Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Seo, J.; Khan, S.B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef] [PubMed]
- Alderete, B.L.; da Silva, J.; Godoi, R.; da Silva, F.R.; Taffarel, S.R.; da Silva, L.P.; Garcia, A.L.H.; Júnior, H.M.; de Amorim, H.L.N.; Picada, J.N. Evaluation of Toxicity and Mutagenicity of a Synthetic Effluent Containing Azo Dye after Advanced Oxidation Process Treatment. Chemosphere 2021, 263, 128291. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052001. [Google Scholar] [CrossRef]
- Mota, I.G.C.; Neves, R.A.M.D.; Nascimento, S.S.D.C.; Maciel, B.L.L.; Morais, A.H.D.A.; Passos, T.S. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. Food Rev. Int. 2021, 1–16. [Google Scholar] [CrossRef]
- Rodríguez-López, M.I.; Pellicer, J.A.; Gómez-Morte, T.; Auñón, D.; Gómez-López, V.M.; Yáñez-Gascón, M.J.; Gil-Izquierdo, Á.; Cerón-Carrasco, J.P.; Crini, G.; Núñez-Delicado, E.; et al. Removal of an Azo Dye from Wastewater through the Use of Two Technologies: Magnetic Cyclodextrin Polymers and Pulsed Light. Int. J. Mol. Sci. 2022, 23, 8406. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; Makhfouk, M.E. Removal of Methylene Blue and Eriochrome Black T from Aqueous Solutions by Biosorption on Scolymus Hispanicus L.: Kinetics, Equilibrium and Thermodynamics. J. Taiwan Inst. Chem. Eng. 2011, 42, 320–326. [Google Scholar] [CrossRef]
- Khurana, I.; Saxena, A.; Bharti; Khurana, J.M.; Rai, P.K. Removal of Dyes Using Graphene-Based Composites: A Review. Water Air Soil Pollut. 2017, 228, 180. [Google Scholar] [CrossRef]
- Carneiro, P.A.; Umbuzeiro, G.A.; Oliveira, D.P.; Zanoni, M.V.B. Assessment of Water Contamination Caused by a Mutagenic Textile Effluent/Dyehouse Effluent Bearing Disperse Dyes. J. Hazard. Mater. 2010, 174, 694–699. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Rodrigues, F.H.A.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent Advances on Composite Hydrogels Designed for the Remediation of Dye-Contaminated Water and Wastewater: A Review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A. Physicochemical Technologies for Remediation of Chromium-Containing Waters and Wastewaters. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1111–1172. [Google Scholar] [CrossRef]
- Bharathi, K.S.; Ramesh, S.T. Removal of Dyes Using Agricultural Waste as Low-Cost Adsorbents: A Review. Appl. Water Sci. 2013, 3, 773–790. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Ji, J.; Cai, Y.-F.; Li, H.; Ran, R. Robust, Anti-Fatigue, and Self-Healing Graphene Oxide/Hydrophobically Associated Composite Hydrogels and Their Use as Recyclable Adsorbents for Dye Wastewater Treatment. J. Mater. Chem. A 2015, 3, 17445–17458. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene Oxide–Chitosan Composite Hydrogels as Broad-Spectrum Adsorbents for Water Purification. J. Mater. Chem. A 2013, 1, 1992–2001. [Google Scholar] [CrossRef]
