Marine Polymer-Gels’ Relevance in the Atmosphere as Aerosols and CCN
Abstract
:1. Introduction
2. Background: Marine Gel Relevance as Aerosols
3. Composition and Controls on Microgel Formation and Bioreactivity
4. DOC and Gels: Assembly of Biopolymers
5. Microgel Size and Stability: Dependency on Polymer Length
6. Volume Phase Transition: Effects of pH, DMS, and DMSP on Gel Dynamics
7. Summary of Present Knowledge: Marine Polymer Gels as CCN in the Central Arctic Ocean
8. Conclusions: Gels as a Source of CCN
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hansell, D.A.; Carlson, C.A.; Repeta, D.J.; Schlitzer, R. Dissolved organic matter in the ocean. A controversy stimulates new insights. Oceanography 2009, 22, 52–61. [Google Scholar] [CrossRef]
- Siegenthaler, U.; Sarmiento, J.L. Atmospheric carbon dioxide and the ocean. Nature 1993, 365, 119–125. [Google Scholar] [CrossRef]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Repeta, D.J. Chemical Characterization and Cycling of Dissolved Organic Matter. In Biogeochemistry of Marine Dissolved Organic Matter; Hansell, D.A., Carlson, C.A., Eds.; Elsevier: London, UK, 2015; p. 693. [Google Scholar]
- Chin, W.-C.; Orellana, M.V.; Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998, 391, 568–572. [Google Scholar] [CrossRef]
- Ding, Y.-X.; Chin, W.-C.; Rodriguez, A.; Hung, C.-C.; Santschi, H.P.; Verdugo, P. Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Mar. Chem. 2008, 112, 11–19. [Google Scholar] [CrossRef]
- Orellana, M.V.; Matrai, P.A.; Leck, C.; Rauschenberg, C.D.; Lee, A.M.; Coz, E. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 13612–13617. [Google Scholar] [CrossRef] [Green Version]
- Radić, T.M.; Svetličić, V.; Žutić, V.; Boulgaropoulos, B. Seawater at the nanoscale: Marine gel imaged by atomic force microscopy. J. Mol. Recognit. 2011, 24, 397–405. [Google Scholar] [CrossRef]
- Verdugo, P. Marine Microgels. Ann. Rev. Mar. Sci. 2012, 4, 375–400. [Google Scholar] [CrossRef]
- Verdugo, P. Marine Biopolymer Dynamics, Gel Formation, and Carbon Cycling in the Ocean. Gels 2021, 7, 136. [Google Scholar] [CrossRef]
- Orellana, M.V.; Leck, C. Marine Microgels. In Biogeochemistry of Marine Dissolved Organic Matter, 2nd ed.; Hansell, D.A., Carlson, C.A., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 451–480. [Google Scholar]
- Verdugo, P.; Santschi, P.H. Polymer dynamics of DOC networks and gel formation in seawater. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1486–1493. [Google Scholar] [CrossRef]
- Bigg, E.K.; Leck, C. The composition of fragments of bubbles bursting at the ocean surface. J. Geophys. Res. 2008, 113, D11209. [Google Scholar] [CrossRef]
- Matrai, P.A.; Tranvik, L.; Leck, C.; Knulst, J. Are high Arctic microlayers a potential source of aerosol organic precursors? Mar. Chem. 2008, 108, 109–122. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E.K. Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B Chem. Phys. Meteorol. 2005, 57, 305–316. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Ceburnis, D.; Martucci, G.; Bialek, J.; Monahan, C.; Rinaldi, M.; Facchini, M.C.; Berresheim, H.; Worsnop, D.R.; O’Dowd, C. Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity. Geophys. Res. Lett. 2011, 38, L21806. [Google Scholar] [CrossRef]
- Deng, C.; Brooks, S.D.; Vidaurre, G.; Thornton, D.C.O. Using Raman Microspectroscopy to Determine Chemical Composition and Mixing State of Airborne Marine Aerosols over the Pacific Ocean. Aerosol Sci. Technol. 2014, 48, 193–206. [Google Scholar] [CrossRef]
- Russell, L.M.; Hawkins, L.N.; Frossard, A.A.; Quinn, P.K.; Bates, T.S. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl. Acad. Sci. USA 2010, 107, 6652–6657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, P.K.; Collins, D.B.; Grassian, V.H.; Prather, K.A.; Bates, T.S. Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chem. Rev. 2015, 115, 4383–4399. [Google Scholar] [CrossRef]
- Leck, C.; Svensson, E. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer. Atmos. Chem. Phys. 2015, 15, 2545–2568. [Google Scholar] [CrossRef] [Green Version]
- Leck, C.; Gao, G.; Rad, M.F.; Nilsson, U. Size resolved airborne particulate polysaccharides in summer high. Atmos. Chem. Phys. Discuss. 2013, 13, 9801–9847. [Google Scholar]
- O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Bialek, J.; Stengel, D.B.; Zacharias, M.; Nitschke, U.; Connan, S.; Rinaldi, M.; Fuzzi, S.; et al. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco? Sci. Rep. 2015, 5, 14883. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Cambridge, UK; New York, NY, USA, 2013; p. 30. [Google Scholar]
- IPCC. IPCC Presents Findings of the Special Report on Global Warming of 1.5 °C at Event to Discuss Viet Nam’s Response to Climate Change; Press Release: Geneva, Switzeland, 2018.
