Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy
Abstract
:1. Introduction
2. Temporal Lobe Epilepsy: Pathophysiology and Current Understanding
3. microRNAs: Biogenesis and Function
4. Circulating microRNA-Based Biomarkers in Human Temporal Lobe Epilepsy
Significantly Dysregulated xc-miRNAs | Source | Cohort Composition | Technique | References |
---|---|---|---|---|
↓ miR-30b-5p (drug-resistant vs. drug-responsive, drug-resistant vs. Ctrl) ↓ miR-194-5p (drug-resistant vs. drug-responsive, drug-resistant vs. Ctrl) ↓ miR-301a-3p (drug-resistant vs. drug-responsive, drug-resistant vs. Ctrl) ↓ miR-342-5p (drug-resistant vs. drug-responsive, drug-resistant vs. Ctrl) ↓ miR-4446-3p (drug-resistant vs. drug-responsive, drug-resistant vs. Ctrl) | Serum | Discovery and training set: 30 TLE drug-resistant 30 TLE drug-responsive Validation set: 77 TLE drug-resistant 81 TLE drug-responsive 85 controls | Discovery set: Illumina HiSeq 2000 technology Training and validation set: RT-PCR | [16] |
↑ miR-134 (TLE vs. Ctrl) | Plasma | 2 healthy controls 5 TLE drug-resistant 1 JME | RT-PCR | [47] |
↑ miR-129-2-3p (TLE vs. Ctrl) | Plasma | 25 TLE 25 healthy controls | RT-PCR | [50] |
↓ miR-153-3p (mTLE vs. Ctrl) | Plasma | 32 surgical patients with mTLE 18 surgical controls 56 mTLE 101 healthy non-surgical controls | RT-PCR | [51] |
↑ miR-143-3p (30 min post-seizure vs. pre-seizure) ↑ miR-145-3p (30 min post-seizure vs. pre-seizure) ↑ miR-365a-3p (30 min post-seizure vs. pre-seizure) ↑ miR-532-5p (30 min post-seizure vs. pre-seizure) | Serum | Validation set: 15 mTLE-HS (pre-seizure and 30 min following a single focal seizure evolving to a bilateral convulsive seizure) | RT-PCR | [49] |
↓ miR-134 (mTLE vs. Ctrl; mTLE drug-responsive vs. Ctrl; mTLE drug-resistant vs. Ctrl) | Plasma | Discovery set: 14 mTLE 13 focal cortical dysplasia 16 healthy controls Validation set: 65 mTLE (27 drug-responsive and 38 drug-resistant) 83 healthy controls | RT-PCR | [53] |
↓ miR-4668-5p (TLE-HS vs. Ctrl) ↓ miR-4322 (TLE-HS vs. Ctrl) ↓ miR-8071 (TLE-HS vs. Ctrl) ↓ miR-6781-5p (TLE-HS vs. Ctrl) ↓ miR-197-5p (TLE-HS vs. Ctrl) ↑ miR-3613-5p (TLE-HS vs. Ctrl) | Plasma exosomal | Validation set: 40 mTLE-HS 40 healthy controls | RT-PCR | [55] |
↓ miR-153-3p (mTLE vs. Ctrl) | Plasma | 22 surgical patients with mTLE 20 controls (head trauma or cerebral hemorrhage) | qRT-PCR | [58] |
↑ miR-27a-3p (EAS vs. Ctrl; EAS vs. EBS; TLE vs. Ctrl; GGE vs. Ctrl) ↑ miR-328-3p (EAS vs. Ctrl; EAS vs. EBS; TLE vs. Ctrl) ↓ miR-328-3p (EBS vs. Ctrl) ↑ Ago2-miR-328-3p (EAS vs. Ctrl; EAS vs. EBS) ↓ miR-654-3p (EBS vs. Ctrl; EBS vs. EAS) ↑ miR-654-3p (GGE vs. Ctrl) | Plasma (Complexed to Argonaute2 or bound in exosomes) | Discovery set: 32 TLE, samples was collected: EAS, EBS 32 healthy controls Validation set: 102 TLE 10 FLE 23 GGE 6 SE 15 PNES 110 healthy controls | RT-PCR Digital PCR | [59] |
↑ miR-155-5p (TLE vs. Ctrl) | Serum | TLE healthy controls | RT-PCR | [57] |
↑ miR-301a-3p (mTLE vs. Ctrl) | Plasma and a sample of tissue from the left hippocampal region | 1 mTLE drug-resistant (Sudden and unexpected death in epilepsy) 10 controls (traumatic or asphyxia deaths) | TaqMan assays | [56] |
↑ miR-145 (Engel I vs. Ctrl) ↑miR-181c ↑ miR-199a (Engel I vs. Ctrl) ↑ miR-1183 (Engel I vs. Ctrl; Engel III-IV vs. Ctrl) | Blood | 20 patients who underwent amygdalohippocampectomy due to pharmacoresistant mTLE-HS (10 Engel I and 10 Engel III–IV) 10 healthy controls | RT-PCR | [61] |
↓ miR-145-5p (Refractory epilepsy vs. Ctrl; mTLE vs. Ctrl) | Plasma | 40 patients with refractory epilepsy (11 mTLE) 42 healthy controls | RT-PCR | [62] |
↑ miR-328-3p (mTLE-HS vs. Ctrl; Engle I vs. Ctrl; Engle III-IV vs. Ctrl) ↑ miR-654-3p (Engle I vs. Ctrl) | Serum | 28 mTLE-HS (14 Engle I, 14 Engel III–IV) 11 healthy controls | RT-PCR | [45] |
↑ miR-142-5p (TLE vs. Ctrl; TLE drug-resistant vs. TLE drug-responsive) ↑ miR-146a-5p (TLE vs. Ctrl) ↑ miR-223-3p (TLE vs. Ctrl; TLE drug-resistant vs. TLE drug-responsive) | Serum | 27 TLE (17 drug-responsive; 10 drug-resistant) 20 healthy controls | RT-PCR | [69] |