- Wahid, F.; Zhong, C.; Wang, H.-S.; Hu, X.-H.; Chu, L.-Q. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers 2017, 9, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C 3 N 4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.; Chaudhary, J.; Kumar, V.; Thakur, V.K. Progress in Pectin Based Hydrogels for Water Purification: Trends and Challenges. J. Environ. Manag. 2019, 238, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Nangia, S.; Warkar, S.; Katyal, D. A Review on Environmental Applications of Chitosan Biopolymeric Hydrogel Based Composites. J. Macromol. Sci. Part A 2018, 55, 747–763. [Google Scholar] [CrossRef]
- Cathcart, N.; Murshid, N.; Campbell, P.; Kitaev, V. Selective Plasmonic Sensing and Highly Ordered Metallodielectrics via Encapsulation of Plasmonic Metal Nanoparticles with Metal Oxides. ACS Appl. Nano Mater. 2018, 1, 6514–6524. [Google Scholar] [CrossRef]
- Ningthoujam, R.; Singh, Y.D.; Babu, P.J.; Tirkey, A.; Pradhan, S.; Sarma, M. Nanocatalyst in Remediating Environmental Pollutants. Chem. Phys. Impact 2022, 4, 100064. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and Other Nanomaterials for Water Remediation from Organic Pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Yan, E.; Cao, M.; Ren, X.; Jiang, J.; An, Q.; Zhang, Z.; Gao, J.; Yang, X.; Zhang, D. Synthesis of Fe3O4 Nanoparticles Functionalized Polyvinyl Alcohol/Chitosan Magnetic Composite Hydrogel as an Efficient Adsorbent for Chromium (VI) Removal. J. Phys. Chem. Solids 2018, 121, 102–109. [Google Scholar] [CrossRef]
- Huang, J.; Liang, Y.; Jia, Z.; Chen, J.; Duan, L.; Liu, W.; Zhu, F.; Liang, Q.; Zhu, W.; You, W.; et al. Development of Magnetic Nanocomposite Hydrogel with Potential Cartilage Tissue Engineering. ACS Omega 2018, 3, 6182–6189. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, H. Shape Changing Hydrogels and Their Applications as Soft Actuators. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- Shankar, A.; Safronov, A.P.; Mikhnevich, E.A.; Beketov, I.V.; Kurlyandskaya, G.V. Ferrogels Based on Entrapped Metallic Iron Nanoparticles in a Polyacrylamide Network: Extended Derjaguin–Landau–Verwey–Overbeek Consideration, Interfacial Interactions and Magnetodeformation. Soft Matter 2017, 13, 3359–3372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Q.; Du, J. Recent Advances in Magnetic Hydrogels. Polym. Int. 2016, 65, 1365–1372. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, X.; Wang, Y.; Sun, S.; Zhao, C. A Recyclable and Regenerable Magnetic Chitosan Absorbent for Dye Uptake. Carbohydr. Polym. 2016, 150, 201–208. [Google Scholar] [CrossRef]
- Mouhtady, O.; Obeid, E.; Abu-samha, M.; Younes, K.; Murshid, N. Evaluation of the Adsorption Efficiency of Graphene Oxide Hydrogels in Wastewater Dye Removal: Application of Principal Component Analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef]