- Twomey, S. Aerosols, clouds and radiation. Atmos. Environ. Part A Gen. Top. 1991, 25, 2435–2442. [Google Scholar] [CrossRef]
- Mauritsen, T.; Sedlar, J.; Tjernström, M.; Leck, C.; Martin, M.; Shupe, M.; Sjogren, S.; Sierau, B.; Persson, P.O.G.; Brooks, I.M.; et al. An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys. 2011, 11, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Bigg, E.K.; Leck, C. Cloud-active particles over the central Arctic Ocean. J. Geophys. Res. Atmos. 2001, 106, 32155–32166. [Google Scholar] [CrossRef]
- Leck, C.; Persson, C. Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer during summer and autumn. Tellus Ser. B Chem. Phys. Meteorol. 1996, 48B, 272–299. [Google Scholar] [CrossRef]
- Chang, R.Y.W.; Leck, C.; Graus, M.; Müller, M.; Paatero, J.; Burkhart, J.F.; Stohl, A.; Orr, L.H.; Hayden, K.; Li, S.M.; et al. Aerosol composition and sources in the central Arctic Ocean during ASCOS. Atmos. Chem. Phys. 2011, 11, 10619–10636. [Google Scholar] [CrossRef] [Green Version]
- Leck, C.; Tjernström, M.; Matrai, P.; Swietlicki, E.; Bigg, K. Can marine micro-organisms influence melting of the Arctic pack-ice? EOS Trans. AGU 2004, 85, 25–32. [Google Scholar] [CrossRef]
- Duce, R.A.; Hoffman, E.J. Chemical fractionation at the air/sea interface. Ann. Rev. Earth Planet. Sci. 1976, 4, 187–228. [Google Scholar] [CrossRef]
- Facchini, M.C.; Decesari, S.; Rinaldi, M.; Carbone, C.; Finessi, E.; Mircea, M.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Ceburnis, D.; et al. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 2008, 42, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Gaston, C.J.; Furutani, H.; Guazzotti, S.A.; Coffee, K.R.; Bates, T.S.; Quinn, P.K.; Aluwihare, L.I.; Mitchell, B.G.; Prather, K.A. Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. J. Geophys. Res. Atmos. 2011, 116, D18310. [Google Scholar] [CrossRef]
- Keene, W.C.; Maring, H.; Maben, J.R.; Kieber, D.J.; Pszenny, A.A.P.; Dahl, E.E.; Izaguirre, M.A.; Davis, A.J.; Long, M.S.; Zhou, X.; et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 2007, 112, D21202. [Google Scholar] [CrossRef] [Green Version]
- Leck, C.; Bigg, E.K. Source and evolution of the marine aerosol—A new perspective. Geophys. Res. Lett. 2005, 32, L19803. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E.K. New Particle Formation of Marine Biological Origin. Aerosol Sci. Technol. 2010, 44, 570–577. [Google Scholar] [CrossRef]
- Middlebrook, A.M.; DMurphy, M.; Thomson, D.S. Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos. 1998, 103, 16475–16483. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; Facchini, M.C.; Cavalli, F.; Ceburnis, D.; Mircea, M.; Decesari, S.; Fuzzi, S.; Yoon, Y.J.; Putaud, J.-P. Biogenically driven organic contribution to marine aerosol. Nature 2004, 431, 676–680. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Ceburnis, D.; Cavalli, F.; Jourdan, O.; Putaud, J.P.; Facchini, M.C.; Decesari, S.; Fuzzi, S.; Sellegri, K.; Jennings, S.G.; et al. Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. Atmos. 2007, 112, D04206. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.K.; Bates, T.S.; Schulz, K.S.; Coffman, D.J.; Frossard, A.A.; Russell, L.M.; Keene, W.C.; Kieber, D.J. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 2014, 7, 228–232. [Google Scholar] [CrossRef]
- Dueker, M.E.; O’Mullan, G.D.; Weathers, K.C.; Juhl, A.R.; Uriarte, M. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences 2012, 9, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Leck, C.; Norman, M.; Bigg, E.K.; Hillamo, R. Chemical composition and sources of the high Arctic aerosol relevant for cloud formation. J. Geophys. Res. 2002, 107, 4135. [Google Scholar] [CrossRef]
- Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E.K. Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus B 2008, 60, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Bigg, E.K.; Leck, C.; Tranvik, L. Particulates of the surface microlayer of open water in the central Arctic Ocean in summer. Mar. Chem. 2004, 91, 131–141. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Passow, U.; Logan, E.B. The abundance and significance of a class of large, transparent organic particles in the oceans. Deep-Sea Res. 1993, 40, 1131–1140. [Google Scholar] [CrossRef]