↑ miR-629-3p (mTLE-HS vs. Ctrl; Engel I vs. Ctrl; Engel III-IV vs. Ctrl) ↑ miR-1202 (mTLE-HS vs. Ctrl; Engel I vs. Ctrl) ↑ miR-1225-5p (mTLE-HS vs. Ctrl; Engel I vs. Ctrl; Engel III-IV vs. Ctrl) | Blood | 20 mTLE-HS (10 Engel I; 10 Engel III–IV) 10 healthy controls | RT-PCR | [70] |
↓ miR-22 (mTLE-HS vs. Ctrl; drug-resistant vs. Ctrl) | Serum | 40 mTLE-HS (10 drug-responsive; 30 drug-resistant) 48 healthy controls | RT-PCR | [71] |
5. Candidate c-miRNAs with Biomarker Potential in TLE Patients
5.1. miR-27a-3p
5.2. miR-134
5.3. miR-153-3p
5.4. miR-301a-3p
5.5. miR-328-3p
5.6. miR-654-3p
6. Insights into the Effect of miRNAs Target on Antiseizure Medication
7. Diagnostic and/or Prognostic Role of c-miRNAs in TLE
8. Different miRNAs Behavior and Their Variability as Biomarkers
9. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanmounye, U.S.; Abu-Bonsrah, N.; Shlobin, N.A.; Djoutsop, O.M. Letter: The World Health Organization’s Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022–2031. Neurosurgery 2022, 90, E201–E203. [Google Scholar] [CrossRef]
- Kobylarek, D.; Iwanowski, P.; Lewandowska, Z.; Limphaibool, N.; Szafranek, S.; Labrzycka, A.; Kozubski, W. Advances in the Potential Biomarkers of Epilepsy. Front. Neurol. 2019, 10, 450539. [Google Scholar] [CrossRef] [PubMed]
- Vera-González, A. Pathophysiological Mechanisms Underlying the Etiologies of Seizures and Epilepsy. In Epilepsy; Exon Publications: Brisbane, Australia, 2022. [Google Scholar] [CrossRef]
- Schidlitzki, A.; Bascuñana, P.; Srivastava, P.K.; Welzel, L.; Twele, F.; Töllner, K.; Käufer, C.; Gericke, B.; Feleke, R.; Meier, M.; et al. Proof-of-Concept That Network Pharmacology Is Effective to Modify Development of Acquired Temporal Lobe Epilepsy. Neurobiol. Dis. 2020, 134, 104664. [Google Scholar] [CrossRef]
- Löscher, W. The Holy Grail of Epilepsy Prevention: Preclinical Approaches to Antiepileptogenic Treatments. Neuropharmacology 2020, 167, 107605. [Google Scholar] [CrossRef] [PubMed]
- Sueri, C.; Gasparini, S.; Balestrini, S.; Labate, A.; Gambardella, A.; Russo, E.; Leo, A.; Casarotto, S.; Pittau, F.; Trimboli, M.; et al. Diagnostic Biomarkers of Epilepsy. Curr. Pharm. Biotechnol. 2018, 19, 440–450. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front. Mol. Neurosci. 2021, 14, 650372. [Google Scholar] [CrossRef]
- Slota, J.A.; Booth, S.A. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-Coding RNA 2019, 5, 35. [Google Scholar] [CrossRef]
- Bencurova, P.; Baloun, J.; Musilova, K.; Radova, L.; Tichy, B.; Pail, M.; Zeman, M.; Brichtova, E.; Hermanova, M.; Pospisilova, S.; et al. MicroRNA and Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: Whole MiRNome Profiling of Human Hippocampus. Epilepsia 2017, 58, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Mateos, E.M.; Engel, T.; Merino-Serrais, P.; McKiernan, R.C.; Tanaka, K.; Mouri, G.; Sano, T.; O’Tuathaigh, C.; Waddington, J.L.; Prenter, S.; et al. Silencing MicroRNA-134 Produces Neuroprotective and Prolonged Seizure-Suppressive Effects. Nat. Med. 2012, 18, 1087–1094. [Google Scholar] [CrossRef]
- Bohosova, J.; Vajcner, J.; Jabandziev, P.; Oslejskova, H.; Slaby, O.; Aulicka, S. MicroRNAs in the Development of Resistance to Antiseizure Drugs and Their Potential as Biomarkers in Pharmacoresistant Epilepsy. Epilepsia 2021, 62, 2573–2588. [Google Scholar] [CrossRef]
- Morris, G.; O’Brien, D.; Henshall, D.C. Opportunities and Challenges for MicroRNA-Targeting Therapeutics for Epilepsy. Trends Pharmacol. Sci. 2021, 42, 605–616. [Google Scholar] [CrossRef]
- Enright, N.; Simonato, M.; Henshall, D.C. Discovery and Validation of Blood MicroRNAs as Molecular Biomarkers of Epilepsy: Ways to Close Current Knowledge Gaps. Epilepsia Open 2018, 3, 427–436. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, H.; Wang, T.; Yu, S.; Han, Z.; Zhang, W.; Mu, L.; Wang, H.; Na, M.; Wang, H.; et al. Profiling Analysis of Circular RNA and MRNA in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis ILAE Type 1. Cell. Mol. Neurobiol. 2022, 42, 2745–2755. [Google Scholar] [CrossRef]
