Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. As-Prepared Samples
2.1.1. Differential Thermal Analysis
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.2. Thermally Treated Samples
2.2.1. X-ray Diffraction (XRD)
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.4. UV–Vis Spectroscopy
3. Conclusions
4. Materials and Methods
4.1. Synthesis
4.2. Methods of Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, Y.; Wang, H.; Xia, Y.; Zhang, G.; Wu, H.; Tao, G. Preparation of shape-controlled CeO2 nanocrystals via microwave-assisted method. Mater. Chem. Phys. 2010, 124, 541–546. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Li, Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466. [Google Scholar] [CrossRef]
- Kim, K.; Kim, E.; Kim, Y.; Park, K. Characteristics of ZnO Thin Film Transistors Fabricated Using a Microwave Sol-Gel Method. Korean J. Met. Mater. 2014, 52, 155–161. [Google Scholar] [CrossRef]
- Muzaffar, S.M.; Naeem, S.; Yaseen, S.; Riaz, S.; Kayani, Z.N.; Naseem, S. Microwave assisted tuning of optical and magnetic properties of zinc oxide nanorods—Efficient antibacterial and photocatalytic agent. J. Sol-Gel Sci. Technol. 2020, 95, 88–100. [Google Scholar] [CrossRef]
- Cao, G.; Wang, Y. Nanostructures and Nanomaterials: Synthesis, Properties and Applications, 2nd ed.; World Scientific Publishing Company: Singapore, 2010; p. 581. [Google Scholar]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Darshana, B.; Parikh, S.; Shah, M. Potential of Ag–Fe co-doped TiO2 nanocomposite for solar photocatalysis of high COD pharmaceutical effluent and influencing factors. Energy, Ecol. Environ. 2020, 5, 344–358. [Google Scholar] [CrossRef]
- Mendiola-Alvarez, S.Y.; Guzmán-Mar, J.L.; Turnes-Palomino, G.; Maya-Alejandro, F.; Hernández-Ramírez, A.; Hinojosa-Reyes, L. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol–gel method during MCPA degradation. Environ. Sci. Pollut. Res. 2016, 24, 12673–12682. [Google Scholar] [CrossRef]
- Hernández, R.; Hernández-Reséndiz, J.R.; Martínez-Chávez, A.; Velázquez-Castillo, R.; Escobar-Alarcón, L.; Esquivel, K. X-ray diffraction Rietveld structural analysis of Au–TiO2 powders synthesized by sol–gel route coupled to microwave and sonochemistry. J. Sol-Gel Sci. Technol. 2020, 95, 239–252. [Google Scholar] [CrossRef]
- Garadkar, K.M.; Kadam, A.N.; Park, J. Microwave-Assisted Sol–Gel Synthesis of Metal Oxide Nanomaterials. In Handbook of Sol-Gel Science and Technology Processing, Characterization and Applications, 2nd ed.; Springer: Cham, Switzerland, 2018; pp. 483–504. [Google Scholar] [CrossRef]
- Akbar, A.; Riaz, S.; Ashraf, R.; Naseem, S. Magnetic and magnetization properties of iron oxide thin films by microwave assisted sol–gel route. J. Sol-Gel Sci. Technol. 2014, 74, 320–328. [Google Scholar] [CrossRef]
- Assi, N.; Azar, P.A.; Tehrani, M.S.; Husain, S.W. Studies on photocatalytic performance and photodegradation kinetics of zinc oxide nanoparticles prepared by microwave-assisted sol–gel technique using ethylene glycol. J. Iran. Chem. Soc. 2016, 13, 1593–1602. [Google Scholar] [CrossRef]
- Parangusan, H.; Ponnamma, D.; Al-Maadeed, M.A.A. Effect of cerium doping on the optical and photocatalytic properties of ZnO nanoflowers. Bull. Mater. Sci. 2019, 42, 179. [Google Scholar] [CrossRef] [Green Version]
- Predoana, L.; Karajz, D.A.; Odhiambo, V.O.; Stanciu, I.; Szilágyi, I.M.; Pokol, G.; Zaharescu, M. Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures. In Microwave Heating—Electromagnetic Fields Causing Thermal and Non-Thermal Effects; Churyumov, G.I., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Dinelli, M.; Fabbri, E.; Bondioli, F. TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J. Sol-Gel Sci. Technol. 2011, 58, 463–469. [Google Scholar] [CrossRef]