- Passow, U.; Alldredge, A.L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) in the ocean. Limnol. Oceanogr. 1995, 40, 1326–1335. [Google Scholar] [CrossRef]
- Mopper, K.; Zhou, J.; Ramana, K.S.; Passow, U.; Dam, H.G.; Drapeau, D.T. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Res. Part II Top. Stud. Oceanogr. 1995, 42, 47–73. [Google Scholar] [CrossRef]
- Hung, C.-C.; Tang, D.; Warnken, K.; Santschi, P.H. Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar. Chem. 2001, 73, 305–318. [Google Scholar] [CrossRef]
- Hung, C.-C.; Guo, L.; Schultz, G.E.; Pinckney, J.L.; Santschi, P.H. Production and flux of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 2003, 17, 1055. [Google Scholar] [CrossRef]
- Cunliffe, M.; Engel, A.; Frka, S.; Gašparović, B.; Guitart, C.; Murrell, J.C.; Salter, M.; Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 2013, 109, 104–116. [Google Scholar] [CrossRef]
- Aller, J.Y.; Radway, J.C.; Kilthau, W.P.; Bothe, D.W.; Wilson, T.W.; Vaillancourt, R.D.; Quinn, P.K.; Coffman, D.J.; Murray, B.J.; Knopf, D.A. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol. Atmos. Environ. 2017, 154, 331–347. [Google Scholar] [CrossRef] [Green Version]
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 1987, 326, 655–661. [Google Scholar] [CrossRef]
- Leck, C.; Persson, C. The central Arctic as a source of dimethyl sulfide-Seasonal variability in relation to biological activity. Tellus B 1996, 48, 156–177. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E.K. A modified aerosol–cloud–climate feedback hypothesis. Environm. Chem. 2007, 4, 400–403. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E. Aerosol production over remote marine areas—A new route. Geophys. Res. Lett. 1999, 23, 23. [Google Scholar] [CrossRef]
- Tjernstrom, M.; Leck, C.; Birch, C.E.; Brooks, B.J.; Brooks, I.M.; Bäcklin, L.; Chang, R.Y.-W.; Granath, E.; Graus, M.; Hansel, A.; et al. The Arctic Summer Cloud-Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys. Discuss. 2013, 13, 13541–13652. [Google Scholar]
- Karl, M.; Leck, C.; Coz, E.; Heintzenberg, J. Marine nanogels as a source of atmospheric nanoparticles in the high Arctic. Geophys. Res. Lett. 2013, 40, 3738–3743. [Google Scholar] [CrossRef]
- Orellana, M.V.; Verdugo, P. Ultraviolet radiation blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnol. Oceanogr. 2003, 48, 1618–1623. [Google Scholar] [CrossRef] [Green Version]
- Orellana, M.V.; Matrai, P.A.; Janer, M.; Rauschenberg, C. DMSP storage in Phaeocystis secretory vesicles. J. Phycol. 2011, 47, 112–117. [Google Scholar] [CrossRef]
- Martin, M.; Chang, R.Y.W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J.P.D.; Leck, C.; Lohmann, U. Cloud condensation nuclei closure study on summer arctic aerosol. Atmos. Chem. Phys. 2011, 11, 11335–11350. [Google Scholar] [CrossRef] [Green Version]
- Prisle, N.L.; Raatikainen, T.; Laaksonen, A.; Bilde, M. Surfactants in cloud droplet activation: Mixed organic-inorganic particles. Atmos. Chem. Phys. 2010, 10, 5663–5683. [Google Scholar] [CrossRef] [Green Version]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 2017, 546, 637–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forestieri, S.D.; Staudt, S.M.; Kuborn, T.M.; Faber, K.; Ruehl, C.R.; Bertram, T.H.; Cappa, C.D. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmos. Chem. Phys. 2018, 18, 10985–11005. [Google Scholar] [CrossRef] [Green Version]
- Sierau, B.; Chang, R.Y.W.; Leck, C.; Paatero, J.; Lohmann, U. Single-particle characterization of the high-Arctic summertime aerosol. Atmos. Chem. Phys. 2014, 14, 7409–7430. [Google Scholar] [CrossRef] [Green Version]
- Hamacher-Barth, E.; Leck, C.; Jansson, K. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008. Atmos. Chem. Phys. 2016, 16, 6577–6593. [Google Scholar] [CrossRef] [Green Version]
