, J.-S.; Doh, K.-O. Circulating miRNAs in Extracellular Vesicles Related to Treatment Response in Patients with Idiopathic Membranous Nephropathy. J. Transl. Med. 2022, 20, 224. [Google Scholar] [CrossRef]
- Zapała, B.; Kamińska, A.; Piwowar, M.; Paziewska, A.; Gala-Błądzińska, A.; Stępień, E.Ł. miRna Signature of Urine Extracellular Vesicles Shows the Involvement of Inflammatory and Apoptotic Processes in Diabetic Chronic Kidney Disease. Pharm. Res. 2023, 40, 817–832. [Google Scholar] [CrossRef]
- Beltrami, C.; Simpson, K.; Jesky, M.; Wonnacott, A.; Carrington, C.; Holmans, P. Association of Elevated Urinary miR-126, miR-155, and miR-29b with Diabetic Kidney Disease. Am. J. Pathol. 2018, 188, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Cardenas-Gonzalez, M.; Srivastava, A.; Pavkovic, M.; Bijol, V.; Rennke, H.G.; Stillman, I.E.; Zhang, X.; Parikh, S.; Rovin, B.H.; Afkarian, M.; et al. Identification, Confirmation, and Replication of Novel Urinary microRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy. Clin. Chem. 2017, 63, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Konta, T.; Ichikawa, K.; Suzuki, K.; Kudo, K.; Satoh, H.; Kamei, K.; Nishidate, E.; Kubota, I. A Microarray Analysis of Urinary microRNAs in Renal Diseases. Clin. Exp. Nephrol. 2014, 18, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, Z.; Zhu, H.; Yuan, X.; Sun, M.; Wang, J.; Zuo, M.; Cui, X.; Han, Y.; Zhang, Y.; et al. Hyperinsulinemia Contributes to Impaired-Glucose-Tolerance-Induced Renal Injury Via miR-7977/Sirt3 Signaling. Ther. Adv. Chronic Dis. 2020, 11, 2040622320916008. [Google Scholar] [CrossRef] [PubMed]
- Conserva, F.; Barozzino, M.; Pesce, F.; Divella, C.; Oranger, A.; Papale, M.; Sallustio, F.; Simone, S.; Laviola, L.; Giorgino, F.; et al. Urinary miRna-27b-3p and miRna-1228-3p Correlate with the Progression of Kidney Fibrosis in Diabetic Nephropathy. Sci. Rep. 2019, 9, 11357. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Jiang, S.; Hou, Q.; Qiu, D.; Shi, J.; Wang, L.; Chen, Z.; Zhang, M.; Duan, A.; Qin, W.; et al. Dissection of Glomerular Transcriptional Profile in Patients with Diabetic Nephropathy: Srgap2a Protects Podocyte Structure and Function. Diabetes 2018, 67, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, C.; Feng, B.; Zhan, X.; Luo, N.; Yu, X.; Zhou, Q. Intrarenal microRNA Signature Related to the Fibrosis Process in Chronic Kidney Disease: Identification and Functional Validation of Key miRnas. BMC Nephrol. 2019, 20, 336. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Davis, S.J.; Liu, P.; Pan, X.; Williams, A.M.; Iczkowski, K.A.; Gallagher Sean, T.; Bishop, K.; Regner Kevin, R.; Liu, Y.; et al. Tissue-Specific microRNA Expression Patterns in Four Types of Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2985–2992. [Google Scholar] [CrossRef]
- He, F.; Peng, F.; Xia, X.; Zhao, C.; Luo, Q.; Guan, W.; Li, Z.; Yu, X.; Huang, F. miR-135a Promotes Renal Fibrosis in Diabetic Nephropathy by Regulating Trpc1. Diabetologia 2014, 57, 1726–1736. [Google Scholar] [CrossRef]
- Kim, H.; Bae, Y.U.; Jeon, J.S.; Noh, H.; Park, H.K.; Byun, D.W.; Han, D.C.; Ryu, S.; Kwon, S.H. The Circulating Exosomal microRNAs Related to Albuminuria in Patients with Diabetic Nephropathy. J. Transl. Med. 2019, 17, 236. [Google Scholar] [CrossRef]
- Massaro, J.D.; Polli, C.D.; e Silva, M.C.; Alves, C.C.; Passos, G.A.; Sakamoto-Hojo, E.T.; de Holanda Miranda, W.R.; Cezar, N.J.B.; Rassi, D.M.; Crispim, F.; et al. Post-Transcriptional Markers Associated with Clinical Complications in Type 1 and Type 2 Diabetes Mellitus. Mol. Cell Endocrinol. 2019, 490, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Bu, R.; Duan, Z.; Zhang, X.; Chen, P.; Li, Z.; Wu, J.; Cai, G.; Chen, X. Profiling and Initial Validation of Urinary microRNAs as Biomarkers in IgA Nephropathy. PeerJ 2015, 3, e990. [Google Scholar] [CrossRef] [PubMed]
- Min, Q.H.; Chen, X.M.; Zou, Y.Q.; Zhang, J.; Li, J.; Wang, Y.; Li, S.-Q.; Gao, Q.-F.; Sun, F.; Liu, J.; et al. Differential Expression of Urinary Exosomal microRNAs in Iga Nephropathy. J. Clin. Lab. Anal. 2018, 32, e22226. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.C.; Wang, G.; Ng JK, C.; Kwan BC, H.; Mac-Moune Lai, F.; Chow, K.M.; Luk, C.C.-W.; Lai, K.-B.; Li, P.K.-T. Urinary miRna Profile for the Diagnosis of Iga Nephropathy. BMC Nephrol. 2019, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, H.; Wang, W.; Zhu, M.; Qi, L.W.; Wang, T.; Cheng, W.; Zhu, J.; Shan, X.; Huang, Z.; et al. Plasma microRNA Signature of Patients with IgA Nephropathy. Gene 2018, 649, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Sallustio, F.; Cox, S.N.; Pesce, F.; Schena, F.P. Abnormal miR-148b Expression Promotes Aberrant Glycosylation of Iga1 in Iga Nephropathy. J. Am. Soc. Nephrol. 2012, 23, 814–824. [Google Scholar] [CrossRef]
