Simulation of Corner Solidification in a Cavity Using the Lattice Boltzmann Method
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Model Description and Governing Equations
2.2. Lattice Boltzmann Model (LBM)
3. Results and Discussion
3.1. Grid Independency Test and Validation
3.2. Effect of Rayleigh Number
3.3. Thermal Instability in Solidified Zone
3.4. Coefficient of Variation (COV) in Solidified Zone
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brent, A.D.; Voller, V.R.; Reid, K.J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transf. 1988, 13, 297–318. [Google Scholar] [CrossRef]
- Wang, S.; Faghri, A.; Bergman, T.L. A comprehensive numerical model for melting with natural convection. Int. J. Heat Mass Transf. 2010, 53, 1986–2000. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.-Q.; Yan, Y.; Yu, Z.-F. A strong-coupled method combined finite element method and lattice Boltzmann method via an implicit immersed boundary scheme for fluid structure interaction. Ocean Eng. 2020, 214, 107779. [Google Scholar] [CrossRef]
- Tien, H.C.; Wang, C.C. Solidification of a liquid metal with natura convection in a thick-walled container. J. Mech. 1999, 15, 47–55. [Google Scholar] [CrossRef]
- Kosec, G.; Šarler, B. Solution of a low Prandtl number natural convection benchmark by a local meshless method. Int. J. Numer. Methods Heat Fluid Flow 2013, 23, 189–204. [Google Scholar] [CrossRef]
- Gau, C.; Viskanta, R. Effect of natural convection on solidification from above and melting from below of a pure metal. Int. J. Heat Mass Transf. 1985, 28, 573–587. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H.; Cheng, P. A new lattice Boltzmann model for solid–liquid phase change. Int. J. Heat Mass Transf. 2013, 59, 295–301. [Google Scholar] [CrossRef]
- Huang, R.; Wu, H. An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change. J. Comput. Phys. 2014, 277, 305–319. [Google Scholar] [CrossRef]
- Xu, P.; Xu, S.; Liu, P.; Gao, Y.; Liu, X. Investigation of heat source location on solid-liquid phase change using lattice Boltzmann method. Energy Procedia 2019, 158, 4389–4395. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chai, Z.; Shi, B. Comparative study of natural convection melting inside a cubic cavity using an improved two-relaxation-time lattice Boltzmann model. Int. J. Heat Mass Transf. 2019, 143, 118449. [Google Scholar] [CrossRef]
- He, Y.-L.; Liu, Q.; Tao, W.-Q. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int. J. Heat Mass Transf. 2019, 129, 160–197. [Google Scholar] [CrossRef]
- Jiaung, W.-S.; Ho, J.-R.; Kuo, C.-P. Lattice boltzmann method for the heat conduction problem with phase change. Numer. Heat Transfer Part B Fundam. 2001, 39, 167–187. [Google Scholar]
- Dai, R.; Bian, Q.; Wang, Q.; Zeng, M. Evolution of natural convection melting inside cavity heated from different sides using enthalpy based lattice Boltzmann method. Int. J. Heat Mass Transf. 2018, 121, 715–725. [Google Scholar] [CrossRef]
- Chatterjee, D.; Chakraborty, S. An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances. Int. J. Therm. Sci. 2008, 47, 552–559. [Google Scholar] [CrossRef]
- Huber, C.; Parmigiani, A.; Chopard, B.; Manga, M.; Bachmann, O. Lattice Boltzmann model for melting with natural convection. Int. J. Heat Fluid Flow 2008, 29, 1469–1480. [Google Scholar] [CrossRef]
- Hasan, M.S.; Saha, S.K. Evolution of solid–liquid interface in bottom heated cavity for low Prandtl number using lattice Boltzmann method. Phys. Fluids 2021, 33, 57102. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z. Lattice Boltzmann simulation for solid–liquid phase change phenomenon of phase change material under constant heat flux. Int. J. Heat Mass Transf. 2015, 86, 197–206. [Google Scholar] [CrossRef]
- Samanta, R.; Chattopadhyay, H.; Guha, C. Numerical Heat Transfer, Part A: Applications Corner melting in low Pr metals: A study using lattice Boltzmann method Corner melting in low Pr metals: A study using lattice Boltzmann method. Numer. Heat Transf. Part A Appl. 2024, 1–31. [Google Scholar] [CrossRef]