- Baccarini, A.; Karlsson, L.; Dommen, J.; Duplessis, P.; Vüllers, J.; Brooks, I.M.; Saiz-Lopez, A.; Salter, M.; Tjernström, M.; Baltensperger, U.; et al. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nat. Commun. 2020, 11, 4924. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.L.; Manley, S.L. Release of reactive bromine and iodine from diatoms and its possible role in halogen transfer in polar and tropical oceans. Limnol. Oceanogr. 2009, 54, 812–822. [Google Scholar] [CrossRef]
- Xu, C.; EMiller, J.; Zhang, S.; Li, H.-P.; Ho, Y.-F.; Schwehr, K.A.; Kaplan, D.I.; Otosaka, S.; Roberts, K.A.; Brinkmeyer, R.; et al. Sequestration and Remobilization of Radioiodine (129I) by Soil Organic Matter and Possible Consequences of the Remedial Action at Savannah River Site. Environ. Sci. Technol. 2011, 45, 9975–9983. [Google Scholar] [CrossRef]
- Schwehr, K.A.; Santschi, P.H. Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection. Anal. Chim. Acta 2003, 482, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.T.; Kristensen, T.B.; Hansen, A.M.K.; Skov, H.; Bossi, R.; Massling, A.; Sørensen, L.L.; Bilde, M.; Glasius, M.; Nøjgaard, J.K. Characterization of humic-like substances in Arctic aerosols. J. Geophys. Res. Atmos. 2014, 119, 5011–5027. [Google Scholar] [CrossRef]
- Bowman, J.S.; Deming, J.W. Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and micro-bial dispersal. Geophys. Res. Lett. 2010, 37, L13501. [Google Scholar] [CrossRef]
- Aluwihare, L.I.; Repeta, D.J.; Pantoja, S.; Johnson, C.G. Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 2005, 308, 1007–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, M.D.; Hedges, J.I.; Benner, R. Major bacterial contribution to marine dissolved organic nitrogen. Science 1998, 281, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Benner, R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol. Oceanogr. 2008, 53, 99–112. [Google Scholar] [CrossRef]
- Hansell, D.A. Recalcitrant Dissolved Organic Carbon Fractions. In Annual Review of Marine Science; Carlson, C.A., Giovannoni, S.J., Eds.; Elsevier: Waltham, MA, USA, 2013; Volume 5, pp. 421–445. [Google Scholar]
- Bauer, J.E.; Williams, P.M.; Druffel, E.R.M. C-14 Activity of dissolved organic carbon fractions in the North-central Pacific and Sargasso Sea. Nature 1992, 357, 667–670. [Google Scholar] [CrossRef]
- Santschi, P.H.; Balnois, E.; Wilkinson, K.J.; Zhang, J.; Buffle, J.; Guo, L. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol. Oceanogr. 1998, 43, 896–908. [Google Scholar] [CrossRef]
- Longnecker, K.; Kido Soule, M.C.; Kujawinski, E.B. Dissolved organic matter produced by Thalassiosira pseudonana. Mar. Chem. 2015, 168, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Carlson, C.A.; Hansell, D.A. DOM sources, sinks, reactivity and budgets. In Biogeochemistry of Marine Dissolved Organic Matter; Hansell, D.A., Carlson, C.A., Eds.; Elsevier: Waltham, MA, USA, 2015. [Google Scholar]
- Decho, A.W. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28, 73–153. [Google Scholar]
- Decho, A.W.; Gutierrez, T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
- Proctor, L.M.; Fuhrman, J.A. Viral mortality of marine bacteria and cyanobacteria. Nature 1990, 343, 60–62. [Google Scholar] [CrossRef]
- Suttle, C.A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Berges, J.A.; Falkowski, P.G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol. Oceangr. 1998, 43, 129:135. [Google Scholar] [CrossRef] [Green Version]
- Biddle, K. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton. Annu. Rev. Mar. Sci. 2015, 7, 341–375. [Google Scholar] [CrossRef]
- Orellana, M.V.; Pang, W.L.; Durand, P.M.; Whitehead, K.; Baliga, N.S. A Role for Programmed Cell Death in the Microbial Loop. PLoS ONE 2013, 8, e62595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, T.; Kirchman, D. Role of submicron particles and colloids in microbial food webs and biogeochemical cycles within marine environments. Adv. Microb. Ecol. 1997, 15, 81–103. [Google Scholar]
- Strom, S.L. Microbial Ecology of Ocean Biogeochemistry: A Community Perspective. Science 2008, 320, 1043–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, S.L.; Benner, R.; Ziegler, S.; Dagg, M.J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceangr. 1997, 42, 1364–1374. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.-C.; Orellana, M.V.; Quesada, I.; Verdugo, P. Secretion in unicellular marine phytoplankton: Demonstration of regulated exocytosis in Phaeocystis globosa. Plant Cell Physiol. 2004, 45, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aluwihare, L.I.; Repeta, D.J. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar. Ecol. Prog. Ser. 1999, 186, 105–117. [Google Scholar] [CrossRef]