- Younes, K.; Moghrabi, A.; Moghnie, S.; Mouhtady, O.; Murshid, N.; Grasset, L. Assessment of the Efficiency of Chemical and Thermochemical Depolymerization Methods for Lignin Valorization: Principal Component Analysis (PCA) Approach. Polymers 2022, 14, 194. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. The Application of DFRC Method for the Analysis of Carbohydrates in a Peat Bog: Validation and Comparison with Conventional Chemical and Thermochemical Degradation Techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, M.; Chen, N.; Wu, Z.; Xu, N.; Tang, J.; Teng, Z. Uniform Magnetic Chitosan Microspheres with Radially Oriented Channels by Electrostatic Droplets Method for Efficient Removal of Acid Blue. J. Taiwan Inst. Chem. Eng. 2019, 104, 210–218. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Tang, K.; Zhang, K.; Zou, Z.; Gao, X. High-Strength Chitin Based Hydrogels Reinforced by Tannic Acid Functionalized Graphene for Congo Red Adsorption. J. Polym. Environ. 2020, 28, 984–994. [Google Scholar] [CrossRef]
- Nakhjiri, M.T.; Bagheri Marandi, G.; Kurdtabar, M. Adsorption of Methylene Blue, Brilliant Green and Rhodamine B from Aqueous Solution Using Collagen-g-p(AA-Co-NVP)/Fe3O4@SiO2 Nanocomposite Hydrogel. J. Polym. Environ. 2019, 27, 581–599. [Google Scholar] [CrossRef]
- Kangwansupamonkon, W.; Klaikaew, N.; Kiatkamjornwong, S. Green Synthesis of Titanium Dioxide/Acrylamide-Based Hydrogel Composite, Self Degradation and Environmental Applications. Eur. Polym. J. 2018, 107, 118–131. [Google Scholar] [CrossRef]
- Raj, A.; Bethi, B.; Sonawane, S.H. Investigation of Removal of Crystal Violet Dye Using Novel Hybrid Technique Involving Hydrodynamic Cavitation and Hydrogel. J. Environ. Chem. Eng. 2018, 6, 5311–5319. [Google Scholar] [CrossRef]
- Abdolahi, G.; Dargahi, M.; Ghasemzadeh, H. Synthesis of Starch-g-Poly (Acrylic Acid)/ZnSe Quantum Dot Nanocomposite Hydrogel, for Effective Dye Adsorption and Photocatalytic Degradation: Thermodynamic and Kinetic Studies. Cellulose 2020, 27, 6467–6483. [Google Scholar] [CrossRef]
- Ansari, T.M.; Ajmal, M.; Saeed, S.; Naeem, H.; Ahmad, H.B.; Mahmood, K.; Farooqi, Z.H. Synthesis and Characterization of Magnetic Poly(Acrylic Acid) Hydrogel Fabricated with Cobalt Nanoparticles for Adsorption and Catalytic Applications. J. Iran. Chem. Soc. 2019, 16, 2765–2776. [Google Scholar] [CrossRef]
- Halouane, F.; Oz, Y.; Meziane, D.; Barras, A.; Juraszek, J.; Singh, S.K.; Kurungot, S.; Shaw, P.K.; Sanyal, R.; Boukherroub, R.; et al. Magnetic Reduced Graphene Oxide Loaded Hydrogels: Highly Versatile and Efficient Adsorbents for Dyes and Selective Cr(VI) Ions Removal. J. Colloid Interface Sci. 2017, 507, 360–369. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Mosallanezhad, A. Facile and Green Rout to Prepare Magnetic and Chitosan-Crosslinked κ-Carrageenan Bionanocomposites for Removal of Methylene Blue. J. Water Process Eng. 2016, 10, 143–155. [Google Scholar] [CrossRef]
- Bée, A.; Obeid, L.; Mbolantenaina, R.; Welschbillig, M.; Talbot, D. Magnetic Chitosan/Clay Beads: A Magsorbent for the Removal of Cationic Dye from Water. J. Magn. Magn. Mater. 2017, 421, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Sengel, S.B.; Sahiner, N. Poly(Vinyl Phosphonic Acid) Nanogels with Tailored Properties and Their Use for Biomedical and Environmental Applications. Eur. Polym. J. 2016, 75, 264–275. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Hussain, S.A.; Al-Lohedan, H.A.; Ezzat, A.O.; Tawfeek, A.M.; Al-Otabi, T. In Situ Preparation of Magnetite/Cuprous Oxide/Poly(AMPS/NIPAm) for Removal of Methylene Blue from Waste Water. Polym. Int. 2018, 67, 471–480. [Google Scholar] [CrossRef]