- Xu, B.Y.; Meng, S.J.; Shi, S.F.; Liu, L.J.; Lv, J.C.; Zhu, L.; Zhang, H. microRNA-21-5p Participates in Iga Nephropathy by Driving T Helper Cell Polarization. J. Nephrol. 2020, 33, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liao, Y.; Wang, L.; Lin, Y.; Ye, Z.; Zeng, X.; Liu, X.; Wei, F.; Yang, N. Small Rna Deep Sequencing Reveals Novel miRNAs in Peripheral Blood Mononuclear Cells from Patients with IgA Nephropathy. Mol. Med. Rep. 2020, 22, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Zhang, L.; Jin, H.; Wang, D.; Cheng, M.; Xu, Y.; Zhang, H.; Wang, Y. Differential Expression Profile of Urinary Exosomal microRNAs in Patients with Mesangial Proliferative Glomerulonephritis. Aging 2023, 15, 866–880. [Google Scholar] [CrossRef]
- Wang, W.; Mou, S.; Wang, L.; Zhang, M.; Shao, X.; Fang, W.; Lu, R.; Qi, C.; Fan, Z.; Cao, Q.; et al. Up-Regulation of Serum miR-130b-3p Level Is Associated with Renal Damage in Early Lupus Nephritis. Sci. Rep. 2015, 5, 12644. [Google Scholar] [CrossRef]
- Ulbing, M.; Kirsch, A.H.; Leber, B.; Lemesch, S.; Münzker, J.; Schweighofer, N.; Hofer, D.; Trummer, O.; Rosenkranz, A.R.; Müller, H.; et al. microRNAs 223-3p and 93-5p in Patients with Chronic Kidney Disease before and after Renal Transplantation. Bone 2017, 95, 115–123. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Bai, Y.; Zhang, H.; Zhang, S.; He, L.; Zhou, W.; Zhang, D.; Xu, J. Identification of a Genome-Wide Serum microRNA Expression Profile as Potential Noninvasive Biomarkers for Chronic Kidney Disease Using Next-Generation Sequencing. J. Int. Med. Res. 2020, 48, 300060520969481. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, A.; Yedla, P.; Vishnubhotla, R.V.; Sekaran, A.; Keithi Reddy, S.R. microRNAs as a Therapeutic Target in Iga Nephropathy in Indian Population. Biomed. Rep. 2023, 18, 35. [Google Scholar] [CrossRef]
- Khurana, R.; Ranches, G.; Schafferer, S.; Lukasser, M.; Rudnicki, M.; Mayer, G.; Hüttenhofer, A. Identification of Urinary Exosomal Noncoding RNAs as Novel Biomarkers in Chronic Kidney Disease. RNA 2017, 23, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sui, W.; Lan, H.; Yan, Q.; Huang, H.; Huang, Y. Comprehensive Analysis of microRNA Expression Patterns in Renal Biopsies of Lupus Nephritis Patients. Rheumatol. Int. 2009, 29, 749–754. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Chen, H.; Li, L.; Tu, Y.; Liu, C.; Shi, S.; Zen, K.; Liu, Z. Evaluation of microRNAs miR-196a, miR-30a-5p, and miR-490 as Biomarkers of Disease Activity among Patients with Fsgs. Clin. J. Am. Soc. Nephrol. 2014, 9, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, Y.; Cai, R.; Jin, J.; He, Q. Differential Expression of Urinary Exosomal Small RNAs in Idiopathic Membranous Nephropathy. Biomed. Res. Int. 2020, 2020, 3170927. [Google Scholar] [CrossRef]
- Chen, W.; Lin, X.; Huang, J.; Tan, K.; Chen, Y.; Peng, W.; Li, W.; Dai, Y. Integrated Profiling of microRNA Expression in Membranous Nephropathy Using High-Throughput Sequencing Technology. Int. J. Mol. Med. 2014, 33, 25–34. [Google Scholar] [CrossRef]
- Barbagallo, C.; Passanisi, R.; miRabella, F.; Cirnigliaro, M.; Costanzo, A.; Lauretta, G.; Barbagallo, D.; Bianchi, C.; Pagni, F.; Castorina, S.; et al. Upregulated microRNAs in Membranous Glomerulonephropathy Are Associated with Significant Downregulation of Il6 and Myc mRNAs. J. Cell Physiol. 2019, 234, 12625–12636. [Google Scholar] [CrossRef]
- Ishii, H.; Kaneko, S.; Yanai, K.; Aomatsu, A.; Hirai, K.; Ookawara, S.; Morishita, Y. microRNA Expression Profiling in Diabetic Kidney Disease. Transl. Res. 2021, 237, 31–52. [Google Scholar] [CrossRef]
- Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; et al. microRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways. Sci. Transl. Med. 2012, 4, 121ra18. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.C.; Huang, X.R.; Meng, X.; Lan, H.Y. miR-192 Mediates Tgf-Beta/Smad3-Driven Renal Fibrosis. J. Am. Soc. Nephrol. 2010, 21, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Glowacki, F.; Savary, G.; Gnemmi, V.; Buob, D.; Van der Hauwaert, C.; Lo-Guidice, J.M.; Bouyé, S.; Hazzan, M.; Pottier, N.; Perrais, M.; et al. Increased Circulating miR-21 Levels Are Associated with Kidney Fibrosis. PLoS ONE 2013, 8, e58014. [Google Scholar] [CrossRef]