- Giesz, P.; Celichowski, G.; Puchowicz, D.; Kamińska, I.; Grobelny, J.; Batory, D.; Cieślak, M. Microwave-assisted TiO2: Anatase formation on cotton and viscose fabric surfaces. Cellulose 2016, 23, 2143–2159. [Google Scholar] [CrossRef] [Green Version]
- De Greñu, B.D.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials 2020, 10, 1092. [Google Scholar] [CrossRef]
- Das, S.; Mukhopadhyay, A.K.; Datta, S.; Basu, D. Prospects of microwave processing: An overview. Bull. Mater. Sci. 2009, 32, 1–13. [Google Scholar] [CrossRef]
- Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chem. Int. Ed. 2012, 52, 1088–1094. [Google Scholar] [CrossRef]
- Kharade, R.R.; Patil, K.; Patil, P.; Bhosale, P. Novel microwave assisted sol–gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO3 thin films. Mater. Res. Bull. 2012, 47, 1787–1793. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 11312–11359. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W. Microwave synthesis of zeolite membranes: A review. J. Membr. Sci. 2008, 316, 3–17. [Google Scholar] [CrossRef]
- Yang, Y.C.; Song, C.; Wang, X.H.; Zeng, F.; Pan, F. Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films. Appl. Phys. Lett. 2008, 92, 012907. [Google Scholar] [CrossRef]
- Serra-Torrent, A.; Raj, P.D.; Abad, L.; Lopeandia-Fernandez, A.; Rodríguez-Viejo, J.; Sridharan, M. Vanadium-doped zinc oxide films for piezoelectric application. Nanomater. Energy 2015, 4, 109–117. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Rhouma, F.I.H.; Sanguino, P.; Guermazi, S.; Khirouni, K.; Vieira, M.T. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 2021, 32, 1536–1556. [Google Scholar] [CrossRef]
- Ozgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Assadi, M.H.N.; Zheng, R.K.; Li, S.; Ringer, S.R. First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 2012, 111, 113901. [Google Scholar] [CrossRef]
- Ali, H.S.; Alghamdi, A.S.; Murtaza, G.; Arif, H.S.; Naeem, W.; Farid, G.; Sharif, S.; Ashiq, M.G.B.; Shabbir, S.A. Facile Microemulsion Synthesis of Vanadium-Doped ZnO Nanoparticles to Analyze the Compositional, Optical, and Electronic Properties. Materials 2019, 12, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrabet, S.; Ihzaz, N.; Alshammari, M.; Khlifi, N.; Ba, M.; Bessadok, M.; Mejri, I.; El Mir, L. Structural, optical, and magnetic properties of V-doped ZnO nanoparticles and the onset of ferromagnetic order. J. Alloys Compd. 2022, 920, 165920. [Google Scholar] [CrossRef]
- El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel. Physica B 2008, 403, 1770–1774. [Google Scholar] [CrossRef]
- El Ghoul, J.; Barthou, C.; El Mir, L. Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel. Physica E 2012, 44, 1910–1915. [Google Scholar] [CrossRef]
- El Ghoul, J. Synthesis of vanadium doped ZnO nanoparticles by sol–gel method and its characterization. J. Mater. Sci. Mater. Electron. 2015, 27, 2159–2165. [Google Scholar] [CrossRef]
- Zargar, R.A.; Arora, M.; Ahmad, M.; Hafiz, A.K. Synthesis and Characterization of Vanadium Doped Zinc Oxide Thick Film for Chemical Sensor Application. J. Mater. 2015, 2015, 196545. [Google Scholar] [CrossRef] [Green Version]
- Abaira, R.; Buffagni, E.; Matoussi, A.; Khmakhem, H.; Ferrari, C. Synthesis and structural properties of vanadium doped zinc oxide. Superlattices Microstruct. 2015, 86, 438–445. [Google Scholar] [CrossRef]
- Maensiri, S.; Masingboon, C.; Promarak, V.; Seraphin, S. Synthesis and optical properties of nanocrystalline V-doped ZnO powders. Opt. Mater. 2007, 29, 1700–1705. [Google Scholar] [CrossRef]
- Zaharescu, M.; Anastasescu, M.; Stroescu, H.; Calderon-Moreno, J.M.; Apostol, N.; Preda, S.; Vladut, C.M.; Mihaiu, S.; Petrik, P.; Gartner, M. Comparative study of the dopants (Mn vs. V) influence on the properties of sol-gel ZnO films. J. Sol-Gel Sci. Technol. 2022, 104, 67–77. [Google Scholar] [CrossRef]
