Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release
Abstract
1. Introduction
2. Results and Discussion
2.1. Hydrophilicity and Water Properties
2.2. Transport and Release Properties
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Homo- and Copolymers Hydrogels Based on NVF
4.3. Equilibrium Water Content
4.4. Differential Scanning Calorimetry (DSC)
- Cool from 25 °C to −70 °C
- Hold for 5 min at −70 °C
- Heat from −70 °C to −25 °C at 20 °C/min
- Heat from −25 °C to 25 °C at 10 °C/min
4.5. Contact Angle (CA)
4.6. Dye Uptake and Release
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Yakaew, S.; Luangpradikun, K.; Phimnuan, P.; Nuengchamnong, N.; Kamonsutthipaijit, N.; Rugmai, S.; Nakyai, W.; Ross, S.; Ungsurungsei, M.; Viyoch, J.; et al. Investigation into Poloxamer 188-Based Cubosomes as a Polymeric Carrier for Poor Water-Soluble Actives. J. Appl. Polym. Sci. 2022, 139, 51612. [Google Scholar] [CrossRef]
- Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated Nanoparticles for Biological and Pharmaceutical Applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419. [Google Scholar] [CrossRef]
- Kongprayoon, A.; Ross, G.; Limpeanchob, N.; Mahasaranon, S.; Punyodom, W.; Topham, P.D.; Ross, S. Bio-Derived and Biocompatible Poly(Lactic Acid)/Silk Sericin Nanogels and Their Incorporation within Poly(Lactide-Co-Glycolide) Electrospun Nanofibers. Polym. Chem. 2022, 13, 3343–3357. [Google Scholar] [CrossRef]
- Tuancharoensri, N.; Ross, G.M.; Kongprayoon, A.; Mahasaranon, S.; Pratumshat, S.; Viyoch, J.; Petrot, N.; Ruanthong, W.; Punyodom, W.; Topham, P.D.; et al. In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modelling. Polymers 2023, 15, 303. [Google Scholar] [CrossRef]
- Takemoto, Y.; Ajiro, H.; Asoh, T.A.; Akashi, M. Fabrication of Surface-Modified Hydrogels with Polyion Complex for Controlled Release. Chem. Mater. 2010, 22, 2923–2929. [Google Scholar] [CrossRef]
- Martinelli, A.; D’Ilario, L.; Francolini, I.; Piozzi, A. Water State Effect on Drug Release from an Antibiotic Loaded Polyurethane Matrix Containing Albumin Nanoparticles. Int. J. Pharm. 2011, 407, 197–206. [Google Scholar] [CrossRef]
- Katzhendler, I.; Mäder, K.; Friedman, M.; Friedman, M. Structure and hydration properties of hydroxypropyl methylcellulose matrices containing naproxen and naproxen sodium. Int. J. Pharm. 2000, 200, 161–179. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Zentner, G.M.; Cardinal, J.R.; Feijen, J.; Song, S.-Z. Progestin Permeation through Polymer Membranes IV: Mechanism of Steroid Permeation and Functional Group Contributions to Diffusion through Hydrogel Films. J. Pharm. Sci. 1979, 68, 970–975. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Duan, B.; Yu, Z.; Cheng, T.; Yu, L.; Liu, L.; Liu, K. Polymer-Water Interaction Enabled Intelligent Moisture Regulation in Hydrogels. J. Phys. Chem. Lett. 2021, 12, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Kröner, M.; Dupuis, J.; Winter, M. N-Vinylformamide—Syntheses and Chemistry of a Multifunctional Monomer. J. Prakt. Chem. 2000, 342, 115–131. [Google Scholar] [CrossRef]
- Xu, J.; Timmons, A.B.; Pelton, R. N-Vinylformamide as a Route to Amine-Containing Latexes and Microgels. Colloid Polym. Sci. 2004, 282, 256–263. [Google Scholar] [CrossRef]