- Liao, X.Q.; Yu, H.C.; Diao, L.M.; Lu, L.; Li, H.; Zhou, Y.Y.; Qin, H.L.; Huang, Q.L.; Lv, T.T.; Huang, X.M. Differentially Expressed CircRNA and Functional Pathways in the Hippocampus of Epileptic Mice Based on Next-Generation Sequencing. Kaohsiung J. Med. Sci. 2021, 37, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, L.L.; Tan, L.L.; Tian, Y.; Ma, J.; Tan, C.C.; Wang, H.F.; Liu, Y.; Tan, M.S.; Jiang, T.; et al. Circulating MicroRNAs Are Promising Novel Biomarkers for Drug-Resistant Epilepsy. Sci. Rep. 2015, 5, 10201. [Google Scholar] [CrossRef] [PubMed]
- Vinti, V.; Dell’Isola, G.B.; Tascini, G.; Mencaroni, E.; Di Cara, G.; Striano, P.; Verrotti, A. Temporal Lobe Epilepsy and Psychiatric Comorbidity. Front. Neurol. 2021, 12, 775781. [Google Scholar] [CrossRef]
- Qin, L.; Jiang, W.; Zheng, J.; Zhou, X.; Zhang, Z.; Liu, J. Alterations Functional Connectivity in Temporal Lobe Epilepsy and Their Relationships with Cognitive Function: A Longitudinal Resting-State FMRI Study. Front. Neurol. 2020, 11, 625. [Google Scholar] [CrossRef]
- Furukawa, A.; Kakita, A.; Chiba, Y.; Kitaura, H.; Fujii, Y.; Fukuda, M.; Kameyama, S.; Shimada, A. Proteomic Profile Differentiating between Mesial Temporal Lobe Epilepsy with and without Hippocampal Sclerosis. Epilepsy Res. 2020, 168, 106502. [Google Scholar] [CrossRef]
- Blümcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International Consensus Classification of Hippocampal Sclerosis in Temporal Lobe Epilepsy: A Task Force Report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Bruxel, E.M.; Bruno, D.C.F.; do Canto, A.M.; Geraldis, J.C.; Godoi, A.B.; Martin, M.; Lopes-Cendes, I. Multi-Omics in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: Clues into the Underlying Mechanisms Leading to Disease. Seizure 2021, 90, 34–50. [Google Scholar] [CrossRef]
- Ammothumkandy, A.; Ravina, K.; Wolseley, V.; Tartt, A.N.; Yu, P.N.; Corona, L.; Zhang, N.; Nune, G.; Kalayjian, L.; Mann, J.J.; et al. Altered Adult Neurogenesis and Gliogenesis in Patients with Mesial Temporal Lobe Epilepsy. Nat. Neurosci. 2022, 25, 493–503. [Google Scholar] [CrossRef]
- Vrinda, M.; Arun, S.; Srikumar, B.N.; Kutty, B.M.; Shankaranarayana Rao, B.S. Temporal Lobe Epilepsy-Induced Neurodegeneration and Cognitive Deficits: Implications for Aging. J. Chem. Neuroanat. 2019, 95, 146–153. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.; Zhu, H.; Chen, F.; Yu, N.; Di, Q. Factors Influencing the Long-Term Prognosis of Patients with Temporal Lobe Epilepsy: A Single Center Study. Ann. Palliat. Med. 2020, 9, 3194203. [Google Scholar] [CrossRef]
- Mathon, B.; Bédos Ulvin, L.; Adam, C.; Baulac, M.; Dupont, S.; Navarro, V.; Cornu, P.; Clemenceau, S. Surgical Treatment for Mesial Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis. Rev. Neurol. 2015, 171, 315–325. [Google Scholar] [CrossRef]
- Labate, A.; Sammarra, I.; Trimboli, M.; Caligiuri, M.E.; Gambardella, A. Looking for Indicative Magnetic Resonance Imaging Signs of Hippocampal Developmental Abnormalities in Patients with Mesial Temporal Lobe Epilepsy and Healthy Controls. Epilepsia 2020, 61, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhyay, R.; Singh, T.; Ghoneim, M.M.; Alshehri, S.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C.; Ahmad, J.; Alhakamy, N.A.; Alfaleh, M.A.; et al. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. Biology 2021, 10, 1097. [Google Scholar] [CrossRef] [PubMed]
- Yakovleva, K.D.; Dmitrenko, D.V.; Panina, I.S.; Usoltseva, A.A.; Gazenkampf, K.A.; Konovalenko, O.V.; Kantimirova, E.A.; Novitsky, M.A.; Nasyrova, R.F.; Shnayder, N.A. Expression Profile of MiRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int. J. Mol. Sci. 2022, 23, 951. [Google Scholar] [CrossRef]
