Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions
Abstract
1. Introduction
2. Background and Numerical Methodology
2.1. Description of the Studied Case
2.2. Governing Equations
2.3. k-ω SST Turbulence Model
3. Numerical Analyses
3.1. Generalities
3.2. Straight-Line Simulation
3.2.1. Geometry Module
3.2.2. Mesh Module
3.2.3. Setup Module
3.3. Medium-Speed Curve Simulation
3.3.1. Geometry Module
3.3.2. Mesh Module
3.3.3. Setup Module
4. Results and Discussion
4.1. Straight-Line Simulation
4.2. Medium-Speed Curve Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
u | Velocity field |
p | Pressure field |
ρ | Density |
μ | Dynamic viscosity |
Sij | Rate of the mean strain tensor |
Reynolds stress | |
k | Turbulent kinetic energy |
ω | Specific dissipation rate |
vt | Eddy viscosity |
β, β*, σk, σω, σω2 | Turbulence model closure coefficients |
F1, F2 | Blending functions |
V | Flow speed |
A | Reference area |
Cp | Pressure coefficient |
CDf | Downforce coefficient |
CD | Drag coefficient |
CY | Yaw coefficient |
Y+ | Non-dimensional wall distance |
References
- Næss, H.E. A History of Organizational Change: The Case of Fédération Internationale de l’Automobile (FIA), 1946–2020, 1st ed.; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 27–193. [Google Scholar]
- Hutton, R. Fédération Internationale de l’Automobile Centenary; Fédération Internationale de l’Automobile: Paris, France, 2004; pp. 113–161. [Google Scholar]
- Katz, J. Aerodynamics in motorsports. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 235, 324–338. [Google Scholar] [CrossRef]
- Dominy, R.G. Aerodynamics of Grand Prix cars. Proc. IMechE Part D J. Automob. Eng. 1992, 206, 267–274. [Google Scholar] [CrossRef]
- Agathangelou, B.; Gascoyne, M. Aerodynamic Design Considerations of a Formula 1 Racing Car; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1998. [Google Scholar]
- Mokhtar, W.A.; Lane, J. Racecar Front Wing Aerodynamics. SAE Int. J. Passeng. Cars—Mech. Syst. 2009, 1, 1392–1403. [Google Scholar] [CrossRef]
- Roberts, L.S.; Correia, J.; Finnis, M.V.; Knowles, K. Aerodynamic characteristic of a wing-and-flap configuration in ground effect and yaw. Proc. IMechE Part D J. Automob. Eng. 2016, 230, 841–854. [Google Scholar] [CrossRef]
- Castro, X.; Rana, Z.A. Aerodynamic and structural design of a 2022 Formula One front wing assembly. Fluids 2020, 5, 237–259. [Google Scholar] [CrossRef]
- Basso, M.; Cravero, C.; Marsano, D. Aerodynamic Effect of the Gurney Flap on the Front Wing of a F1 Car and Flow Interactions with Car Components. Energies 2021, 14, 2059. [Google Scholar] [CrossRef]
- Gere-Gurky, R.; Adhitya, M. Front Wing Aerodynamic Analysis of formula 1 Cars in 2018 and 2019 with Computational Fluid Dynamics (CFD). AIP Conf. Proc. 2024, 2710, 030006. [Google Scholar]
- Petrone, G.; Hill, C.; Biancolini, M. Track by Track Robust Optimization of a F1 Front Wing using Adjoint Solutions and Radical Basis Functions. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. Techniques for Aerodynamic Analysis of Cornering Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Patel, D.; Garmory, A.; Passmore, M. The Effect of Cornering on the Aerodynamics of a Multi-Element Wingin Ground Effect. Fluids 2021, 6, 3. [Google Scholar] [CrossRef]
- Ahlfeld, R.; Ciampoli, F.; Pietropaoli, M.; Pepper, N.; Montomoli, F. Data-driven uncertainty quantification for Formula 1: Diffuser, wing tip and front wing variations. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 1495–1506. [Google Scholar] [CrossRef]
- Fédération Internationale de l’Automobile. 2022 Formula One Technical Regulations, 2022 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2022; p. 13. [Google Scholar]
- Formula One TV Archive. Available online: https://f1tv.formula1.com/page/493/archive (accessed on 15 July 2024).