- McAuley, K.B. The Chemistry and Physics of Polyacrylamide Gel Dosimeters: Why They Do and Don t Work. J. Phys. Conf. Ser. 2004, 3, 29–33. [Google Scholar] [CrossRef]
- Patel, S.K.; Rodriguez, F.; Cohen, C. Mechanical and swelling properties of polyacrylamide gel spheres. Polymer 2018, 30, 2198–2203. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Yang, J.; Chen, F.; Tang, Z.; Zhu, L.; Qin, G.; Dai, Y.; Chen, Q. Nanoclay Reinforced Self-Cross-Linking Poly(N-Hydroxyethyl Acrylamide) Hydrogels with Integrated High Performances. Macromol. Mater. Eng. 2018, 303, 1800295. [Google Scholar] [CrossRef]
- Ross, S.; Yooyod, M.; Limpeanchob, N.; Mahasaranon, S.; Suphrom, N.; Ross, G.M. Novel 3D Porous Semi-IPN Hydrogel Scaffolds of Silk Sericin and Poly(N-Hydroxyethyl Acrylamide) for Dermal Reconstruction. Express Polym. Lett. 2017, 11, 719–730. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, J. Synthesis and Characterization of Poly(N-Hydroxyethylacrylamide) for Long-Term Antifouling Ability. Biomacromolecules 2011, 12, 4071–4079. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, J.; Li, X.; Wu, J.; Chen, S.; Chen, Q.; Wang, Q.; Gong, X.; Li, L.; Zheng, J. Probing Structure-Antifouling Activity Relationships of Polyacrylamides and Polyacrylates. Biomaterials 2013, 34, 4714–4724. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels. Adv. Funct. Mater. 2017, 27, 1703086. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv. Mater. 2015, 27, 3566–3571. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, E.; Wiecinska, P.; Szafran, M. 2-Carboxyethyl Acrylate as a New Monomer Preventing Negative Effect of Oxygen Inhibition in Gelcasting of Alumina. Ceram. Int. 2016, 42, 13682–13688. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Vossoughi, J.; Sundberg, D.C. Partitioning of 2-Carboxyethyl Acrylate between Water and Vinyl Monomer Phases Applied to Emulsion Polymerization: Comparisons with Hydroxy Acrylate and Other Vinyl Acid Functional Monomers. Ind. Eng. Chem. Res. 2015, 54, 2447–2452. [Google Scholar] [CrossRef]
- Mahomed, A.; Tighe, B.J. The Design of Contact Lens Based Ocular Drug Delivery Systems for Single-Day Use: Part (I) Structural Factors, Surrogate Ophthalmic Dyes and Passive Diffusion Studies. J. Biomater. Appl. 2014, 29, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Mera, S.L.; Davies, J.D. Differential Congo Red Staining: The Effects of PH, Non-Aqueous Solvents and the Substrate. Histochem. J. 1984, 16, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Perioli, L.; Ambrogi, V.; Angelici, F.; Ricci, M.; Giovagnoli, S.; Capuccella, M.; Rossi, C. Development of Mucoadhesive Patches for Buccal Administration of Ibuprofen. J. Control. Release 2004, 99, 73–82. [Google Scholar] [CrossRef]
- Viyoch, J.; Sudedmark, T.; Srema, W.; Suwongkrua, W. Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int. J. Cosmet. Sci. 2005, 27, 89–99. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Pierõg, M.; Gierszewska-Druzyńska, M. Water State in Chemically and Physically Crosslinked Chitosan Membranes. J. Appl. Polym. Sci. 2013, 130, 1707–1715. [Google Scholar] [CrossRef]