- Bijkerk, R.; de Bruin, R.G.; van Solingen, C.; van Gils, J.M.; Duijs, J.M.; van der Veer, E.P.; Rabelink, T.J.; Humphreys, B.D.; Jan van Zonneveld, A. Silencing of microRNA-132 Reduces Renal Fibrosis by Selectively Inhibiting Myofibroblast Proliferation. Kidney Int. 2016, 89, 1268–1280. [Google Scholar] [CrossRef] [PubMed]
- Morizane, R.; Fujii, S.; Monkawa, T.; Hiratsuka, K.; Yamaguchi, S.; Homma, K.; Itoh, H. miR-34c Attenuates Epithelial-Mesenchymal Transition and Kidney Fibrosis with Ureteral Obstruction. Sci. Rep. 2014, 4, 4578. [Google Scholar] [CrossRef] [PubMed]
- Yanai, K.; Kaneko, S.; Ishii, H.; Aomatsu, A.; Ito, K.; Hirai, K.; Ookawara, S.; Ishibashi, K.; Morishita, Y. Quantitative Real-Time Pcr Evaluation of microRNA Expressions in Mouse Kidney with Unilateral Ureteral Obstruction. J. Vis. Exp. 2020, 162, e61383. [Google Scholar]
- Du, G.; Xiao, M.; Zhang, X.; Wen, M.; Pang, C.; Jiang, S.; Sang, S.; Xie, Y. Alpinia Oxyphylla Miq. Extract Changes miRNA Expression Profiles in Db-/Db- Mouse Kidney. Biol. Res. 2017, 50, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, H.Q.; Wang, Y.; Yang, Z.S.; Dai, L.J.; Xu, Y.C. Differential Expression and Therapeutic Efficacy of microRNA-346 in Diabetic Nephropathy Mice. Exp. Ther. Med. 2015, 10, 106–112. [Google Scholar] [CrossRef]
- Long, J.; Wang, Y.; Wang, W.; Chang, B.H.; Danesh, F.R. Identification of microRNA-93 as a Novel Regulator of Vascular Endothelial Growth Factor in Hyperglycemic Conditions. J. Biol. Chem. 2010, 285, 23457–23465. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, H.; Chen, J.; Chen, X.; Han, F.; Xu, X.; He, X.; Yan, N. microRNA-21 Protects from Mesangial Cell Proliferation Induced by Diabetic Nephropathy in Db/Db Mice. FEBS Lett. 2009, 583, 2009–2014. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Fan, Q.; Liu, X.; Yang, G.; Jiang, Y.; Wang, L. Inhibiting microRNA-503 and microRNA-181d with Losartan Ameliorates Diabetic Nephropathy in Kkay Mice. Med. Sci. Monit. 2016, 22, 3902–3909. [Google Scholar] [CrossRef]
- Võsa, U.; Kolde, R.; Vilo, J.; Metspalu, A.; Annilo, T. Comprehensive Meta-Analysis of microRNA Expression Using a Robust Rank Aggregation Approach. Methods Mol. Biol. 2014, 1182, 361–373. [Google Scholar] [PubMed]
- Liu, F.; Zhuang, S. New Therapies for the Treatment of Renal Fibrosis. In Renal Fibrosis: Mechanisms and Therapies; Liu, B.-C., Lan, H.-Y., Lv, L.-L., Eds.; Springer: Singapore, 2019; pp. 625–659. [Google Scholar]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; How Huang, K.; Jen Lee, M.; Galas, D.J.; Wang, K. The microRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, X.; Scicluna, B.J.; Coleman, B.M.; Hill, A.F. Characterization and Deep Sequencing Analysis of Exosomal and Non-Exosomal miRna in Human Urine. Kidney Int. 2014, 86, 433–444. [Google Scholar] [CrossRef]
- Lorenzen, J.M.; Thum, T. Circulating and Urinary microRNAs in Kidney Disease. Clin. J. Am. Soc. Nephrol. CJASN 2012, 7, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 Complexes Carry a Population of Circulating microRNAs Independent of Vesicles in Human Plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating microRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.Y.; King, H.W.; Li, J.Y.; Gleadle, J.M. Exosomes and the Kidney: Blaming the Messenger. Nephrology 2012, 18, 1–10. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Q.; Guo, F.; Ma, X.; Wang, J.; Zhao, Y.; Yan, Y.; Qin, G. Involvement of miR-27a-3p in Diabetic Nephropathy Via Affecting Renal Fibrosis, Mitochondrial Dysfunction, and Endoplasmic Reticulum Stress. J. Cell. Physiol. 2021, 236, 1454–1468. [Google Scholar] [CrossRef]
- Zhou, Z.; Wan, J.; Hou, X.; Geng, J.; Li, X.; Bai, X. microRNA-27a Promotes Podocyte Injury Via Pparγ-Mediated Β-Catenin Activation in Diabetic Nephropathy. Cell Death Dis. 2017, 8, e2658. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.R.; Chen, B.P.; Chen, F.; Yang, S.X.; Zhu, C.Y.; Ma, Y.L.; Li, Y.; Shi, J. Lncrna Lnc-Isg20 Promotes Renal Fibrosis in Diabetic Nephropathy by Inducing Akt Phosphorylation through miR-486-5p/Nfat5. J. Cell. Mol. Med. 2021, 25, 4922–4937. [Google Scholar] [CrossRef] [PubMed]
- Viñas, J.L.; Spence, M.; Porter, C.J.; Douvris, A.; Gutsol, A.; Zimpelmann, J.A.; Campbell, P.A.; Burns, K.D. Micro-Rna-486-5p Protects against Kidney Ischemic Injury and Modifies the Apoptotic Transcriptome in Proximal Tubules. Kidney Int. 2021, 100, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wu, B.; Fan, J.; Han, R.; Luo, C.; Wang, T.; Yang, J.; Han, L.; Zhu, B.; Wei, D.; et al. The Anti-Fibrotic Effects and Mechanisms of microRNA-486-5p in Pulmonary Fibrosis. Sci. Rep. 2015, 5, 14131. [Google Scholar] [CrossRef] [PubMed]