- Nowak, E.; Chłopocka, E.; Szybowicz, M.; Stachowiak, A.; Koczorowski, W.; Piechowiak, D.; Miklaszewski, A. The Influence of Aminoalcohols on ZnO Films’ Structure. Gels 2022, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Mocioiu, O.-C.; Atkinson, I.; Mocioiu, A.-M.; Neagu, S.; Ruginescu, R.; Mitran, R.-A.; Enache, M. Effect of ZnO on Properties of Gels for Heritage Objects Conservation. Gels 2021, 7, 251. [Google Scholar] [CrossRef]
- Mocioiu, O.C.; Vlăduț, C.M.; Atkinson, I.; Brătan, V.; Mocioiu, A.-M. The Influence of Gel Preparation and Thermal Treatment on the Optical Properties of SiO2-ZnO Powders Obtained by Sol–Gel Method. Gels 2022, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Vladut, C.M.; Mihaiu, S.; Mocioiu, O.C.; Atkinson, I.; Pandele-Cusu, J.; Anghel, E.M.; Calderon-Moreno, J.M.; Zaharescu, M. Thermal studies of Mn2+-doped ZnO powders formation by sol–gel method. J. Therm. Anal. 2018, 135, 2943–2951. [Google Scholar] [CrossRef]
- Vladut, C.M.; Mihaiu, S.; Szilágyi, I.M.; Kovács, T.N.; Atkinson, I.; Mocioiu, O.C.; Petrescu, S.; Zaharescu, M. Thermal investigations of the Sn–Zn–O gels obtained by sol–gel method. J. Therm. Anal. 2018, 136, 461–470. [Google Scholar] [CrossRef]
- Ingole, R.; Lokhande, B. Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 2016, 168, 95–98. [Google Scholar] [CrossRef]
- Suchorski, Y.; Rihko-Struckmann, L.; Klose, F.; Ye, Y.; Alandjiyska, M.; Sundmacher, K.; Weiss, H. Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Appl. Surf. Sci. 2005, 249, 231–237. [Google Scholar] [CrossRef]
- Chen, W.; Mai, L.; Peng, J.F.; Xu, Q.; Zhu, Q.Y. FTIR study of vanadium oxide nanotubes from lamellar structure. J. Mater. Sci. 2004, 39, 2625–2627. [Google Scholar] [CrossRef]
- Martínez-Aguilar, E.; Hmŏk, H.; Herrera, O.R.; Betancourt, I.; López-Juárez, R. Structural, magnetic and polar effects in R-doped ZnO (R = Co, Cr, Cu and V): Study of first principles. Mater. Chem. Phys. 2022, 279, 125733. [Google Scholar] [CrossRef]
- Manivannan, N.; Sycheva, A.; Kristály, F.; Muránszky, G.; Baumli, P. Structural differences and adsorption behaviour of alkaline metals doped zinc oxide nanoparticles. Sci. Rep. 2022, 12, 2292. [Google Scholar] [CrossRef] [PubMed]
- Pollert, E. The phase diagram ZnO-V2O5. Silikaty 1973, 17, 103–108. [Google Scholar]
- Kurzawa, M.; Rychlowska-Himmel, I.; Bosacka, M.; Blonska-Tabero, A. Reinvestigation of Phase Equilibria in the V2O5–ZnO System. J. Therm. Anal. 2001, 64, 1113–1119. [Google Scholar] [CrossRef]
- Hall, W.H. X-ray Line Broadening in Metals. Proc. Phys. Soc. Sect. A 1949, 62, 741–743. [Google Scholar] [CrossRef]
- Strokova, V.; Nelyubova, V.; Zhernovsky, I.; Masanin, O.; Usikov, S.; Babaev, V. Impact of Thermal Modification on Properties of Basalt Fiber for Concrete Reinforcement. In Proceedings of the 14th International Congress for Applied Mineralogy (ICAM2019), Belgorod, Russia, 23–27 September 2019; Glagolev, S., Ed.; Springer: Cham, Switzerland, 2019; pp. 389–392. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Liu, D.; Li, J.; Liu, C.; Fu, Q.; Ye, M. Synthesis and Raman analysis of 1D-ZnO nanostructure via vapor phase growth. Appl. Surf. Sci. 2005, 240, 175–179. [Google Scholar] [CrossRef]
- Karamat, S.; Rawat, R.; Lee, P.; Tan, T.; Ramanujan, R.; Zhou, W. Structural, compositional and magnetic characterization of bulk V2O5 doped ZnO system. Appl. Surf. Sci. 2009, 256, 2309–2314. [Google Scholar] [CrossRef]
- Lu, H.; Huang, M.; Shen, K.-S.; Zhang, J.; Xia, S.-Q.; Dong, C.; Xiong, Z.-G.; Zhu, T.; Wu, D.-P.; Zhang, B.; et al. Enhanced Diffuse Reflectance and Microstructure Properties of Hybrid Titanium Dioxide Nanocomposite Coating. Nanoscale Res. Lett. 2018, 13, 328. [Google Scholar] [CrossRef]