- Li, W.; Xue, F.; Cheng, R. States of Water in Partially Swollen Poly(Vinyl Alcohol) Hydrogels. Polymer 2005, 46, 12026–12031. [Google Scholar] [CrossRef]
- Tranoudis, I.; Efron, N. Water Properties of Soft Contact Lens Materials. Contact Lens Anterior Eye 2004, 27, 193–208. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Main Monomer (%w/w) | Co-Monomer (%w/w) | CrossLinker (%w/w of Monomer) | Photo-Initiator (%w/w of Monomer) | |
---|---|---|---|---|---|
NVF | HEA | CEA | |||
100PNVF | 100 | - | - | 3 | 1 |
100PHEA | - | 100 | - | 3 | 1 |
100PCEA | - | - | 100 | 3 | 1 |
75PNVF25PHEA | 75 | 25 | - | 3 | 1 |
50PNVF50PHEA | 50 | 50 | - | 3 | 1 |
75PNVF25PCEA | 75 | - | 25 | 3 | 1 |
50PNVF50PCEA | 50 | - | 50 | 3 | 1 |
Composition | %EWC | Free to Bound Water Ratio |
---|---|---|
100PNVF | 94.57 | 16.7:1 |
100PHEA | 80.80 | 4.5:1 |
100PCEA | 52.42 | 1.3:1 |
75PNVF25PHEA | 85.80 | 7.4:1 |
50PNVF50PHEA | 83.55 | 5.3:1 |
75PNVF25PCEA | 80.78 | 3.9:1 |
50PNVF50PCEA | 71.71 | 2.1:1 |
Name | Dye Type | MW | pKa | Log p * |
---|---|---|---|---|
Orange II sodium salt | Anionic azo dye | 350.32 | 8.26, 11.4 | −0.95 |
Crystal violet | Cationic dye | 407.99 | 9.4 | 1.17 |
Congo red | neutral-ionic azo dye | 696.68 | 4.1 | 2.63 |
Composition | Linear Correlation (R2) | ||
---|---|---|---|
Zero-Order | First-Order | Higuchi | |
O2S released | |||
100PNVF | 0.8316 | 0.5845 | 0.9790 |
100PHEA | 0.8015 | 0.6420 | 0.9731 |
100PCEA | 0.9612 | 0.8070 | 0.9755 |
75PNVF25PHEA | 0.8706 | 0.6406 | 0.9844 |
50PNVF50PHEA | 0.7598 | 0.5858 | 0.9500 |
75PNVF25PCEA | 0.6560 | 0.5465 | 0.8962 |
50PNVF50PCEA | 0.8781 | 0.7097 | 0.9963 |
CV released | |||
100PNVF | 0.7525 | 0.4671 | 0.9491 |
100PHEA | 0.7649 | 0.5662 | 0.9538 |
100PCEA | 0.7830 | N/A | 0.8550 |
75PNVF25PHEA | 0.7209 | 0.5162 | 0.9354 |
50PNVF50PHEA | 0.9430 | 0.7167 | 0.9954 |
75PNVF25PCEA | 0.5175 | N/A | 0.7613 |
50PNVF50PCEA | 0.4982 | N/A | 0.6590 |
CR released | |||
100PNVF | 0.9063 | 0.8192 | 0.9835 |
100PHEA | 0.9316 | 0.9014 | 0.9869 |
100PCEA | 0.9639 | 0.7331 | 0.9394 |
75PNVF25PHEA | 0.9876 | 0.9112 | 0.9103 |
50PNVF50PHEA | 0.9184 | 0.8591 | 0.9976 |
75PNVF25PCEA | 0.9482 | 0.8732 | 0.9762 |
50PNVF50PCEA | 0.9448 | 0.9812 | 0.9866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yooyod, M.; Ross, S.; Phewchan, P.; Daengmankhong, J.; Pinthong, T.; Tuancharoensri, N.; Mahasaranon, S.; Viyoch, J.; Ross, G.M. Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels 2023, 9, 333. https://doi.org/10.3390/gels9040333
Yooyod M, Ross S, Phewchan P, Daengmankhong J, Pinthong T, Tuancharoensri N, Mahasaranon S, Viyoch J, Ross GM. Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels. 2023; 9(4):333. https://doi.org/10.3390/gels9040333
Chicago/Turabian StyleYooyod, Maytinee, Sukunya Ross, Premchirakorn Phewchan, Jinjutha Daengmankhong, Thanyaporn Pinthong, Nantaprapa Tuancharoensri, Sararat Mahasaranon, Jarupa Viyoch, and Gareth M. Ross. 2023. "Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release" Gels 9, no. 4: 333. https://doi.org/10.3390/gels9040333
APA StyleYooyod, M., Ross, S., Phewchan, P., Daengmankhong, J., Pinthong, T., Tuancharoensri, N., Mahasaranon, S., Viyoch, J., & Ross, G. M. (2023). Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels, 9(4), 333. https://doi.org/10.3390/gels9040333