- Martinez, B.; Peplow, P.V. MicroRNAs as Potential Biomarkers in Temporal Lobe Epilepsy and Mesial Temporal Lobe Epilepsy. Neural Regen. Res. 2023, 18, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Tajbakhsh, A.; Savardashtaki, A. MicroRNAs in Temporal Lobe Epilepsy: A Systematic Review. Neurol. Sci. 2021, 42, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Pitkanen, A.; Loeb, J.A.; Dudek, F.E.; Bertram, E.H.; Cole, A.J.; Moshé, S.L.; Wiebe, S.; Jensen, F.E.; Mody, I.; et al. Epilepsy Biomarkers. Epilepsia 2013, 54, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Kitai, H.; Suzuki, H.I. Network Regulation of MicroRNA Biogenesis and Target Interaction. Cells 2023, 12, 306. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Beitzinger, M.; Meister, G. Preview. MicroRNAs: From Decay to Decoy. Cell 2010, 140, 612–614. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 388354. [Google Scholar] [CrossRef]
- Rezaee, D.; Saadatpour, F.; Akbari, N.; Zoghi, A.; Najafi, S.; Beyranvand, P.; Zamani-Rarani, F.; Rashidi, M.A.; Bagheri-Mohammadi, S.; Bakhtiari, M. The Role of MicroRNAs in the Pathophysiology of Human Central Nervous System: A Focus on Neurodegenerative Diseases. Ageing Res. Rev. 2023, 92, 102090. [Google Scholar] [CrossRef]
- Brennan, G.P.; Henshall, D.C. MicroRNAs in the Pathophysiology of Epilepsy. Neurosci. Lett. 2018, 667, 47–52. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical Relevance of Circulating Cell-Free MicroRNAs in Cancer. Nat. Rev. Clin. Oncol. 2014, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, G.E.D.; Sabo, A.A.; Torsin, L.I.; Calin, G.A.; Dragomir, M.P. MicroRNA Based Theranostics for Brain Cancer: Basic Principles. J. Exp. Clin. Cancer Res. 2019, 38, 231. [Google Scholar] [CrossRef] [PubMed]
- Stoicea, N.; Du, A.; Lakis, C.D.; Tipton, C.; Arias-Morales, C.E.; Bergese, S.D. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front. Genet. 2016, 7, 11. [Google Scholar] [CrossRef]
- Szydlowska, K.; Bot, A.; Nizinska, K.; Olszewski, M.; Lukasiuk, K. Circulating MicroRNAs from Plasma as Preclinical Biomarkers of Epileptogenesis and Epilepsy. Sci. Rep. 2024, 14, 708. [Google Scholar] [CrossRef]
- Brindley, E.; Heiland, M.; Mooney, C.; Diviney, M.; Mamad, O.; Hill, T.D.M.; Yan, Y.; Venø, M.T.; Reschke, C.R.; Batool, A.; et al. Brain Cell-Specific Origin of Circulating MicroRNA Biomarkers in Experimental Temporal Lobe Epilepsy. Front. Mol. Neurosci. 2023, 16, 1230942. [Google Scholar] [CrossRef]
- Ioriatti, E.S.; Cirino, M.L.A.; Lizarte Neto, F.S.; Velasco, T.R.; Sakamoto, A.C.; Freitas-Lima, P.; Tirapelli, D.P.C.; Carlotti, C.G. Expression of Circulating MicroRNAs as Predictors of Diagnosis and Surgical Outcome in Patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Epilepsy Res. 2020, 166, 106373. [Google Scholar] [CrossRef]
- Liu, D.Z.; Tian, Y.; Ander, B.P.; Xu, H.; Stamova, B.S.; Zhan, X.; Turner, R.J.; Jickling, G.; Sharp, F.R. Brain and Blood MicroRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. J. Cereb. Blood Flow Metab. 2010, 30, 92–101. [Google Scholar] [CrossRef]
- Spain, E.; Jimenez-Mateos, E.M.; Raoof, R.; ElNaggar, H.; Delanty, N.; Forster, R.J.; Henshall, D.C. Direct, Non-Amplified Detection of MicroRNA-134 in Plasma from Epilepsy Patients. RSC Adv. 2015, 5, 90071–90078. [Google Scholar] [CrossRef]
- Wang, J.; Yu, J.T.; Tan, L.; Tian, Y.; Ma, J.; Tan, C.C.; Wang, H.F.; Liu, Y.; Tan, M.S.; Jiang, T.; et al. Genome-Wide Circulating MicroRNA Expression Profiling Indicates Biomarkers for Epilepsy. Sci. Rep. 2015, 5, 9522. [Google Scholar] [CrossRef]
- Surges, R.; Kretschmann, A.; Abnaof, K.; van Rikxoort, M.; Ridder, K.; Fröhlich, H.; Danis, B.; Kaminski, R.M.; Foerch, P.; Elger, C.E.; et al. Changes in Serum MiRNAs Following Generalized Convulsive Seizures in Human Mesial Temporal Lobe Epilepsy. Biochem. Biophys. Res. Commun. 2016, 481, 13–18. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Wang, Z.; Zhang, Y.; Che, N.; Luo, X.; Tan, Z.; Sun, X.; Li, X.; Yang, K.; et al. Expression of MicroRNA-129-2-3p and MicroRNA-935 in Plasma and Brain Tissue of Human Refractory Epilepsy. Epilepsy Res. 2016, 127, 276–283. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Feng, P.; Jiang, Y.; Wang, W.; Zhou, D.; Chen, L. Aberrant Expression of MiR-153 Is Associated with Overexpression of Hypoxia-Inducible Factor-1α in Refractory Epilepsy. Sci. Rep. 2016, 6, 32091. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, W.; Liu, L.; Tao, S.; Xia, Z.; Qi, L.; Huang, M. Identification of Serum MiRNAs Differentially Expressed in Human Epilepsy at Seizure Onset and Post-Seizure. Mol. Med. Rep. 2016, 14, 5318–5324. [Google Scholar] [CrossRef]