- Fédération Internationale de l’Automobile. 2021 Formula One Technical Regulations, 2021 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2021; p. 10. [Google Scholar]
- Fédération Internationale de l’Automobile. 2023 Formula One Technical Regulations, 2023 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2023; p. 7. [Google Scholar]
- Fédération Internationale de l’Automobile. 2024 Formula One Technical Regulations, 2024 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2024; p. 6. [Google Scholar]
- Minguez, M.; Pasquetti, R.; Serre, E. High-order large-eddy simulation of flow over the “Ahmed body” car model. Phys. Fluids 2008, 20, 095101. [Google Scholar] [CrossRef]
- Guilmineau, E.; Wackers, J. CFD Simulation with Automatic Mesh Refinement for the Flow around Simplifies Car Models. SAE Int. J. Passeng. Cars—Mech. Syst. 2012, 5, 580–591. [Google Scholar] [CrossRef]
- Guerrero, A.; Castilla, R. Aerodynamic Study of the Wake Effects on a Formula 1 Car. Energies 2020, 13, 5183. [Google Scholar] [CrossRef]
- Aultman, M.; Wang, Z.; Auza-Gutierrez, R.; Duan, L. Evaluation of CFD methodologies for prediction of flows around simplifies and complex automotive models. Comput. Fluids 2022, 236, 105297. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Afshari, F.; Zavaragh, H.G.; Sahin, B.; Grifoni, R.C.; Corvaro, F.; Marchetti, B.; Polonara, F. On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers. Math. Comput. Simul. 2018, 152, 51–68. [Google Scholar] [CrossRef]
- Ehirim, O.H.; Knowles, L.; Saddington, A.J. A Review of Ground-Effect Diffuser Aerodynamics. J. Fluids Eng. 2019, 141, 020801. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Li, D.; Wei, H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 2019, 137, 700–712. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. In Proceedings of the AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Fu, C.; Uddin, M.; Robinson, C.; Guzman, A.; Bailey, D. Turbulence Models and Model Closure Coefficients Sensitivity of NASCAR Racecar RANS CFD Aerodynamic Predictions. SAE Int. J. Passeng. Cars—Mech. Syst. 2017, 10, 330–344. [Google Scholar] [CrossRef]
- Zhang, C.; Bounds, C.P.; Foster, L.; Uddin, M. Turbulence Modeling Effects on the CFD Predictions of Flow over a Detailed Full-Scale Sedan Vehicle. Fluids 2019, 4, 148. [Google Scholar] [CrossRef]
- Laguna-Canales, A.S.; Urriolagoitia-Sosa, G.; Romero-Ángeles, B.; Martinez-Mondragon, M.; García-Laguna, M.A.; Correa-Corona, M.I.; Maya-Anaya, D.; Urriolagoitia-Calderón, G.M. Mechanical Design and Numerical Analysis of a New Front Wing for a Formula One Vehicle. Fluids 2023, 8, 210. [Google Scholar] [CrossRef]
- Desai, S.; Leylek, E.; Lo, C.-M.B.; Doddegowda, P.; Bychkovsky, A.; George, A.R. Experimental and CFD Comparative Case Studies of Aerodynaics of Race Car Wings, Underbodies with Wheels, and Motorcycle Flows; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Newbon, J.; Dominy, R.; Sims-Williams, D. CFD Investigation of the Effect of the Salient Flow Features in the Wake of a Generic Open-Wheel Race Car. SAE Int. J. Passeng. Cars—Mech. Syst. 2015, 8, 217–232. [Google Scholar] [CrossRef]
- Diasinos, S.; Barber, T.; Doig, G. Numerical analysis of the effect of the change in the ride height on the aerodynamic front wing–wheel interactions of a racing car. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 900–914. [Google Scholar] [CrossRef]