- Samanta, R.; Chattopadhyay, H.; Guha, C. A review on the application of lattice Boltzmann method for melting and solidification problems. Comput. Mater. Sci. 2022, 206, 111288. [Google Scholar] [CrossRef]
- Davies, G.F. Mantle Convection for Geologists; Cambridge University Press: Cambridge, UK, 2011; pp. 1–232. [Google Scholar]
- Rathjen, K.A.; Jui, L.M. Heat conduction with melting or freezing in a corner. J. Heat Transf. 1971, 93, 101–109. [Google Scholar] [CrossRef]
- Lee, S.L.; Tzong, R.Y. An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface. Int. J. Heat Mass Transf. 1991, 34, 1491–1502. [Google Scholar] [CrossRef]
- Lin, J.Y.; Chen, H.T. Hybrid numerical scheme for nonlinear two-dimensional phase-change problems with the irregular geometry. Heat Mass Transf./Waerme Stoffuebertragung 1997, 33, 51–58. [Google Scholar] [CrossRef]
- Rui, Z.; Li, J.; Ma, J.; Cai, H.; Nie, B.; Peng, H. Comparative study on natural convection melting in square cavity using lattice Boltzmann method. Results Phys. 2020, 18, 103274. [Google Scholar] [CrossRef]
- Samanta, R.; Chattopadhyay, H.; Guha, C. Study of Corner Solidification of Pure Metal using Lattice Boltzmann Method. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2023; pp. 79–84. [Google Scholar]
- Samanta, R.; Chattopadhyay, H. Study of Natural Convection in Corner Melting of Low Prandtl Number Materials using Modified Lattice Boltzmann Method. In Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference, Patna, India, 14–17 December 2023; Begell House: Danbury, CT, USA, 2023; pp. 797–802. [Google Scholar]
- Purseed, J.; Favier, B.; Duchemin, L.; Hester, E.W. Bistability in Rayleigh-Bénard convection with a melting boundary. Phys. Rev. Fluids 2020, 5, 023501. [Google Scholar] [CrossRef]
- De Rosis, A.; Giustini, G. Flow and heat transfer regimes in Rayleigh–Bénard convection with a melting boundary. Phys. Fluids 2023, 35, 111703. [Google Scholar] [CrossRef]
- Chung, J.D.; Lee, J.S.; Yoo, H. Thermal instability during the melting process in an isothermally heated horizontal cylinder. Int. J. Heat Mass Transf. 1997, 40, 3899–3907. [Google Scholar] [CrossRef]
- Samanta, R.; Chattopadhyay, H.; Guha, C. Transport phenomena in a differentially heated lid-driven cavity: A study using multi-relaxation-time thermal lattice Boltzmann modeling. Phys. Fluids 2020, 32, 093610. [Google Scholar] [CrossRef]
- Mencinger, J. Numerical simulation of melting in two-dimensional cavity using adaptive grid. J. Comput. Phys. 2004, 198, 243–264. [Google Scholar] [CrossRef]
- Wolff, F.; Viskanta, R. Solidification of a pure metal at a vertical wall in the presence of liquid superheat. Int. J. Heat Mass Transf. 1988, 31, 1735–1744. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Balakrishnan, A.R. Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 2006, 49, 4525–4535. [Google Scholar] [CrossRef]
- Du, W.; Chen, S.; Wu, G. A new lattice Boltzmann method for melting processes of high Prandtl number phase change materials. J. Energy Storage 2021, 41, 103006. [Google Scholar] [CrossRef]
Grid Size | Average Nusselt Number at Left–Bottom Walls |
---|---|
101 × 101 | 3.581 |
151 × 151 | 3.620 |
181 × 181 | 3.622 |
201 × 201 | 3.622 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samanta, R.; Chattopadhyay, H. Simulation of Corner Solidification in a Cavity Using the Lattice Boltzmann Method. Fluids 2024, 9, 195. https://doi.org/10.3390/fluids9090195
Samanta R, Chattopadhyay H. Simulation of Corner Solidification in a Cavity Using the Lattice Boltzmann Method. Fluids. 2024; 9(9):195. https://doi.org/10.3390/fluids9090195
Chicago/Turabian StyleSamanta, Runa, and Himadri Chattopadhyay. 2024. "Simulation of Corner Solidification in a Cavity Using the Lattice Boltzmann Method" Fluids 9, no. 9: 195. https://doi.org/10.3390/fluids9090195
APA StyleSamanta, R., & Chattopadhyay, H. (2024). Simulation of Corner Solidification in a Cavity Using the Lattice Boltzmann Method. Fluids, 9(9), 195. https://doi.org/10.3390/fluids9090195