- Avansini, S.H.; De Sousa Lima, B.P.; Secolin, R.; Santos, M.L.; Coan, A.C.; Vieira, A.S.; Torres, F.R.; Carvalho, B.S.; Alvim, M.K.M.; Morita, M.E.; et al. MicroRNA Hsa-MiR-134 Is a Circulating Biomarker for Mesial Temporal Lobe Epilepsy. PLoS ONE 2017, 12, e0173060. [Google Scholar] [CrossRef] [PubMed]
- Raoof, R.; Jimenez-Mateos, E.M.; Bauer, S.; Tackenberg, B.; Rosenow, F.; Lang, J.; Onugoren, M.D.; Hamer, H.; Huchtemann, T.; Körtvélyessy, P.; et al. Cerebrospinal Fluid MicroRNAs Are Potential Biomarkers of Temporal Lobe Epilepsy and Status Epilepticus. Sci. Rep. 2017, 7, 3328. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, H.; Xie, W.; Meng, F.; Zhang, K.; Jiang, Y.; Zhang, X.; Zhang, J. Altered MicroRNA Profiles in Plasma Exosomes from Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Oncotarget 2017, 8, 4136–4146. [Google Scholar] [CrossRef]
- De Matteis, M.; Cecchetto, G.; Munari, G.; Balsamo, L.; Paola Gardiman, M.; Giordano, R.; Viel, G.; Fassan, M. Circulating MiRNAs Expression Profiling in Drug-Resistant Epilepsy: Up-Regulation of MiR-301a-3p in a Case of Sudden Unexpected Death. Leg. Med. 2018, 33, 5. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Chen, Y.; Wang, X.R. MicroRNA-155 Contributes to the Occurrence of Epilepsy through the PI3K/Akt/MTOR Signaling Pathway. Int. J. Mol. Med. 2018, 42, 1577–1584. [Google Scholar] [CrossRef]
- Gong, G.H.; An, F.M.; Wang, Y.; Bian, M.; Wang, D.; Wei, C.X. MiR-153 Regulates Expression of Hypoxia-Inducible Factor-1α in Refractory Epilepsy. Oncotarget 2018, 9, 8542–8547. [Google Scholar] [CrossRef]
- Raoof, R.; Bauer, S.; El Naggar, H.; Connolly, N.M.C.; Brennan, G.P.; Brindley, E.; Hill, T.; McArdle, H.; Spain, E.; Forster, R.J.; et al. Dual-Center, Dual-Platform MicroRNA Profiling Identifies Potential Plasma Biomarkers of Adult Temporal Lobe Epilepsy. EBioMedicine 2018, 38, 127–141. [Google Scholar] [CrossRef]
- Xiao, W.; Cao, Y.; Long, H.; Luo, Z.; Li, S.; Deng, N.; Wang, J.; Lu, X.; Wang, T.; Ning, S.; et al. Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Mol. Neurobiol. 2018, 55, 793–803. [Google Scholar] [CrossRef]
- Antônio, L.G.L.; Freitas-Lima, P.; Pereira-da-Silva, G.; Assirati, J.A.; Matias, C.M.; Cirino, M.L.A.; Tirapelli, L.F.; Velasco, T.R.; Sakamoto, A.C.; Carlotti, C.G.; et al. Expression of MicroRNAs MiR-145, MiR-181c, MiR-199a and MiR-1183 in the Blood and Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. J. Mol. Neurosci. 2019, 69, 580–587. [Google Scholar] [CrossRef]
- Shen, C.H.; Zhang, Y.X.; Zheng, Y.; Yang, F.; Hu, Y.; Xu, S.; Yan, S.Q.; Ding, Y.; Guo, Y.; Ding, M.P. Expression of Plasma MicroRNA-145-5p and Its Correlation with Clinical Features in Patients with Refractory Epilepsy. Epilepsy Res. 2019, 154, 21–25. [Google Scholar] [CrossRef]
- Elnady, H.G.; Abdelmoneam, N.; Eissa, E.; Hamid, E.R.A.; Zeid, D.A.; Abo-Shanab, A.M.; Atta, H.; Kholoussi, N.M. MicroRNAs as Potential Biomarkers for Childhood Epilepsy. Open Access Maced. J. Med. Sci. 2019, 7, 3965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sang, Y.; Zhang, Y.; Zhang, D.; Chen, J.; Liu, X. Efficacy of Levetiracetam Combined with Sodium Valproate on Pediatric Epilepsy and Its Effect on Serum MiR-106b in Children. Exp. Ther. Med. 2019, 18, 4436–4442. [Google Scholar] [CrossRef]