- Altinisik, A.; Kutukceken, E.; Umur, H. Experimental and Numerical Aerodynamic Analysis of a Passenger Car: Influence of the Blockage Ratio on Drag Coefficient. J. Fluids Eng. 2015, 137, 081104. [Google Scholar] [CrossRef]
- Jacuzzi, E.; Grandlund, K. Passive flow control for drag refuction in vehicle platoons. J. Wind Eng. Ind. Aerodyn. 2019, 189, 104–117. [Google Scholar] [CrossRef]
- Ljungskog, E.; Sebben, S.; Broniewicz, A. Inclusion of the physical wind tunnel in vehicle CFD simulations for improved prediction quality. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104055. [Google Scholar] [CrossRef]
- Simmonds, N.; Pitman, J.; Tsoutsanis, P.; Jenkins, K.; Gaylard, A.; Jansen, W. Complete Body Aerodynamic Study of three Vehicles; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Chode, K.K.; Viswanathan, H.; Chow, K.; Reese, H. Investigating the aerodynamic drag and noise characteristics of a standard squareback vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach. Phys. Fluids 2023, 35, 075148. [Google Scholar] [CrossRef]
- Choi, C.K.; Kwon, D.K. Wind tunnel blockage effects on aerodynamic behavior of bluff body. Wind Struct. 1998, 1, 351–364. [Google Scholar] [CrossRef]
- Almohammadi, K.M.; Ingham, D.B.; Ma, L.; Pourkashan, M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 2013, 58, 483–493. [Google Scholar] [CrossRef]
- Heide, J.; Karlsson, M.; Altimir, M. Numerical Analysis of Urea-SCR Sprays under Cross-Flow Conditions; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Soares, R.F.; de Souza, F.J. Influence of CFD Setup and Brief Analysis of Flow over a 3D Realistic Car Model; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,753,018 | 26,385,356 | ≈25.07 | 1.83998 | 0.52864 |
Medium | 15,023,893 | 47,932,793 | ≈10.75 | 1.83232 | 0.52121 |
Mid-Fine | 20,400,768 | 69,487,821 | ≈4.89 | 1.82796 | 0.51635 |
Fine | 25,130,644 | 90,042,577 | ≈1.85 | 1.82553 | 0.51408 |
Very Fine | 31,058,495 | 114,891,067 | ≈0.98 | 1.82522 | 0.51373 |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,977,923 | 26,951,057 | ≈26.32 | 1.79191 | 0.56634 |
Medium | 15,370,356 | 48,960,475 | ≈10.88 | 1.78177 | 0.55660 |
Mid-Fine | 20,871,291 | 70,977,640 | ≈5.12 | 1.77728 | 0.55171 |
Fine | 25,710,154 | 91,973,086 | ≈1.93 | 1.77555 | 0.55018 |
Very Fine | 31,774,703 | 117,354,332 | ≈1.05 | 1.77541 | 0.55011 |
Surface | Boundary Conditions | Details |
---|---|---|
Front Wing | No-slip Stationary wall | No-slip. No movement. |
Wheels | No-slip Rotational wall | No-slip. Angular velocity of 253.9682 rad/s. |
Inlet | Velocity inlet | 320 km/h airflow speed. Airflow normal to the surface. |
Turbulence Intensity | 5% for all simulations. | |
Outlet | Outlet pressure | Allows recirculation. |
Left Wall | Outlet pressure | Allows recirculation. |
Right Wall | Outlet pressure | Allows recirculation. |
Top Wall | Outlet pressure | Allows recirculation. |
Ground | No-slip Moving wall | No-slip. Translation speed of 320 km/h in the direction of the airflow. |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,761,892 | 26,396,027 | ≈25.02 | 1.48942 | 0.37425 |
Medium | 15,027,154 | 47,943,586 | ≈10.03 | 1.47944 | 0.36653 |
Mid-Fine | 20,405,851 | 69,498,722 | ≈4.68 | 1.47297 | 0.36284 |
Fine | 25,134,209 | 90,055,429 | ≈1.76 | 1.46858 | 0.36167 |
Very Fine | 31,063,557 | 114,905,047 | ≈0.88 | 1.46803 | 0.36121 |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,985,740 | 26,967,488 | ≈29.38 | 1.23141 | 0.35123 |