- Biddanda, B.; Benner, R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 1997, 42, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Aluwihare, L.I.; Repeta, D.J.; Chen, R.F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 1997, 387, 166–169. [Google Scholar] [CrossRef]
- Orellana, M.V.; Petersen, T.W.; Diercks, A.H.; Donohoe, S.; Verdugo, P.; van den Engh, G. Marine microgels: Optical and proteomic fingerprints. Mar. Chem. 2007, 105, 229–239. [Google Scholar] [CrossRef]
- Popendorf, K.J.; Lomas, M.W.; van Mooy, B.A.S. Microbial sources of intact polar diacylglycerolipids in the western North Atlantic Ocean. Org. Geochem. 2011, 42, 803–811. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Pease, T.K.; Benner, R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org. Geochem. 2003, 34, 857–868. [Google Scholar] [CrossRef]
- Kujawinski, E.B.; Longnecker, K.; Blough, N.V.; Vecchio, R.D.; Finlay, L.; Kitner, J.B.; Giovannoni, S.J. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim. Cosmochim. Acta 2009, 73, 4384–4399. [Google Scholar] [CrossRef]
- Kujawinski, E.B.; Giovannoni, S.; Longernecker, K.; MacDonald, J.; Kitner, J.B. The role of Sar 11 controling the molecular level composition of marine dissolved organic matter. In Proceedings of the 13th Internaitonal Symphosium on Microbial Ecology: Microbes—Stewards of Changing Planet 2010, Seattle, WA, USA, 22–27 August 2010. [Google Scholar]
- Azam, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Azam, F.; Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 2007, 5, 782–791. [Google Scholar] [CrossRef]
- Amon, R.M.W.; Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 1996, 41, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Tanoue, E.; Nishiyama, S.; Kamo, M.; Tsugita, A. Bacterial membranes: Possible source of dissolved protein in seawater. Geochim. Cosmochim. Acta 1995, 59, 2643–2648. [Google Scholar] [CrossRef]
- Tanoue, E.; Ischii, M.; Midorikawa, T. Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 1996, 41, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.C.; Simon, M.; Alldredge, A.L.; Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 1992, 359, 139–142. [Google Scholar] [CrossRef]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Nagata, T.; Tamburini, C.; Arístegui, J.; Baltar, F.; Bochdansky, A.B.; Fonda-Umani, S.; Fukuda, H.; Gogou, A.; Hansell, D.A.; Hansman, R.L.; et al. Emerging concepts on microbial processes in the bathypelagic ocean—Ecology, biogeochemistry, and genomics. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1519–1536. [Google Scholar] [CrossRef]
- Matrai, P.A.; Vernet, M.; Hood, R.; Jennings, A.; Brody, E.; Saemundsdottir, S. Light-dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Mar. Biol. 1995, 124, 1157–1167. [Google Scholar] [CrossRef]
- Mock, T.; Otillar, R.P.; Strauss, J.; McMullan, M.; Paajanen, P.; Schmutz, J.; Salamov, A.; Sanges, R.; Toseland, A.; Ward, B.J.; et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 2017, 541, 536–540. [Google Scholar] [CrossRef]
- Mock, T.; Samanta, M.P.; Iverson, V.; Berthiaume, C.; Robison, M.; Holtermann, K.; Durkin, C.; BonDurant, S.S.; Richmond, K.; Rodesch, M.; et al. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioproceses. Proc. Natl Acad. Sci. USA 2008, 105, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janech, M.G.; Krell, A.; Mock, T.; Kang, J.-S.; Raymond, J.A. ICE-BINDING PROTEINS FROM SEA ICE DIATOMS (BACILLARIOPHYCEAE)1. J. Phycol. 2006, 42, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Blanc, G.; Agarkova, I.; Grimwood, J.; Kuo, A.; Brueggeman, A.; Dunigan, D.D.; Gurnon, J.; Ladunga, I.; Lindquist, E.; Lucas, S.; et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 2012, 13, R39. [Google Scholar] [CrossRef] [Green Version]