- Jo, S.; Oh, Y.; Park, S.; Kan, E.; Lee, S.H. Cellulose/Carrageenan/TiO2 Nanocomposite for Adsorption and Photodegradation of Cationic Dye. Biotechnol. Bioprocess Eng. 2017, 22, 734–738. [Google Scholar] [CrossRef]
- Karthiga Devi, G.; Senthil Kumar, P.; Sathish Kumar, K. Green Synthesis of Novel Silver Nanocomposite Hydrogel Based on Sodium Alginate as an Efficient Biosorbent for the Dye Wastewater Treatment: Prediction of Isotherm and Kinetic Parameters. Desalination Water Treat. 2016, 57, 27686–27699. [Google Scholar] [CrossRef]
- Gong, G.; Zhang, F.; Cheng, Z.; Zhou, L. Facile Fabrication of Magnetic Carboxymethyl Starch/Poly(Vinyl Alcohol) Composite Gel for Methylene Blue Removal. Int. J. Biol. Macromol. 2015, 81, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dai, Y.; Wu, Y.; Lu, G.; Cao, Z.; Cheng, J.; Wang, K.; Yang, H.; Xia, Y.; Wen, X.; et al. Facile Preparation of Polyacrylamide/Chitosan/Fe3O4 Composite Hydrogels for Effective Removal of Methylene Blue from Aqueous Solution. Carbohydr. Polym. 2020, 234, 115882. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Huang, Y.; Zhang, Y.; Zhang, H.; Huang, H. Green and Facile Fabrication of Pineapple Peel Cellulose/Magnetic Diatomite Hydrogels in Ionic Liquid for Methylene Blue Adsorption. Cellulose 2019, 26, 3825–3844. [Google Scholar] [CrossRef]
- Song, Y.; Duan, Y.; Zhou, L. Multi-Carboxylic Magnetic Gel from Hyperbranched Polyglycerol Formed by Thiol-Ene Photopolymerization for Efficient and Selective Adsorption of Methylene Blue and Methyl Violet Dyes. J. Colloid Interface Sci. 2018, 529, 139–149. [Google Scholar] [CrossRef]
- Naseer, F.; Ajmal, M.; Bibi, F.; Farooqi, Z.H.; Siddiq, M. Copper and Cobalt Nanoparticles Containing Poly(Acrylic Acid-Co-Acrylamide) Hydrogel Composites for Rapid Reduction of 4-Nitrophenol and Fast Removal of Malachite Green from Aqueous Medium. Polym. Compos. 2018, 39, 3187–3198. [Google Scholar] [CrossRef]
- Thakur, S.; Arotiba, O. Synthesis, Characterization and Adsorption Studies of an Acrylic Acid-Grafted Sodium Alginate-Based TiO2 Hydrogel Nanocomposite. Adsorpt. Sci. Technol. 2018, 36, 458–477. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Wang, Y.; Han, X.; Chen, D. The Adsorption Behaviors of the Multiple Stimulus-Responsive Poly(Ethylene Glycol)-Based Hydrogels for Removal of RhB Dye. J. Appl. Polym. Sci. 2015, 132, 42244. [Google Scholar] [CrossRef]
- Bardajee, G.R.; Azimi, S.; Sharifi, M.B.A.S. Ultrasonically Accelerated Synthesis of Silver Nanocomposite Hydrogel Based on Salep Biopolymer: Application in Rhodamine Dye Adsorption. Iran. Polym. J. 2016, 25, 1047–1063. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Analysis of Molecular Proxies of a Peat Core by Thermally Assisted Hydrolysis and Methylation-Gas Chromatography Combined with Multivariate Analysis. J. Anal. Appl. Pyrolysis 2017, 124, 726–732. [Google Scholar] [CrossRef]