- Regmi, A.; Liu, G.; Zhong, X.; Hu, S.; Ma, R.; Gou, L.; Zafar, M.I.; Chen, L. Evaluation of Serum microRNAs in Patients with Diabetic Kidney Disease: A Nested Case-Controlled Study and Bioinformatics Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 5, 1699–1708. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, H.; Geng, C.; Chen, Y.; Tang, Y.; Li, Z.; Pang, J.; Shu, T.; Nie, Y.; Liu, Y.; et al. Elevated IgE Promotes Cardiac Fibrosis by Suppressing miR-486a-5p. Theranostics 2021, 11, 7600–7615. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wei, K.; Yang, F.M.; Hu, L.Q.; Pan, C.F.; Pan, X.L.; Wu, W.-B.; Wang, J.; Wen, W.; He, Z.-C.; et al. miR-1260b, Mediated by Yy1, Activates Kit Signaling by Targeting Socs6 to Regulate Cell Proliferation and Apoptosis in Nsclc. Cell Death Dis. 2019, 10, 112. [Google Scholar] [CrossRef]
- Gao, P.; Li, L.; Yang, L.; Gui, D.; Zhang, J.; Han, J.; Wang, J.; Wang, N.; Lu, J.; Chen, S.; et al. Yin Yang 1 Protein Ameliorates Diabetic Nephropathy Pathology through Transcriptional Repression of Tgfβ1. Sci. Transl. Med. 2019, 11, eaaw2050. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Shu, F.; Yang, T.; Shu, F. Yy1: A Novel Therapeutic Target for Diabetic Nephropathy Orchestrated Renal Fibrosis. Metab. Clin. Exp. 2019, 96, 33–45. [Google Scholar] [CrossRef]
- Jiang, L.; Qiu, W.; Zhou, Y.; Wen, P.; Fang, L.; Cao, H.; Zen, K.; He, W.; Zhang, C.; Dai, C.; et al. A microRNA-30e/Mitochondrial Uncoupling Protein 2 Axis Mediates Tgf-Β1-Induced Tubular Epithelial Cell Extracellular Matrix Production and Kidney Fibrosis. Kidney Int. 2013, 84, 285–296. [Google Scholar] [CrossRef]
- Lin, X.J.; Liu, H.; Li, P.; Wang, H.F.; Yang, A.K.; Di, J.M.; Jiang, Q.-W.; Yang, Y.; Huang, J.-R.; Yuan, M.-L.; et al. miR-936 Suppresses Cell Proliferation, Invasion, and Drug Resistance of Laryngeal Squamous Cell Carcinoma and Targets Gpr78. Front. Oncol. 2020, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Glover, E.K.; Jordan, N.; Sheerin, N.S.; Ali, S. Regulation of Endothelial-to-Mesenchymal Transition by microRNAs in Chronic Allograft Dysfunction. Transplantation 2019, 103, e64–e73. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Latt, K.Z.; Rosenberg, A.Z.; Shrivastav, S.; Heymann, J.; Halushka, M.K.; Winkler, C.A.; Kopp, J.B. Transcriptomic Analysis of Human Podocytes In vitro: Effects of Differentiation and Apol1 Genotype. Kidney Int. Rep. 2023, 8, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Dickinson, J.A. Early Detection of Ckd: Implications for Low-Income, Middle-Income, and High-Income Countries. J. Am. Soc. Nephrol. JASN 2020, 31, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzózka, A.; Olszewski, R.; Parolczyk, M.; Rysz-Górzyńska, M.; Rysz, J. miRNA Biomarkers in Renal Disease. Int. Urol. Nephrol. 2022, 54, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ma, Z.; Ding, Y.E.; Bedarida, T.; Chen, L.; Xie, Z.; Song, P.; Zou, M.-H. Circulating miR-103a-3p Contributes to Angiotensin Ii-Induced Renal Inflammation and Fibrosis Via a Snrk/Nf-Κb/P65 Regulatory Axis. Nat. Commun. 2019, 10, 2145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, Z.J.; Song, J.W.; Liang, L.R.; Sun, L.L.; Liu, X.Y.; Miao, R.; Xu, Y.-L.; Li, X.-T.; Zhang, M.-W.; et al. microRNA-122-5p Promotes Renal Fibrosis and Injury in Spontaneously Hypertensive Rats by Targeting Foxo3. Exp. Cell Res. 2022, 411, 113017. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.M.; He, L.J.; Wang, P.B.; Yu, Y.; Ye, Y.P.; Liang, L. Antagonist Targeting miR-106b-5p Attenuates Acute Renal Injury by Regulating Renal Function, Apoptosis and Autophagy Via the Upregulation of Tcf4. Int. J. Mol. Med. 2021, 48, 169. [Google Scholar] [CrossRef]
- Oh, J.; Matkovich, S.J.; Riek, A.E.; Bindom, S.M.; Shao, J.S.; Head, R.D.; Barve, R.A.; Sands, M.S.; Carmeliet, G.; Osei-Owusu, P.; et al. Macrophage Secretion of miR-106b-5p Causes Renin-Dependent Hypertension. Nat. Commun. 2020, 11, 4798. [Google Scholar] [CrossRef]
- Muralidharan, J.; Ramezani, A.; Hubal, M.; Knoblach, S.; Shrivastav, S.; Karandish, S.; Scott, R.; Maxwell, N.; Ozturk, S.; Beddhu, S.; et al. Extracellular microRNA Signature in Chronic Kidney Disease. Am. J. Physiol. Ren. Physiol. 2017, 312, F982–F991. [Google Scholar] [CrossRef]