- Deming, J.W.; Young, J.N. The Role of Exopolysaccharides in Microbial Adaptation to Cold Habitats. In Psychrophiles: From Biodiversity to Biotechnology, 2nd ed.; Margesin, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Krembs, C.; Eicken, H.; Deming, J.W. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 3653–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liss, P.; Duce, R. The Sea Surface and Global Change; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P.A. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlaye. Ocean Sci. 2012, 8, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Wingender, J.; Neu, T.; Flemming, H.C. (Eds.) Microbial Extracellular Polymeric Substances: Characterization, Structure and Function; Springer Science and Business Media: Heidelberg, Germany, 1999. [Google Scholar]
- Aller, J.Y.; Kuznetsova, M.R.; Jahns, C.J.; Kemp, P.F. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 2005, 36, 801–812. [Google Scholar] [CrossRef]
- Blanchard, D.C. Bubble scavenging and the water to air transfer of organic material in the sea. Adv. Chem. Ser. 1976, 145, 360–387. [Google Scholar]
- Blanchard, D.C.; Syzdek, L.D. Film drop production as a function of bubble size. J. Geophys. Res. 1988, 93, 3649–3654. [Google Scholar] [CrossRef]
- Matrai, P.A.; Vernet, M.; Wassmann, P. Relating temporal and spatial patterns of DMSP in the Barents Sea to phytoplankton biomass and productivity. J. Mar. Syst. 2007, 67, 87–101. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Ceburnis, D.; Leinert, S.; Dall’Osto, M.; Canagaratna, M.; O’Doherty, S.; Berresheim, H.; O’Dowd, C. Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. J. Geophys. Res. Atmos. 2014, 119, 11850–11863. [Google Scholar] [CrossRef] [Green Version]
- Vardi, A.; Haramaty, L.; van Mooy, B.A.S.; Fredricks, H.F.; Kimmance, S.A.; Larsen, A.; Bidle, K.D. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl. Acad. Sci. USA 2012, 109, 19327–19332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenwasser, S.; Sheyn, U.; Frada, M.J.; Pilzer, D.; Rotkopf, R.; Vardi, A. Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathog. 2019, 15, e1007708. [Google Scholar] [CrossRef]
- Frossard, A.A.; Russell, L.M.; Massoli, P.; Bates, T.S.; Quinn, P.K. Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Sci. Technol. 2014, 48, v–x. [Google Scholar] [CrossRef]
- Frossard, A.A.; Russell, L.M.; Burrows, S.M.; Elliott, S.M.; Bates, T.S.; Quinn, P.K. Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res. Atmos. 2014, 119, 12977–13003. [Google Scholar] [CrossRef]
- de Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys. 2011, 49, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Long, M.S.; Keene, W.C.; Kieber, D.J.; Frossard, A.A.; Russell, L.M.; Maben, J.R.; Kinsey, J.D.; Quinn, P.K.; Bates, T.S. Light-enhanced primary marine aerosol production from biologically productive seawater. Geophys. Res. Lett. 2014, 41, 2661–2670. [Google Scholar] [CrossRef]
- Cavalli, F. Advances in identification of organic matter in marine aerosol. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Beaupre, S.R.; Kieber, D.J.; Keene, W.C.; Long, M.S.; Maben, J.R.; Lu, X.; Zhu, Y.; Frossard, A.A.; Kinsey, J.D.; Bisgrove, J. Oceanic efflux of ancient marine dissolved organic carbon in primary marine aerosol. Sci. Adv. 2019, 5, eaax6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawler, M.J.; Lewis, S.L.; Russell, L.M.; Quinn, P.K.; Bates, T.S.; Coffman, D.J.; Upchurch, L.M.; Saltzman, E.S. North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: Polysaccharides, recalcitrant material, and secondary organics. Atmos. Chem. Phys. 2020, 20, 16007–16022. [Google Scholar] [CrossRef]
- de Gennes, P.G.; Leger, L. Dynamics of entangled polymer chains. Annu. Rev. Phys. Chem. 1982, 33, 49–61. [Google Scholar] [CrossRef]
- Edwards, S.F. The theory of macromolecular networks. Biorheology 1986, 23, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Leck, C.; Sun, L.; Hede, T.; Tu, Y.; Ågren, H. Cross-Linked Polysaccharide Assemblies in Marine Gels: An Atomistic Simulation. J. Phys. Chem. Lett. 2013, 4, 2637–2642. [Google Scholar] [CrossRef]
