Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation
Abstract
1. Introduction
2. Methodology
2.1. Computational Domain
2.2. Computational Grid
2.3. Numerical Method
2.4. Boundary Conditions
2.5. Modeling Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menter, F.; Hüppe, A.; Matyushenko, A.; Kolmogorov, D. An Overview of Hybrid RANS–LES Models Developed for Industrial CFD. Appl. Sci. 2021, 11, 2459. [Google Scholar] [CrossRef]
- Han, Y.; Liu, M.; Tan, L. A review on the application of hybrid RANS-LES methods in hydraulic machinery. Ocean. Eng. 2024, 305, 117943. [Google Scholar] [CrossRef]
- Abdolahipour, S. Review on flow separation control: Effects of excitation frequency and momentum coefficient. Front. Mech. Eng. 2024, 10, 1380675. [Google Scholar] [CrossRef]
- Abdolahipour, S. Effects of low and high frequency actuation on aerodynamic performance of a supercritical airfoil. Front. Mech. Eng. 2023, 9, 1290074. [Google Scholar] [CrossRef]
- Abdolahipour, S.; Mani, M.; Shams, T.A. Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator. Flow Turbul. Combust. 2022, 109, 65. [Google Scholar] [CrossRef]
- Abdolahipour, S.; Mani, M.; Taleghani, A.S. Experimental Investigation of Flow Control on a High-Lift Wing Using Modulated Pulse Jet Vortex Generator. J. Aerosp. Eng. 2022, 35, 05022001. [Google Scholar] [CrossRef]
- Taleghani, A.S.; Hesabi, A.; Esfahanian, V. Numerical Study of Flow Control to Increase Vertical Tail Effectiveness of an Aircraft by Tangential Blowing. Int. J. Aeronaut. Space Sci. 2025, 26, 785. [Google Scholar] [CrossRef]
- Ho, H.H.; Shirinzad, A.; Essel, E.E.; Sullivan, P.E. Synthetic Jet Actuators for Active Flow Control: A Review. Fluids 2024, 9, 290. [Google Scholar] [CrossRef]
- Bhaduri, S.; Ray, A.; De, A.; Sugarno, M.I. Flow control in a confined supersonic cavity flow using subcavity. Front. Mech. Eng. 2024, 10, 1378433. [Google Scholar] [CrossRef]
- Gustafsson, E.; Andersson, M. Investigating the Effects of Labeled Data on Parameterized Physics-Informed Neural Networks for Surrogate Modeling: Design Optimization for Drag Reduction over a Forward-Facing Step. Fluids 2024, 9, 296. [Google Scholar] [CrossRef]
- MacDougall, C.Y.; Piomelli, U.; Ambrogi, F. Evaluation of Turbulence Models in Unsteady Separation. Fluids 2023, 8, 273. [Google Scholar] [CrossRef]
- Lu, W.; Chan, L.; Ooi, A. Spectral Analysis of Confined Cylinder Wakes. Fluids 2025, 10, 84. [Google Scholar] [CrossRef]
- Jovic, S.; Driver, D.M. Backward-Facing Step Measurements at Low Reynolds Number, Reh = 5000. NASA Technical Memorandum 108807. 1994. Available online: https://ntrs.nasa.gov/citations/19940028784 (accessed on 10 January 2025).
- Le, H.; Moin, P.; Kim, J. Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step. J. Fluid Mech. 1997, 330, 349–374. [Google Scholar] [CrossRef]
- Vogel, J.C.; Eaton, J.K. Combined heat transfer and fluid dynamic measurement downstream of a backward-facing step. J. Heat. Trans. 1985, 107, 922–927. [Google Scholar] [CrossRef]
- Breuer, M.; Peller, N.; Rapp, C.; Manhart, M. Flow over periodic hills—Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 2009, 38, 433–457. [Google Scholar] [CrossRef]
- Mellen, C.P.; Fröhlich, J.; Rodi, W. Large-eddy simulation of the flow over periodic hills. In Proceedings of the 16th IMACS World Congress, Lausanne, Switzerland, 21–25 August 2000. [Google Scholar]
- Fröhlich, J.; von Terzi, D. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 2008, 44, 349–377. [Google Scholar] [CrossRef]
- Jakirlić, S.; Jester-Zürker, R.; Tropea, C. 9th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling. ERCOFTAC Bulletin, No. 55. Darmstadt University of Technology. 2001, pp. 36–43. Available online: https://www.ercoftac.org/downloads/sig15/report_9th_sig15_workshop_darmstadt_ercoftac_bulletin_no55_2002.pdf (accessed on 10 January 2025).