- Xie, T.; Liang, J.; Guo, R.; Liu, N.; Noble, P.W.; Jiang, D. Comprehensive microRNA Analysis in Bleomycin-Induced Pulmonary Fibrosis Identifies Multiple Sites of Molecular Regulation. Physiol. Genom. 2011, 43, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, X.; Ding, S.; Chen, J.; Chen, T.; Chen, X.; Zha, H.; Yao, L.; He, X.; Peng, H. microRNA-451 Regulates P38 Mapk Signaling by Targeting of Ywhaz and Suppresses the Mesangial Hypertrophy in Early Diabetic Nephropathy. FEBS Lett. 2012, 586, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Singh, R.S.; Kumari, M.; Garg, D.; Upadhyay, A.; Ecelbarger, C.M.; Tripathy, S.; Tiwari, S. Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PLoS ONE 2016, 11, e0154055. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.; Wahab, A.M.; El Sayed Zaki, M.; Motawea, M. microRNA-451 as an Early Predictor of Chronic Kidney Disease in Diabetic Nephropathy. Int. J. Nephrol. 2020, 2020, 8075376. [Google Scholar] [CrossRef] [PubMed]
- Mahtal, N.; Lenoir, O.; Tinel, C.; Anglicheau, D.; Tharaux, P.L. microRNAs in Kidney Injury and Disease. Nat. Rev. Nephrol. 2022, 18, 643–662. [Google Scholar] [CrossRef] [PubMed]
- Saikumar, J.; Hoffmann, D.; Kim, T.M.; Gonzalez, V.R.; Zhang, Q.; Goering, P.L.; Brown, R.P.; Bijol, V.; Park, P.J.; Waikar, S.S.; et al. Expression, Circulation, and Excretion Profile of microRNA-21, -155, and -18a Following Acute Kidney Injury. Toxicol. Sci. 2012, 129, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Pezzolesi, M.G.; Satake, E.; McDonnell, K.P.; Major, M.; Smiles, A.M.; Krolewski, A.S. Circulating Tgf-Β1-Regulated miRnas and the Risk of Rapid Progression to Esrd in Type 1 Diabetes. Diabetes 2015, 64, 3285–3293. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Tang, B.; Zhang, C. Signaling Pathways of Chronic Kidney Diseases, Implications for Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 182. [Google Scholar] [CrossRef]
- Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Ortiz, A. Regulated Cell Death Pathways in Kidney Disease. Nat. Rev. Nephrol. 2023, 19, 281–299. [Google Scholar] [CrossRef]
- Reiss, A.B.; Voloshyna, I.; De Leon, J.; Miyawaki, N.; Mattana, J. Cholesterol Metabolism in Ckd. Am. J. Kidney Dis. 2015, 66, 1071–1082. [Google Scholar] [CrossRef]
- Viñas, J.L.; Burger, D.; Zimpelmann, J.; Haneef, R.; Knoll, W.; Campbell, P.; Gutsol, A.; Carter, A.; Allan, D.S.; Burns, K.D. Transfer of microRNA-486-5p from Human Endothelial Colony Forming Cell-Derived Exosomes Reduces Ischemic Kidney Injury. Kidney Int. 2016, 90, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Pang, X.L.; Shang, W.J.; Xie, H.C.; Wang, J.X.; Feng, G.W. Over-Expressed microRNA-181a Reduces Glomerular Sclerosis and Renal Tubular Epithelial Injury in Rats with Chronic Kidney Disease Via Down-Regulation of the Tlr/Nf-Κb Pathway by Binding to Cry1. Mol. Med. 2018, 24, 49. [Google Scholar] [CrossRef] [PubMed]
- Serocki, M.; Bartoszewska, S.; Serocki, M.; Bartoszewska, S. miRnas Regulate the Hif Switch During Hypoxia: A Novel Therapeutic Target. Angiogenesis 2018, 21, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Chen, H.; Li, F.; Wang, S.; Guo, J. Hypoxia-Induced microRNA-155 Promotes Fibrosis in Proximal Tubule Cells. Mol. Med. Rep. 2015, 11, 4555–4560. [Google Scholar] [CrossRef] [PubMed]
- Ferro, C.J.; Mark, P.B.; Kanbay, M.; Sarafidis, P.; Heine, G.H.; Rossignol, P.; Massy, Z.A.; Mallamaci, F.; Valdivielso, J.M.; Malyszko, J.; et al. Lipid Management in Patients with Chronic Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 727–749. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; Lehrke, M.; Vanholder, R.; Jankowski, J. Lipoproteins and Fatty Acids in Chronic Kidney Disease: Molecular and Metabolic Alterations. Nat. Rev. Nephrol. 2021, 17, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Adlakha, Y.K.; Saini, N. microRNA: A Connecting Road between Apoptosis and Cholesterol Metabolism. Tumour Biol. 2016, 37, 8529–8554. [Google Scholar] [CrossRef] [PubMed]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M. miR-122 Regulation of Lipid Metabolism Revealed by in Vivo Antisense Targeting. Cell Metab. 2006, 3, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Elmen, J.; Lindow, M.; Silahtaroglu, A.; Bak, M.; Christensen, M.; Lind-Thomsen, A.; Hedtjärn, M.; Hansen, J.B.; Hansen, H.F.; Straarup, E.M.; et al. Antagonism of microRNA-122 in Mice by Systemically Administered Lna-Antimir Leads to up-Regulation of a Large Set of Predicted Target Mrnas in the Liver. Nucleic Acids Res. 2008, 36, 1153–1162. [Google Scholar] [CrossRef]
- Kashtan, C.E.; Gross, O. Clinical Practice Recommendations for the Diagnosis and Management of Alport Syndrome in Children, Adolescents, and Young Adults-an Update for 2020. Pediatr. Nephrol. 2021, 36, 711–719. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Tomas, J.; Chandler, J.; Cumpston, M.L.T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021). Available online: www.training.cochrane.org/handbook (accessed on 17 October 2021).