- Korichi, W.; Ibrahimi, M.; Loqman, S.; Ouhdouch, Y.; Younes, K.; Lemée, L. Assessment of Actinobacteria Use in the Elimination of Multidrug-Resistant Bacteria of Ibn Tofail Hospital Wastewater (Marrakesh, Morocco): A Chemometric Data Analysis Approach. Environ. Sci. Pollut. Res. 2021, 28, 26840–26848. [Google Scholar] [CrossRef] [PubMed]
MONPs Composite Hydrogel | Composite # | MONP% | D | ET | qm | pH | Ref |
---|---|---|---|---|---|---|---|
CTS@ Fe3O4 | 1 | - | 1 | 400 | 142 | 7 | [32] |
ALG@Yttrium | 2 | - | 2 | 30 | 1087 | 6 | [33] |
Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 | 3 | - | 0.05 | 150 | 199 | 7 | [34] |
PAAm-co-AAc/TiO2 | 4 | 20 | 1 | - | 2.2 | - | [35] |
PAAm/TiO2 | 5 | 0.5 | - | 600 | 132 | 6.5 | [36] |
St-g-PAAc/ZnSe | 6 | - | 1 | 30 | 189 | 6 | [37] |
PAAc/Co3O4 | 7 | - | 0.5 | 30 | 837 | - | [38] |
PEGDMA-rGO/Fe3O4@cellulose | 8 | 30 | 2.5 | 720 | 112 | 7.4 | [39] |
CTS/Fe3O4@κ-CARR | 9 | - | 2 | 30 | 123 | 5.5 | [40] |
CTS/MMT/γFe2O3 | 10 | - | 100 | 180 | 82 | - | [41] |
Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 | 11 | - | 0.05 | 125 | 202 | 7 | [34] |
PVPA/Fe3O4@SiO2 | 12 | 0 | 1.4 | - | 14 | - | [42] |
AMPS/NIPAAm/Fe3O4 | 13 | 0 | 1 | 10 | 833 | 7 | [43] |
AMPS/NIPAAm/Cu2O | 14 | 0 | 1 | 35 | 341 | 7 | [43] |
AMPS/NIPAM/Fe3O4·Cu2O | 15 | 0 | 1 | 5 | 746 | 7 | [43] |
Cellulose/κ-CARR/TiO2 | 16 | 0.7 | 115 | 7 | [44] | ||
ALG/AgNPs | 17 | 1 | 120 | 214 | - | [45] | |
CMSt/PVA/Fe3O4 | 18 | 10 | 600 | 24 | 7 | [46] | |
PAAm/CTS/Fe3O4 | 19 | 0.1 | 125 | 1603 | 7 | [47] | |
Cellulose/Fe3O4-diatomite | 20 | 0.7 | 30 | 102 | 10 | [48] | |
HPG@Fe3O4 | 21 | 4 | 30 | 459 | 8 | [49] | |
PAAc-co-AAm/Co3O4·Cu2O | 22 | 0.5 | 40 | 238 | 7 | [50] | |
PAAc-g-ALG/TiO2 | 23 | 0.6 | 1157 | 7 | [51] | ||
HPG@Fe3O4 | 24 | 4 | 30 | 400 | 7 | [49] | |
PMOA/ATP/Fe3O4 | 25 | 3 | 400 | 1.7 | 4.6 | [52] | |
PAAc-g-salep/AgNPs | 26 | 1 | 20 | 93 | 2 | [53] | |
PVPA/Fe3O4@SiO2 | 27 | 1.4 | 16 | - | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murshid, N.; Mouhtady, O.; Abu-samha, M.; Obeid, E.; Kharboutly, Y.; Chaouk, H.; Halwani, J.; Younes, K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022, 8, 702. https://doi.org/10.3390/gels8110702
Murshid N, Mouhtady O, Abu-samha M, Obeid E, Kharboutly Y, Chaouk H, Halwani J, Younes K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels. 2022; 8(11):702. https://doi.org/10.3390/gels8110702
Chicago/Turabian StyleMurshid, Nimer, Omar Mouhtady, Mahmoud Abu-samha, Emil Obeid, Yahya Kharboutly, Hamdi Chaouk, Jalal Halwani, and Khaled Younes. 2022. "Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis" Gels 8, no. 11: 702. https://doi.org/10.3390/gels8110702
APA StyleMurshid, N., Mouhtady, O., Abu-samha, M., Obeid, E., Kharboutly, Y., Chaouk, H., Halwani, J., & Younes, K. (2022). Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels, 8(11), 702. https://doi.org/10.3390/gels8110702