Medium | 15,378,158 | 48,976,504 | ≈12.17 | 1.21982 | 0.34417 |
Mid-Fine | 20,879,506 | 70,993,298 | ≈5.49 | 1.21249 | 0.33985 |
Fine | 25,718,472 | 91,990,356 | ≈1.95 | 1.20891 | 0.33840 |
Very Fine | 31,783,664 | 117,371,285 | ≈1.13 | 1.20845 | 0.33797 |
Surface | Boundary Conditions | Details |
---|---|---|
Front Wing | No-slip Stationary wall | No-slip. No movement. |
Right Wheel | No-slip Rotational wall | No-slip. Angular velocity of 139.2857 rad/s. |
Left Wheel | No-slip Rotational wall | No-slip. Angular velocity of 146.4285 rad/s. |
Inlet 1 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Inlet 2 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Inlet 3 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Outlet 1 | Outlet pressure | Allows recirculation. |
Outlet 2 | Outlet pressure | Allows recirculation. |
Outlet 3 | Outlet pressure | Allows recirculation. |
Ground | No-slip Moving wall | No-slip. Translation speed of 180 km/h in the direction of the airflow. |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −3.04048 | −0.45304 | −0.00556 |
Right Wheel | −0.07296 | −0.50102 | −0.17995 |
Left Wheel | −0.07105 | −0.49773 | −0.17257 |
Total Model | −1.82551 | −0.51386 | 0.00862 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −3.07373 | −0.46290 | −0.01564 |
Right Wheel | −0.04558 | −0.57790 | 0.19485 |
Left Wheel | −0.04671 | −0.57898 | −0.20196 |
Total Model | −1.77591 | −0.55030 | −0.01712 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −2.14751 | −0.24532 | 0.43623 |
Right Wheel | −0.51008 | −0.50094 | 0.33449 |
Left Wheel | −0.32285 | −0.38213 | 0.18847 |
Total Model | −1.47032 | −0.36295 | 0.64698 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −1.78301 | −0.22854 | 0.28161 |
Right Wheel | −0.50093 | −0.48658 | 0.32534 |
Left Wheel | −0.27912 | −0.35755 | 0.18175 |
Total Model | −1.20996 | −0.33924 | 0.50888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laguna-Canales, A.S.; Urriolagoitia-Sosa, G.; Romero-Ángeles, B.; Martinez-Mondragon, M.; García-Laguna, M.A.; Yparrea-Arreola, R.I.; Mireles-Hernández, J.; Carrasco-Hernández, F.; Urriolagoitia-Luna, A.; Urriolagoitia-Calderón, G.M. Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids 2024, 9, 232. https://doi.org/10.3390/fluids9100232
Laguna-Canales AS, Urriolagoitia-Sosa G, Romero-Ángeles B, Martinez-Mondragon M, García-Laguna MA, Yparrea-Arreola RI, Mireles-Hernández J, Carrasco-Hernández F, Urriolagoitia-Luna A, Urriolagoitia-Calderón GM. Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids. 2024; 9(10):232. https://doi.org/10.3390/fluids9100232
Chicago/Turabian StyleLaguna-Canales, Aldo Saul, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Miguel Martinez-Mondragon, Miguel Angel García-Laguna, Reyner Iván Yparrea-Arreola, Jonatan Mireles-Hernández, Francisco Carrasco-Hernández, Alejandro Urriolagoitia-Luna, and Guillermo Manuel Urriolagoitia-Calderón. 2024. "Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions" Fluids 9, no. 10: 232. https://doi.org/10.3390/fluids9100232
APA StyleLaguna-Canales, A. S., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Martinez-Mondragon, M., García-Laguna, M. A., Yparrea-Arreola, R. I., Mireles-Hernández, J., Carrasco-Hernández, F., Urriolagoitia-Luna, A., & Urriolagoitia-Calderón, G. M. (2024). Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids, 9(10), 232. https://doi.org/10.3390/fluids9100232