- Wang, J.; Wang, G.; Liang, Y.; Zhou, X. Expression Profiling and Clinical Significance of Plasma microRNAs in Diabetic Nephropathy. J. Diabetes Res. 2019, 2019, 5204394. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, Y.; Li, L.; Su, B.; Yang, L.; Fan, W.; Yin, Q.; Chen, L.; Cui, T.; Zhang, J.; et al. Involvement of Inflammation-Related miR-155 and miR-146a in Diabetic Nephropathy: Implications for Glomerular Endothelial Injury. BMC Nephrol. 2014, 15, 142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, X.; Tang, X.; Bian, X.; Shen, B.; Zhao, H.; Luo, S.; Chen, Z.; Zhang, K. microRNA Expression Profile of Urinary Exosomes in Type Iv Lupus Nephritis Complicated by Cellular Crescent. J. Biol. Res. 2018, 25, 16. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, X.; Zhang, J.; Shi, J. microRNA-25 Inhibits High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells Via Pten/Akt Pathway. Biomed. Pharmacother. 2017, 96, 471–479. [Google Scholar] [CrossRef]
- Su, J.; Ren, J.; Chen, H.; Liu, B. microRNA-140-5p Ameliorates the High Glucose-Induced Apoptosis and Inflammation through Suppressing Tlr4/Nf-Kappab Signaling Pathway in Human Renal Tubular Epithelial Cells. Biosci. Rep. 2020, 40, BSR20192384. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Liu, P.; Geurts, A.M.; Li, J.; Williams, A.M.; Marie, A.; Kevin, R.R.; Yiwei, K.; Liu, H.; et al. microRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J. Am. Soc. Nephrol. 2018, 29, 2518–2528. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, L.N.; Li, W.; Gong, L.; Yu, T.; Zuo, Q.F.; Zhao, H.-W.; Zou, Q.-M. Plasma microRNA Panel Is a Novel Biomarker for Focal Segmental Glomerulosclerosis and Associated with Podocyte Apoptosis. Cell Death Dis. 2018, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, W.; Chen, H.M.; Liu, C.; Wu, J.; Shi, S.; Liu, Z.H. Plasma microRNA-186 and Proteinuria in Focal Segmental Glomerulosclerosis. Am. J. Kidney Dis. 2015, 65, 223–232. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Cai, G.Y.; Bu, R.; Lu, Y.; Hou, K.; Chen, X.M. Selection of Urinary Sediment miRnas as Specific Biomarkers of Iga Nephropathy. Sci. Rep. 2016, 6, 23498. [Google Scholar] [CrossRef]
- Liu, D.; Xia, M.; Liu, Y.; Tan, X.; He, L.; Liu, Y.; Chen, G.; Liu, H. The Upregulation of miR-98-5p Affects the Glycosylation of Iga1 through Cytokines in Iga Nephropathy. Int. Immunopharmacol. 2020, 82, 106362. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Lee, S.E.; Kim, H.; Jeon, S.; Han, D.; Jin, Y.H.; Cho, J.-J.; Ahn, H.-J.; Park, C.-S.; Lee, J.; et al. Profiling of miRna Expression in Mice Kidney with Diabetic Nephropathy. Mol. Cell. Toxicol. 2018, 14, 445–452. [Google Scholar] [CrossRef]
- Zanchi, C.; Macconi, D.; Trionfini, P.; Tomasoni, S.; Rottoli, D.; Locatelli, M.; Rudnicki, M.; Vandesompele, J.; Mestdagh, P.; Remuzzi, G.; et al. microRNA-184 Is a Downstream Effector of Albuminuria Driving Renal Fibrosis in Rats with Diabetic Nephropathy. Diabetologia 2017, 60, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, E.; Wang, Y.; Li, J.; Cheng, D.; Chen, Y.; Gui, D.; Wang, N. Cross Talk between miR-214 and Pten Attenuates Glomerular Hypertrophy under Diabetic Conditions. Sci. Rep. 2016, 6, 31506. [Google Scholar] [CrossRef]
- Civantos, E.; Bosch, E.; Ramirez, E.; Zhenyukh, O.; Egido, J.; Lorenzo, O.; Mas, S. Sitagliptin Ameliorates Oxidative Stress in Experimental Diabetic Nephropathy by Diminishing the miR-200a/Keap-1/Nrf2 Antioxidant Pathway. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Miguel, V.; Ramos, R.; García-Bermejo, L.; Rodríguez-Puyol, D.; Lamas, S. The Program of Renal Fibrogenesis Is Controlled by microRNAs Regulating Oxidative Metabolism. Redox Biol. 2021, 40, 101851. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.J.; Ding, M.; Hou, L.J.; Cui, Y.T.; Li, C.J.; Yu, D.M. Long Noncoding Rna Tug1 Alleviates Extracellular Matrix Accumulation Via Mediating microRNA-377 Targeting of Pparγ in Diabetic Nephropathy. Biochem. Biophys. Res. Commun. 2017, 484, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Zarjou, A.; Yang, S.; Abraham, E.; Agarwal, A.; Liu, G. Identification of a microRNA Signature in Renal Fibrosis: Role of miR-21. Am. J. Physiol. Renal Physiol. 2011, 301, F793–F801. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Jiang, L.; Zhou, Y.; Qiu, W.; Fang, L.; Tan, R.; Wen, P.; Yang, J. The miR-200 Family Regulates Tgf-Β1-Induced Renal Tubular Epithelial to Mesenchymal Transition through Smad Pathway by Targeting Zeb1 and Zeb2 Expression. Am. J. Physiol. Ren. Physiol. 