- Manceau, R.; Bonnet, J.P.; Leschziner, M.A.; Menter, F. 10th Joint ERCOFTAC(SIG-15)/IAHR/QNET-CFD Workshop on Refined Flow Modeling. France: Université de Poitiers. 2002. Available online: https://www.ercoftac.org/downloads/bulletin-docs/ercoftac_bulletin_57.pdf (accessed on 10 January 2025).
- Mockett, C.; Fuchs, M.; Thiele, F. Progress in DES for wall-modelled LES of complex internal flows. Comput. Fluids 2012, 65, 44–55. [Google Scholar] [CrossRef]
- ERCOFTAC Website. Available online: http://www.ercoftac.org/ (accessed on 10 January 2025).
- Greenblatt, D.; Paschal, K.B.; Yao, C.-S.; Harris, J.; Schaeffler, N.W.; Washburn, A.E. A Separation Control CFD Validation Test Case, Part 1: Baseline and Steady Suction. In Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, USA, 28 June 2004; Available online: https://ntrs.nasa.gov/api/citations/20040084074/downloads/20040084074.pdf (accessed on 10 July 2024).
- Saric, S.; Jakirlic, S.; Djugum, A.; Tropea, C. Computational Analysis of a Locally Forced Flow over a Wall-Mounted Hump at High-Re Number. Int. J. Heat Fluid Flow 2006, 27, 707–720. [Google Scholar] [CrossRef]
- You, D.; Wang, M.; Moin, P. Large-Eddy Simulation of Flow over a Wall-Mounted Hump with Separation Control. AIAA J. 2006, 44, 2571–2577. [Google Scholar] [CrossRef]
- Davidson, L. The PANS k-e Model in a Zonal Hybrid RANS-LES Formulation. Int. J. Heat Fluid Flow 2014, 46, 112–126. [Google Scholar] [CrossRef]
- McConnell, M.R.; Knight, J.; Buick, J.M. Improved Delayed Detached-Eddy Simulation of Turbulent Vortex Shedding in Inert Flow over a Triangular Bluff Body. Fluids 2024, 9, 246. [Google Scholar] [CrossRef]
- Bentaleb, Y.; Lardeau, S.; Leschziner, M.A. Large-eddy simulation of turbulent boundary-layer separation from a rounded step. J. Turbul. 2012, 13, N4. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, S. An experimental investigation of turbulent flow separation control by an array of synthetic jets. In Proceedings of the 5th Flow Control Conference, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar] [CrossRef]
- Lardeau, S.; Leschziner, M.A. The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp. J. Fluid Mech. 2011, 683, 172. [Google Scholar] [CrossRef]
- Spalart, P.R.; Jou, W.-H.; Strelets, M.; Allmaras, S.R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. Rech. Aerosp. 1994, 1, 5–21. [Google Scholar]
- Travin, A.; Shur, M.; Strelets, M.; Spalart, P.R. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows; Fluid Mechanics and Its Applications; Friedrich, R., Rodi, W., Eds.; Springer: Dordrecht, The Netherlands, 2002; Volume 65. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal two-equation k–ω turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. AIAA Paper 2906. [Google Scholar] [CrossRef]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A.K. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Nikitin, N.V.; Nicoud, F.; Wasistho, B.; Squires, K.D.; Spalart, P.R. An approach to wall modeling in large-eddy simulations. Phys. Fluids 2000, 12, 1629–1632. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Gritskevich, M.S.; Garbaruk, A.V.; Schütze, J.; Menter, F.R. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
- Jarrin, N.; Benamadouche, S.; Laurence, D.; Prosser, R. A synthetic-eddy-method for generating inflow conditions for large large eddy simulations. Int. J. Heat Fluid Flow 2006, 27, 585–593. [Google Scholar] [CrossRef]
- Han, Y.; Ding, G.; He, Y.; Wu, J.; Le, J. Assessment of the IDDES method acting as wall-modeled LES in the simulation of spatially developing supersonic flat plate boundary layers. Eng. Appl. Comput. Fluid Mech. 2017, 12, 89–103. [Google Scholar] [CrossRef]
- Spalart, P.; Streett, C. Young-Person’s Guide to Detached-Eddy Simulation Grids. NASA Contractor Report 211032. 2001. Available online: https://ntrs.nasa.gov/api/citations/20010080473/downloads/20010080473.pdf (accessed on 2 May 2025).