- Frederick, J.E.; Snell, H.E.; Haywood, E.K. Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol. 1989, 50, 443–450. [Google Scholar] [CrossRef]
- Orellana, M.V.; Vetter, Y.A.; Verdugo, P. The assembly of DOM polymers into POM microgels enhances their suceptibility to bacterial degradation. In Proceedings of the Aquatic Sciences Meeting, San Antonio, TX, USA, 24–28 January 2000. [Google Scholar]
- Sun, L.; Xu, C.; Lin, P.; Quigg, A.; Chin, W.-C.; Santschi, P.H. Photo-oxidation of proteins facilitates the preservation of high molecular weight dissolved organic nitrogen in the ocean. Mar. Chem. 2021, 229, 103907. [Google Scholar] [CrossRef]
- Wesslén, C.; Tjernström, M.; Bromwich, D.H.; de Boer, G.; Ekman, A.M.L.; Bai, L.S.; Wang, S.H. The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data. Atmos. Chem. Phys. 2014, 14, 2605–2624. [Google Scholar] [CrossRef] [Green Version]
- Kutschan, B.; Thoms, S.; Bayer-Giraldi, M. Thermal hysteresis of antifreeze proteins considering Fragilariopsis cylindrus. Algol. Stud. 2016, 151–152, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Fillmore, D.; Sun, S.-T.; Nishio, I.; Swislow, G.; Shah, A. Phase transitions in ionic gels. Phys. Rev. Lett. 1980, 45, 1636–1639. [Google Scholar] [CrossRef]
- Nishibori, N.; Matuyama, Y.; Uchida, T.; Moriyama, T.; Ogita, Y.; Oda, M.; Hirota, H. Spatial and temporal variations in free polyamine distributions in Uranouchi Inlet, Japan. Mar. Chem. 2003, 82, 307–314. [Google Scholar] [CrossRef]
- Okajima, M.K.; Nguyen, Q.T.l.; Tateyama, S.; Masuyama, H.; Tanaka, T.; Mitsumata, T.; Kaneko, T. Photoshrinkage in Polysaccharide Gels with Trivalent Metal Ions. Biomacromolecules 2012, 13, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.L. Fundamental Principles of Polymeric Materials, 2nd ed.; Wiley and Sons, Inc.: New York, NY, USA, 1993; p. 420. [Google Scholar]
- Wu, T.; Li, H. Liquid–solid phase transition of physical hydrogels subject to an externally applied electro-chemo-mechanical coupled field with mobile ionic species. Phys. Chem. Chem. Phys. 2017, 19, 21012–21023. [Google Scholar] [CrossRef]
- Tanaka, T. Phase Transitions of Gels, in Polyelectrolyte Gels; American Chemical Society: Washington, DC, USA, 1992; pp. 1–21. [Google Scholar]
- Dušek, K.; Patterson, D. Transition in swollen polymer networks induced by intramolecular condensation. J. Polym. Sci. Part A-2 Polym. Phys. 1998, 6, 1209–1216. [Google Scholar] [CrossRef]
- Orellana, M.V.; Hansell, D. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO): A long-lived protein in the deep ocean. Limnol. Oceanogr. 2012, 57, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Kadko, D.; Galfond, B.; Landing, W.M.; Shelley, R.U. Determining the pathways, fate, and flux of atmospherically derived trace elements in the Arctic ocean/ice system. Mar. Chem. 2016, 182, 38–50. [Google Scholar] [CrossRef]
- Paatero, J.; Vaattovaara, P.; Vestenius, M.; Meinander, O.; Makkonen, U.; Kivi, R.; Hyvärinen, A.; Asmi, E.; Tjernström, M.; Leck, C. Finnish contribution to the Arctic Summer Cloud Ocean Study (ASCOS) expedition, Arctic Ocean 2008. Geophysica 2009, 45, 119–146. [Google Scholar]
- Maenhaut, W.; Ducastel, G.; Leck, C.C.; Nilsson, E.D.; Heintzenberg, J. Multi-elemental Composition and Sources of the High Arctic Atmospheric Aerosol during Summer and Autumn. Tellus Ser. B—Chem. Phys. Meteorol. 1996, 48, 300–321. [Google Scholar] [CrossRef]
- Verdugo, P. Dynamics of marine biopolymer networks. Polym. Bull. 2007, 58, 139–143. [Google Scholar] [CrossRef]
- Maitra, U.; Mukhpadhyay, S.; Sarkar, A.; Rao, P.; Indi, S.S. Hydrophobic pockets in a nonpolymeric aqueous gel: Observation of such a gelation process by color change. Angew. Chem. Int. Ed. 2001, 40, 2281–2283. [Google Scholar] [CrossRef]
- Heintzenberg, J.; Leck, C.; Tunved, P. Potential source regions and processes of aerosol in the summer Arctic. Atmos. Chem. Phys. 2015, 15, 6487–6502. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Leck, C. Importance of submicron surface active organic aerosols for pristine Arctic clouds. Tellus B 2005, 57, 261–268. [Google Scholar] [CrossRef]