2012, 302, F369–F379. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Jia, J.; Zheng, Z.; Lin, S. miR-124 Is Related to Podocytic Adhesive Capacity Damage in Stz-Induced Uninephrectomized Diabetic Rats. Kidney Blood Press. Res. 2013, 37, 422–431. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Wang, Z.; Wang, L.; Wei, X.; Zhang, B.; Wen, Z.; Fang, H.; Pang, Q.; Yi, F. Regulation of NADPH Oxidase Activity Is Associated with miRna-25-Mediated Nox4 Expression in Experimental Diabetic Nephropathy. Am. J. Nephrol. 2010, 32, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Kölling, M.; Kaucsar, T.; Schauerte, C.; Hübner, A.; Dettling, A.; Park, J.K.; Busch, M.; Wulff, X.; Meier, M.; Scherf, K.; et al. Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol. Ther. 2017, 25, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA Sequences to Function. Nucleic Acids Res 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Su, N.; Liu, L.; Zhang, J.; Wang, H.; Zhang, W.; Gui, J.; Yu, K.; Li, J.; Le, T.D. miRbaseconverter: An R/Bioconductor Package for Converting and Retrieving miRna Name, Accession, Sequence and Family Information in Different Versions of miRbase. BMC Bioinform. 2018, 19 (Suppl. 19), 514. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 5, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised Equations for Estimated Gfr from Serum Creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.K.; Griffith, O.L.; Tai, I.T.; Jones, S.J. Meta-Analysis of Colorectal Cancer Gene Expression Profiling Studies Identifies Consistently Reported Candidate Biomarkers. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Xu, H. Prognostic Value of Meta-Signature miRnas in Renal Cell Carcinoma: An Integrated miRna Expression Profiling Analysis. Sci. Rep. 2015, 5, 10272. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Tastsoglou, S.; Skoufos, G.; Miliotis, M.; Karagkouni, D.; Koutsoukos, I.; Karavangeli, A.; Kardaras, F.S.; Hatzigeorgiou, A.G. Diana-miRpath V4.0: Expanding Target-Based miRna Functional Analysis in Cell-Type and Tissue Contexts. Nucleic Acids Res. 2023, 51, W154–W159. [Google Scholar] [CrossRef]
- Huang, H.Y.; Lin YC, D.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.-G.; Jin, C.-N.; Yu, Y.; et al. miRTarbase 2020: Updates to the Experimentally Validated microRNA-Target Interaction Database. Nucleic Acids Res 2020, 48, D148–D154. [Google Scholar] [CrossRef] [PubMed]
- Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. Mienturnet: An Interactive Web Tool for microRNA-Target Enrichment and Network-Based Analysis. BMC Bioinform. 2019, 20, 545. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The Miqe Guidelines: Minimum Information for Publication of Quantitative Real-Time Pcr Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. Syrcle’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
Author, Year | Country | Disease | Sample Type | No. of Samples (Case/ Control) | Assay Type | No. of Probes | Cut-off Criteria for Vote-Counting Analysis 1 |
---|---|---|---|---|---|---|---|
B. Zapała, 2023 [31] | Poland | DN | urine exosome | 8/6 | NGS | 569 | Linear FC < 4, LogFC > 2, p > 0.1 |
C. Beltrami, 2018 [32] | UK | DN | urine | 20/20 | Microarray | 754 | |
D. Delić, 2016 [24] | Germany | T2DN | urine exosome | 8/8 | Microarray | 2549 | |
M. Cardenas-Gonzalez, 2017 [33] | USA | DN | urine | 58/93 | PCR | 365 | |
T. Konta, 2014 [34] | Japan | DN | urine | 1/1 | Microarray | 1257 | |
Z. Gao, 2020 [35] | China | DN | urine | 10/10 | Microarray | 2549 | |
F. Conserva, 2019 [36] | Italy | T2DN | kidney tissue | 6/4 | Microarray | 884 | Linear FC < 4, LogFC > 2, p > 0.1 |
F. Conserva, 2019 [36] | Italy | T2D-MN | kidney tissue | 6/4 | Microarray | 884 | |
Y. Pan, 2018 [37] | China | T2DN | kidney tissue | 41/20 | Microarray | 1810 | |
J. Yu, 2019 [38] | China | DN | kidney tissue | 4/4 | Microarray | 1900 | |
M. A. Baker, 2017 [39] | USA | DN | kidney tissue | 23/14 | NGS | 428 | |
F. He, 2014 [40] | China | T2DN | serum | 6/6 | Microarray | 866 | Linear FC < 4, LogFC > 2, p > 0.1 |
H. Kim, 2019 [41] | Korea | DN | serum exosome | 23/18 | NGS | 2585 | |
J. D. Massaro, 2019 [42] | Brazil | T1DN & T2DN | PBMCs | 10/40 | NGS | 1866 | |
J. Yu, 2019 [38] | China | FSGS | kidney tissue | 4/4 | Microarray | 1900 | Linear FC < 4, LogFC > 2, p > 0.1 |
M. A. Baker, 2017 [39] | USA | FSGS | kidney tissue | 19/14 | NGS | 428 | |
A. Ramezani, 2015 [25] | USA | MCD | urine exosome | 5/5 | Microarray | 173 | Linear FC < 4, LogFC > 2, p > 0.1 |