- Bafaqeer, A.; Tahir, M.; Amin, N.A.S. Synthesis of hierarchical ZnV2O6 nanosheets with enhanced activity and stability for visible light driven CO2 reduction to solar fuels. Appl. Surf. Sci. 2018, 435, 953–962. [Google Scholar] [CrossRef]
- Shamhari, N.M.; Wee, B.S.; Chin, S.F.; Kok, K.Y. Synthesis and Characterization of Zinc Oxide Nanoparticles with Small Particle Size Distribution. Acta Chim. Slov. 2018, 65, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ye, Z.; Xu, Z.; Zhao, B. Effect of the morphology on the optical properties of ZnO nanostructures. Phys. E: Low-dimensional Syst. Nanostructures 2009, 42, 116–119. [Google Scholar] [CrossRef]
- Goh, E.; Xu, X.; McCormick, P. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater. 2014, 78–79, 49–52. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.C. Structural, optical, dielectric and transport properties of ball mill synthesized ZnO–V2O5 nano-composites. J. Mol. Struct. 2020, 1215, 128261. [Google Scholar] [CrossRef]
Sample | Temperature Range, (°C) | Thermal Effects, (°C) | Mass Loss, (%) | Assignments | |
---|---|---|---|---|---|
Endo | Exo | ||||
MW | 25–100 | 79 | 7.1 | Physically absorbed water and solvent groups elimination | |
100–190 | 136 | 3.45 | Decomposition and elimination of organic species | ||
190–390 | 335 | 53 | Burning out organic residues | ||
390–550 | 404 478 | 10.3 | Elimination of the structural hydroxyl groups and transformation from amorphous to crystalline powder | ||
550–1000 | 807 | 0.3 | Crystallization | ||
∑ = 74.1 | |||||
SG | 25–100 | 75 | - | 7.65 | Physically absorbed water and solvent groups elimination |
100–190 | 140 | - | 11.72 | Decomposition, elimination of organic species and structural hydroxyl groups | |
190–390 | - | 325 | 41 | Elimination of the structural hydroxyl groups and burning out organic residues | |
390–550 | - | 470 | 9.94 | Elimination of the structural hydroxyl groups and amorphous powder crystallization | |
550–1000 | - | 805 | 0.4 | Crystallization | |
∑ = 70.7 |
Sample | Phase(s) | Lattice Constants | Crystallite Size L (nm) | |||
---|---|---|---|---|---|---|
a (Å) | c (Å) | α (°) | γ (°) | |||
MW@300 °C | ZnO | 3.2505(5) | 5.2090(8) | 90 | 120 | 19 |
Zn(C2H3O2)2 | traces | - | ||||
MW@500 °C | ZnO | 3.2504(3) | 5.2061(6) | 90 | 120 | 20 |
MW@650 °C | ZnO | 3.2505(3) | 5.2055(6) | 90 | 120 | 20 |
Zn3(VO4)2 | traces | |||||
SG@300 °C | ZnO | 3.2507(4) | 5.2087(6) | 90 | 120 | 18 |
Zn(C2H3O2)2 | traces | - | ||||
SG@500 °C | ZnO | 3.2504(3) | 5.2063(5) | 90 | 120 | 20 |
SG@650 °C | ZnO | 3.2502(3) | 5.2050(5) | 90 | 120 | 20 |
Zn3(VO4)2 | traces | - | ||||
ZnO (ICDD file 26-1451) | 3.2500 | 5.207 | 90 | 120 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlăduț, C.M.; Mocioiu, O.-C.; Preda, S.; Pandele-Cusu, J.; Bratan, V.; Trusca, R.; Zaharescu, M. Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method. Gels 2022, 8, 811. https://doi.org/10.3390/gels8120811
Vlăduț CM, Mocioiu O-C, Preda S, Pandele-Cusu J, Bratan V, Trusca R, Zaharescu M. Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method. Gels. 2022; 8(12):811. https://doi.org/10.3390/gels8120811
Chicago/Turabian StyleVlăduț, Cristina Maria, Oana-Cătălina Mocioiu, Silviu Preda, Jeanina Pandele-Cusu, Veronica Bratan, Roxana Trusca, and Maria Zaharescu. 2022. "Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method" Gels 8, no. 12: 811. https://doi.org/10.3390/gels8120811
APA StyleVlăduț, C. M., Mocioiu, O.-C., Preda, S., Pandele-Cusu, J., Bratan, V., Trusca, R., & Zaharescu, M. (2022). Effect of Thermal Treatment on the Structure and Morphology of Vanadium Doped ZnO Nanostructures Obtained by Microwave Assisted Sol–Gel Method. Gels, 8(12), 811. https://doi.org/10.3390/gels8120811