- Wang, L.; Song, L.; Chen, X.; Suo, J.; Ma, Y.; Shi, J.; Liu, K.; Chen, G. MicroRNA-139-5p Confers Sensitivity to Antiepileptic Drugs in Refractory Epilepsy by Inhibition of MRP1. CNS Neurosci. Ther. 2020, 26, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Brennan, G.P.; Bauer, S.; Engel, T.; Jimenez-Mateos, E.M.; Del Gallo, F.; Hill, T.D.M.; Connolly, N.M.C.; Costard, L.S.; Neubert, V.; Salvetti, B.; et al. Genome-Wide MicroRNA Profiling of Plasma from Three Different Animal Models Identifies Biomarkers of Temporal Lobe Epilepsy. Neurobiol. Dis. 2020, 144, 105048. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Pan, J.; Liu, W.; Li, Y.; Li, F.; Liu, M. MicroRNA-15a-5p Serves as a Potential Biomarker and Regulates the Viability and Apoptosis of Hippocampus Neuron in Children with Temporal Lobe Epilepsy. Diagn. Pathol. 2020, 15, 46. [Google Scholar] [CrossRef]
- Niu, X.; Zhu, H.L.; Liu, Q.; Yan, J.F.; Li, M.L. MiR-194-5p Serves as a Potential Biomarker and Regulates the Proliferation and Apoptosis of Hippocampus Neuron in Children with Temporal Lobe Epilepsy. J. Chin. Med. Assoc. 2021, 84, 510–516. [Google Scholar] [CrossRef]
- De Benedittis, S.; Fortunato, F.; Cava, C.; Gallivanone, F.; Iaccino, E.; Caligiuri, M.E.; Castiglioni, I.; Bertoli, G.; Manna, I.; Labate, A.; et al. Circulating MicroRNA: The Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy, a Pilot Study. Int. J. Mol. Sci. 2021, 22, 702. [Google Scholar] [CrossRef]
- Gattás, D.; Neto, F.S.L.; Freitas-Lima, P.; Bonfim-Silva, R.; Malaquias de Almeida, S.; de Assis Cirino, M.L.; Guimarães Tiezzi, D.; Tirapelli, L.F.; Velasco, T.R.; Sakamoto, A.C.; et al. MicroRNAs MiR-629-3p, MiR-1202 and MiR-1225-5p as Potential Diagnostic and Surgery Outcome Biomarkers for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Neurochirurgie 2022, 68, 583–588. [Google Scholar] [CrossRef]
- Guerra Leal, B.; Barros-Barbosa, A.; Ferreirinha, F.; Chaves, J.; Rangel, R.; Santos, A.; Carvalho, C.; Martins-Ferreira, R.; Samões, R.; Freitas, J.; et al. Mesial Temporal Lobe Epilepsy (MTLE) Drug-Refractoriness Is Associated With P2X7 Receptors Overexpression in the Human Hippocampus and Temporal Neocortex and May Be Predicted by Low Circulating Levels of MiR-22. Front. Cell. Neurosci. 2022, 16, 910662. [Google Scholar] [CrossRef]
- Jimenez-Mateos, E.M.; Arribas-Blazquez, M.; Sanz-Rodriguez, A.; Concannon, C.; Olivos-Ore, L.A.; Reschke, C.R.; Mooney, C.M.; Mooney, C.; Lugara, E.; Morgan, J.; et al. MicroRNA Targeting of the P2X7 Purinoceptor Opposes a Contralateral Epileptogenic Focus in the Hippocampus. Sci. Rep. 2015, 5, 17486. [Google Scholar] [CrossRef]
- Nomair, A.M.; Mekky, J.F.; El-hamshary, S.A.; Nomeir, H.M. Circulating MiR-146a-5p and MiR-132–3p as Potential Diagnostic Biomarkers in Epilepsy. Epilepsy Res. 2023, 191, 107089. [Google Scholar] [CrossRef]
- Aronica, E.; Fluiter, K.; Iyer, A.; Zurolo, E.; Vreijling, J.; Van Vliet, E.A.; Baayen, J.C.; Gorter, J.A. Expression Pattern of MiR-146a, an Inflammation-Associated MicroRNA, in Experimental and Human Temporal Lobe Epilepsy. Eur. J. Neurosci. 2010, 31, 1100–1107. [Google Scholar] [CrossRef]
- Ashhab, M.U.; Omran, A.; Kong, H.; Gan, N.; He, F.; Peng, J.; Yin, F. Expressions of Tumor Necrosis Factor Alpha and MicroRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy. J. Mol. Neurosci. 2013, 51, 950–958. [Google Scholar] [CrossRef]
- Peng, J.; Omran, A.; Ashhab, M.U.; Kong, H.; Gan, N.; He, F.; Yin, F. Expression Patterns of MiR-124, MiR-134, MiR-132, and MiR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. J. Mol. Neurosci. 2013, 50, 291–297. [Google Scholar] [CrossRef]
- Harati, R.; Hammad, S.; Tlili, A.; Mahfood, M.; Mabondzo, A.; Hamoudi, R. MiR-27a-3p Regulates Expression of Intercellular Junctions at the Brain Endothelium and Controls the Endothelial Barrier Permeability. PLoS ONE 2022, 17, e0262152. [Google Scholar] [CrossRef]
- Korotkov, A.; Mills, J.D.; Gorter, J.A.; Van Vliet, E.A.; Aronica, E. Systematic Review and Meta-Analysis of Differentially Expressed MiRNAs in Experimental and Human Temporal Lobe Epilepsy. Sci. Rep. 2017, 7, 11592. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, N.; Yang, P.; Deng, L.; Liu, G. MicroRNA-27a-3p Downregulation Inhibits Inflammatory Response and Hippocampal Neuronal Cell Apoptosis by Upregulating Mitogen-Activated Protein Kinase 4 (MAP2K4) Expression in Epilepsy: In Vivo and In Vitro Studies. Med. Sci. Monit. 2019, 25, 8499–8508. [Google Scholar] [CrossRef]