- Bulatovic, I.; Igel, A.L.; Leck, C.; Heintzenberg, J.; Riipinen, I.; Ekman, A.M.L. The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic—A simulation study supported by observational data. Atmos. Chem. Phys. 2021, 21, 3871–3897. [Google Scholar] [CrossRef]
- Saiani, A.; Mohammed, A.; Frielinghaus, H.; Collins, R.; Hodson, N.; Kielty, C.M.; Sherratt, M.J.; Miller, A.F. Self-assembly and gelation properties of α-helix versus β-sheet forming peptides. Soft Matter 2009, 5, 193–202. [Google Scholar] [CrossRef]
- Lorv, J.S.H.; Rose, D.R.; Glick, B.R. Bacterial Ice Crystal Controlling Proteins. Scientifica 2014, 2014, 976895. [Google Scholar] [CrossRef] [Green Version]
- Bayer-Giraldi, M.; Weikusat, I.; Besir, H.; Dieckmann, G. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 2011, 63, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.A.; Fritsen, C.; Shen, K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 2007, 61, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-S.; Shiu, R.-F.; Hsieh, Y.-Y.; Xu, C.; Vazquez, C.I.; Cui, Y.; Hsu, I.C.; Quigg, A.; Santschi, P.H.; Chin, W.-C. Stickiness of extracellular polymeric substances on different surfaces via magnetic tweezers. Sci. Total. Environ. 2021, 757, 143766. [Google Scholar] [CrossRef]
- Heintzenberg, J.; CLeck, C.; Birmili, W.; Wehner, B.; Tjernström, M.; Wiedensohler, A. Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001. Tellus B Chem. Phys. Meteorol. 2006, 58, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Facchini, M.C.; Rinaldi, M.; Decesari, S.; Carbone, C.; Finessi, E.; Mircea, M.; Fuzzi, S.; Ceburnis, D.; Flanagan, R.; Nilsson, E.D.; et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 2008, 35, L17814. [Google Scholar] [CrossRef]
- Norris, S.J.; Brooks, I.M.; Leeuw, G.d.; Sirevaag, A.; Leck, C.; Brooks, B.J.; Birch, C.E.; Tjernstrom, M. Measurements of bubble size spectra within leads in the Arctic summer pack ice. Ocean Sci. Discuss. 2011, 7, 1739–1765. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P.P.; Zhou, J.; Norman, M. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea. J. Geophys. Res. Atmos. 2001, 106, 32139–32154. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Wenzhöfer, F.; Peeken, I.; Sørensen, H.L.; Glud, R.N.; Boetius, A. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean. PLoS ONE 2014, 9, e107452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—Part 1: Source fluxes. Atmos. Chem. Phys. 2010, 10, 9295–9317. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Decesari, S.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; O’Dowd, C.D.; Ceburnis, D.; Facchini, M.C. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Adv. Meteorol. 2010, 2010, 310682. [Google Scholar] [CrossRef]
- Sciare, J.; Favez, O.; Sarda-Esteve, R.; Oikonomou, K.; Kazan, V. Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source. J. Geophys. Res. 2009, 114, D15302. [Google Scholar] [CrossRef] [Green Version]
- Gantt, B.; Meskhidze, N. The physical and chemical characteristics of marine primary organic aerosol: A review. Atmos. Chem. Phys. 2013, 13, 3979–3996. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.S.; Anaya, J.M.; Chen, E.Y.; Farr, E.; Chin, W.C. Ocean warming-acidification synergism undermines dissolved organic matter assembly. PLoS ONE 2015, 10, e0118300. [Google Scholar] [CrossRef] [PubMed]
- Salter, M.E.; Zieger, P.; Navarro, J.C.A.; Grythe, H.; Kirkevåg, A.; Rosati, B.; Riipinen, I.; Nilsson, E.D. An empirically derived inorganic sea spray source function incorporating sea surface temperature. Atmos. Chem. Phys. 2015, 15, 11047–11066. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana, M.V.; Hansell, D.A.; Matrai, P.A.; Leck, C. Marine Polymer-Gels’ Relevance in the Atmosphere as Aerosols and CCN. Gels 2021, 7, 185. https://doi.org/10.3390/gels7040185
Orellana MV, Hansell DA, Matrai PA, Leck C. Marine Polymer-Gels’ Relevance in the Atmosphere as Aerosols and CCN. Gels. 2021; 7(4):185. https://doi.org/10.3390/gels7040185
Chicago/Turabian StyleOrellana, Mónica V., Dennis A. Hansell, Patricia A. Matrai, and Caroline Leck. 2021. "Marine Polymer-Gels’ Relevance in the Atmosphere as Aerosols and CCN" Gels 7, no. 4: 185. https://doi.org/10.3390/gels7040185