N. Wang, 2015 [43] | China | MCD | urine sediment | 4/6 | Microarray | 2578 | |
T. Konta, 2014 [34] | Japan | MCD | urine | 1/1 | Microarray | 1257 | |
Q. H. Min, 2018 [44] | China | IgAN | urine exosome | 12/12 | NGS | 1084 | Linear FC < 4, LogFC > 2, p > 0.1 |
N. Wang, 2015 [43] | China | IgAN | urine sediment | 18/6 | Microarray | 2578 | |
T. Konta, 2014 [34] | Japan | IgAN | urine | 1/1 | Microarray | 1257 | |
C. C. Szeto, 2019 [45] | China | IgAN | urine | 22/6 | NanoString | 800 | |
J. Wu, 2018 [46] | China | IgAN | plasma | 20/10 | PCR | 168 | Linear FC < 4, LogFC > 2, p > 0.1 |
G. Serino, 2012 [47] | Italy | IgAN | PBMCs | 7/7 | Microarray | 723 | |
B. Y. Xu, 2020 [48] | China | IgAN | PBMCs | 5/4 | NGS | 1900 | |
Z. Wang, 2020 [49] | China | IgAN | PBMCs | 10/10 | NGS | 2585 | |
E. Krasoudaki, 2016 [28] | Greece | LN | kidney tissue | 12/3 | Microarray | 365 | Linear FC < 4, LogFC > 2, p > 0.1 |
Y. Dai, 2009 [50] | China | LN | kidney tissue | 5/3 | Microarray | 455 | |
P. Costa-Reis, 2015 [27] | USA | LN/PSGN | kidney tissue | 12/6 | NanoString | 734 | |
E. Navarro-Quiroz, 2016 [26] | Columbia | LN | plasma | 14/7 | NGS | 2585 | Linear FC < 4, LogFC > 2, p > 0.1 |
A. Flores-Chova, 2023 [29] | Spain | LN | plasma exosome | 23/25 | NGS | 2588 | |
W. Wang, 2015 [51] | China | LN | blood | 8/4 | PCR array | 372 | |
M. Ulbing, 2016 [52] | Austria | CKD | serum | 10/10 | NanoString | 800 | Linear FC < 4, LogFC > 2, p > 0.1 |
P. Nandakumar, 2017 [23] | USA | CKD | blood | 15/15 | NGS | 347 | |
X. Liu, 2020 [53] | China | CKD I | serum | 15/15 | NGS | 2585 | |
X. Liu, 2020 [53] | China | CKD V | serum | 30/15 | NGS | 2585 | |
T. Konta, 2014 [34] | Japan | CrGN | urine | 1/1 | Microarray | 1257 | Linear FC < 4, LogFC > 2, p > 0.1 |
R. Dai, 2023 [50] | China | MsPGN | urine | 5/5 | NGS | 2585 |
Author, Year | Country | Disease Model | Animal | Sample/ Kidney Tissue | No. of Samples (Case/Control) | Assay Type | No of Probes | Cut-off Criteria for Vote-Counting 1 |
---|---|---|---|---|---|---|---|---|
Y. Zhang, 2015 [69] | China | db/db mice | Mouse C57BL/KsJ-db/db | tissue | 6/6 | Microarray | 1181 | Linear FC < 4, LogFC > 2, p > 0.1 |
J. Long, 2010 [70] | USA | db/db mice | Mouse | tissue | 3/3 | Microarray | 667 | |
Z. Zhang, 2009 [71] | China | db/db mice | Mouse C57BL/6JLepr-db/db | tissue | 9/9 | Microarray | 568 | |
H. Ishii, 2021 [61] | Japan | DM | Mouse C57BLKS/J Iar- + Leprdb/ + Leprdb (db/db) | tissue | 4/4 | Microarray | 1881 | |
H. Ishii, 2021 [61] | Japan | T1DM | Mouse C57BL/6-Ins2Akita/J | tissue | 4/4 | Microarray | 1881 | |
X. W. Zhu, 2016 [72] | China | T2DM | Mouse KKAy and C57BL/6 | tissue | 10/10 | Microarray | 609 | |
G. Du, 2017 [68] | China | db/db mice | C57BL/Ks | tissue | 8/8 | NGS | 1916 | |
B. N. Chau, 2012 [62] | USA | UUO-10 | Mouse C57BL6 | tissue | 3/3 | Microarray | 1003 | Linear FC < 4, LogFC > 2, p > 0.1 |
A. C. Chung, 2010 [63] | China | UUO-7 | Mouse WT | tissue | 8/3 | Microarray | 375 | |
F. Glowacki, 2013 [64] | France | UUO-28 | Mouse C57BL/6 | tissue | 4/4 | Microarray | 567 | |
R. Bijkerk, 2016 [65] | Netherland | UUO-10 | Mouse FoxD1-GC; tdTomato | tissue | 3/4 | Microarray | 384 | |
R. Morizane, 2014 [66] | Japan | UUO-7 | Mouse (ICR) | tissue | 4/4 | Microarray | 627 | |
K. Yanai, 2020 [67] | Japan | UUO-7 | Mouse C57BL/6 | tissue | 4/4 | Microarray | 1881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garmaa, G.; Bunduc, S.; Kói, T.; Hegyi, P.; Csupor, D.; Ganbat, D.; Dembrovszky, F.; Meznerics, F.A.; Nasirzadeh, A.; Barbagallo, C.; et al. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Non-Coding RNA 2024, 10, 30. https://doi.org/10.3390/ncrna10030030
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, et al. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Non-Coding RNA. 2024; 10(3):30. https://doi.org/10.3390/ncrna10030030
Chicago/Turabian StyleGarmaa, Gantsetseg, Stefania Bunduc, Tamás Kói, Péter Hegyi, Dezső Csupor, Dariimaa Ganbat, Fanni Dembrovszky, Fanni Adél Meznerics, Ailar Nasirzadeh, Cristina Barbagallo, and et al. 2024. "A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases" Non-Coding RNA 10, no. 3: 30. https://doi.org/10.3390/ncrna10030030
APA StyleGarmaa, G., Bunduc, S., Kói, T., Hegyi, P., Csupor, D., Ganbat, D., Dembrovszky, F., Meznerics, F. A., Nasirzadeh, A., Barbagallo, C., & Kökény, G. (2024). A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Non-Coding RNA, 10(3), 30. https://doi.org/10.3390/ncrna10030030