- Su, Z.; Li, Y.; Chen, S.; Liu, X.; Zhao, K.; Peng, Y.; Zhou, L. Identification of Ion Channel-Related Genes and MiRNA-MRNA Networks in Mesial Temporal Lobe Epilepsy. Front. Genet. 2022, 13, 853529. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, X.; Li, P.P.; Gao, L.; Zhou, Y.; Li, L.; Ye, H.; Fu, X.; Li, P. MicroRNA Profilings Identify Plasma Biomarkers and Targets Associated with Pediatric Epilepsy Patients. Pediatr. Res. 2023, 95, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Mateos, E.M.; Henshall, D.C. Epilepsy and MicroRNA. Neuroscience 2013, 238, 218–229. [Google Scholar] [CrossRef]
- Jimenez-Mateos, E.M.; Engel, T.; Merino-Serrais, P.; Fernaud-Espinosa, I.; Rodriguez-Alvarez, N.; Reynolds, J.; Reschke, C.R.; Conroy, R.M.; McKiernan, R.C.; deFelipe, J.; et al. Antagomirs Targeting MicroRNA-134 Increase Hippocampal Pyramidal Neuron Spine Volume in Vivo and Protect against Pilocarpine-Induced Status Epilepticus. Brain Struct. Funct. 2015, 220, 2387–2399. [Google Scholar] [CrossRef]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A Brain-Specific MicroRNA Regulates Dendritic Spine Development. Nature 2006, 439, 283–289. [Google Scholar] [CrossRef]
- Fiore, R.; Rajman, M.; Schwale, C.; Bicker, S.; Antoniou, A.; Bruehl, C.; Draguhn, A.; Schratt, G. MiR-134-Dependent Regulation of Pumilio-2 Is Necessary for Homeostatic Synaptic Depression. EMBO J. 2014, 33, 2231–2246. [Google Scholar] [CrossRef]
- Song, Y.J.; Tian, X.B.; Zhang, S.; Zhang, Y.X.; Li, X.; Li, D.; Cheng, Y.; Zhang, J.N.; Kang, C.S.; Zhao, W. Temporal Lobe Epilepsy Induces Differential Expression of Hippocampal MiRNAs Including Let-7e and MiR-23a/B. Brain Res. 2011, 1387, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, M.; Meng, D.; Sun, F.; Guan, L.; Cui, Y.; Zhao, Y.; Wang, X.; Gu, X.; Sun, J.; et al. Silencing MicroRNA-134 Alleviates Hippocampal Damage and Occurrence of Spontaneous Seizures after Intraventricular Kainic Acid-Induced Status Epilepticus in Rats. Front. Cell. Neurosci. 2019, 13, 145. [Google Scholar] [CrossRef]
- Reschke, C.R.; Silva, L.F.A.; Vangoor, V.R.; Rosso, M.; David, B.; Cavanagh, B.L.; Connolly, N.M.C.; Brennan, G.P.; Sanz-Rodriguez, A.; Mooney, C.; et al. Systemic Delivery of Antagomirs during Blood-Brain Barrier Disruption Is Disease-Modifying in Experimental Epilepsy. Mol. Ther. 2021, 29, 2041–2052. [Google Scholar] [CrossRef]
- Morris, G.; Reschke, C.R.; Henshall, D.C. Targeting MicroRNA-134 for Seizure Control and Disease Modification in Epilepsy. EBioMedicine 2019, 45, 646–654. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Liu, S.; Tan, L.; Wang, S.; Man, R. MicroRNA-134 Plasma Levels before and after Treatment with Valproic Acid for Epilepsy Patients. Oncotarget 2017, 8, 72748–72754. [Google Scholar] [CrossRef]
- Leontariti, M.; Avgeris, M.; Katsarou, M.S.; Drakoulis, N.; Siatouni, A.; Verentzioti, A.; Alexoudi, A.; Fytraki, A.; Patrikelis, P.; Vassilacopoulou, D.; et al. Circulating MiR-146a and MiR-134 in Predicting Drug-Resistant Epilepsy in Patients with Focal Impaired Awareness Seizures. Epilepsia 2020, 61, 959–970. [Google Scholar] [CrossRef]
- Tal, T.L.; Franzosa, J.A.; Tilton, S.C.; Philbrick, K.A.; Iwaniec, U.T.; Turner, R.T.; Waters, K.M.; Tanguay, R.L. MicroRNAs Control Neurobehavioral Development and Function in Zebrafish. FASEB J. 2012, 26, 1452–1461. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Ding, Y.Y.; Zhang, Y.X. Expression of MiR-155 in Serum Exosomes in Children with Epilepsy and Its Diagnostic Value. Dis. Markers 2022, 2022, 7979500. [Google Scholar] [CrossRef]
- Çarman, K.B.; Tekin, H.G.; Çavuşoğlu, D.; Yarar, C.; Kaplan, E.; Karademir, C.N.; Arslantaş, D. Evaluation of MicroRNAs in Pediatric Epilepsy. Turk. Arch. Pediatr. 2023, 58, 429. [Google Scholar] [CrossRef]