- Gritskevich, M.; Garbaruk, A.; Menter, F. Fine-tuning of DDES and IDDES formulations to the k-ω shear stress transport model. Prog. Flight Phys. 2013, 5, 23–42. [Google Scholar] [CrossRef]
- Leonard, B.P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comp. Methods Appl. Mech. Eng. 1991, 88, 17–74. [Google Scholar] [CrossRef]
- Davidson, L. Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations. Adv. Appl. Fluid Mech. 2007, 1, 1–35. [Google Scholar]
- Ashton, N.; West, A.; Lardeau, S.; Revell, A. Assessment of RANS and DES methods for realistic automotive models. Comput. Fluids 2016, 128, 1–15. [Google Scholar] [CrossRef]
- Jones, C. Investigation of Flow Separation and its Effects on Aerodynamic Performance. Fluid Mech. Open Access 2023, 10, 271. [Google Scholar]
- Akhter, M.Z.; Omar, F.K. Review of Flow-Control Devices for Wind-Turbine Performance Enhancement. Energies 2021, 14, 1268. [Google Scholar] [CrossRef]
- Kundu, P. Effects of circular trailing edge with the dimple on flow separation of NACA S1210 hydrofoil. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 3600–3613. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Yang, C.; Han, G.; Zhao, S.; Lu, X. Numerical investigations of the separated transitional flow over compressor blades with different loading distributions. Aerosp. Sci. Technol. 2020, 106, 106113. [Google Scholar] [CrossRef]
- D’Ubaldo, O.; Ghelardi, S.; Rizzo, C.M. FSI simulations for sailing yacht high performance appendages. Ships Offshore Struct. 2020, 16, 200–215. [Google Scholar] [CrossRef]
- Poletto, R.; Craft, T.; Revell, A. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES. Flow Turbul. Combust. 2013, 91, 519–539. [Google Scholar] [CrossRef]
- Shur, M.; Spalart, P.; Strelets, M.; Travin, A. Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow Turbul. Combust. 2014, 93, 63–92. [Google Scholar] [CrossRef]
CFD Approach | Numerical Scheme | nx | ny | nz | ntotal | Xsep/H | Xatt/H | Lsep | E % |
---|---|---|---|---|---|---|---|---|---|
LES | Central | 768 | 160 | 192 | 23.6 × 106 | 0.83 | 4.36 | 3.53 | -- |
RANS | Upwind | 225 | 60 | 100 | 1.35 × 106 | 0.80 | 6.33 | 5.53 | 36.2 |
IDDES Coarse | Bounded Central | 225 | 60 | 100 | 1.35 × 106 | 0.66 | 5.4 | 4.74 | 25.5 |
IDDES Medium | Bounded Central | 320 | 90 | 100 | 2.88 × 106 | 0.69 | 5.05 | 4.36 | 19 |
IDDES Fine | Hybrid | 430 | 90 | 100 | 5.16 × 106 | 0.63 | 5.18 | 4.55 | 22.4 |
IDDES Fine | Bounded Central | 430 | 120 | 100 | 5.16 × 106 | 0.71 | 4.65 | 3.94 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McConnell, M.R.; Knight, J.; Buick, J.M. Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation. Fluids 2025, 10, 145. https://doi.org/10.3390/fluids10060145
McConnell MR, Knight J, Buick JM. Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation. Fluids. 2025; 10(6):145. https://doi.org/10.3390/fluids10060145
Chicago/Turabian StyleMcConnell, Matthew R., Jason Knight, and James M. Buick. 2025. "Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation" Fluids 10, no. 6: 145. https://doi.org/10.3390/fluids10060145
APA StyleMcConnell, M. R., Knight, J., & Buick, J. M. (2025). Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation. Fluids, 10(6), 145. https://doi.org/10.3390/fluids10060145