- Hu, K.; Xie, Y.Y.; Zhang, C.; Ouyang, D.S.; Long, H.Y.; Sun, D.N.; Long, L.L.; Feng, L.; Li, Y.; Xiao, B. MicroRNA Expression Profile of the Hippocampus in a Rat Model of Temporal Lobe Epilepsy and MiR-34a-Targeted Neuroprotection against Hippocampal Neurone Cell Apoptosis Post-Status Epilepticus. BMC Neurosci. 2012, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.M.; Debski, K.J.; Lukasiuk, K. Alterations in MiRNA Levels in the Dentate Gyrus in Epileptic Rats. PLoS ONE 2013, 8, e76051. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, R.C.; Jimenez-Mateos, E.M.; Bray, I.; Engel, T.; Brennan, G.P.; Sano, T.; Michalak, Z.; Moran, C.; Delanty, N.; Farrell, M.; et al. Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis. PLoS ONE 2012, 7, e35921. [Google Scholar] [CrossRef]
- Kan, A.A.; Van Erp, S.; Derijck, A.A.H.A.; De Wit, M.; Hessel, E.V.S.; O’Duibhir, E.; De Jager, W.; Van Rijen, P.C.; Gosselaar, P.H.; De Graan, P.N.E.; et al. Genome-Wide MicroRNA Profiling of Human Temporal Lobe Epilepsy Identifies Modulators of the Immune Response. Cell. Mol. Life Sci. 2012, 69, 3127–3145. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Safarzadeh, A.; Hassani Fard Katiraei, S.; Hussen, B.M.; Hajiesmaeili, M. Diverse Functions of MiR-328 in the Carcinogenesis. Pathol. Res. Pract. 2023, 251, 154896. [Google Scholar] [CrossRef]
- Risbud, R.M.; Porter, B.E. Changes in MicroRNA Expression in the Whole Hippocampus and Hippocampal Synaptoneurosome Fraction Following Pilocarpine Induced Status Epilepticus. PLoS ONE 2013, 8, e53464. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Zheng, Q. CircRNA_0000285 Knockdown Suppresses Viability and Promotes Apoptosis of Cervical Cancer Cells by Sponging MicroRNA-654-3p. Bioengineered 2022, 13, 5251–5261. [Google Scholar] [CrossRef]
- Deng, G.; Mou, T.; He, J.; Chen, D.; Lv, D.; Liu, H.; Yu, J.; Wang, S.; Li, G. Circular RNA CircRHOBTB3 Acts as a Sponge for MiR-654-3p Inhibiting Gastric Cancer Growth. J. Exp. Clin. Cancer Res. 2020, 39, 1. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, Y.; Luo, H.; Rong, Z.; Li, Y.; Lu, P.; Ye, X.; Huang, W.; Qi, Z.; Li, X.; et al. Silencing MicroRNA-155 Attenuates Kainic Acid-Induced Seizure by Inhibiting Microglia Activation. Neuroimmunomodulation 2019, 26, 67–76. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Chen, B.; Huang, S.; Zeng, C.; Wu, H.; Chen, C.; Long, F. Increased Serum Exosomal MiR-134 Expression in the Acute Ischemic Stroke Patients. BMC Neurol. 2018, 18, 198. [Google Scholar] [CrossRef]
- Rong, H.; Liu, T.B.; Yang, K.J.; Yang, H.C.; Wu, D.H.; Liao, C.P.; Hong, F.; Yang, H.Z.; Wan, F.; Ye, X.Y.; et al. MicroRNA-134 Plasma Levels before and after Treatment for Bipolar Mania. J. Psychiatr. Res. 2011, 45, 92–95. [Google Scholar] [CrossRef]
- Tanaka, M.; Oikawa, K.; Takanashi, M.; Kudo, M.; Ohyashiki, J.; Ohyashiki, K.; Kuroda, M. Down-Regulation of MiR-92 in Human Plasma Is a Novel Marker for Acute Leukemia Patients. PLoS ONE 2009, 4, e5532. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, E.A.; Puhakka, N.; Mills, J.D.; Srivastava, P.K.; Johnson, M.R.; Roncon, P.; Das Gupta, S.; Karttunen, J.; Simonato, M.; Lukasiuk, K.; et al. Standardization Procedure for Plasma Biomarker Analysis in Rat Models of Epileptogenesis: Focus on Circulating MicroRNAs. Epilepsia 2017, 58, 2013–2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnieri, L.; Amodio, N.; Bosco, F.; Carpi, S.; Tallarico, M.; Gallelli, L.; Rania, V.; Citraro, R.; Leo, A.; De Sarro, G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Non-Coding RNA 2024, 10, 18. https://doi.org/10.3390/ncrna10020018
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Non-Coding RNA. 2024; 10(2):18. https://doi.org/10.3390/ncrna10020018
Chicago/Turabian StyleGuarnieri, Lorenza, Nicola Amodio, Francesca Bosco, Sara Carpi, Martina Tallarico, Luca Gallelli, Vincenzo Rania, Rita Citraro, Antonio Leo, and Giovambattista De Sarro. 2024. "Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy" Non-Coding RNA 10, no. 2: 18. https://doi.org/10.3390/ncrna10020018
APA StyleGuarnieri, L., Amodio, N., Bosco, F., Carpi, S., Tallarico, M., Gallelli, L., Rania, V., Citraro, R., Leo, A., & De Sarro, G. (2024). Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Non-Coding RNA, 10(2), 18. https://doi.org/10.3390/ncrna10020018