Albumin Microspheres as “Trans-Ferry-Beads” for Easy Cell Passaging in Cell Culture Technology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of Trans-Ferry-Beads
2.2. Characterization of the Trans-Ferry-Beads
2.3. Trans-Ferry-Beads Have a Spherical Shape and Are Biocompatible
2.4. Cell Lines Successfully Board and De-Board Trans-Ferry-Beads
2.5. Bead-Mediated Passaging Does Not Reduce Cell Fitness and Growth Behavior
3. Conclusions
4. Materials and Methods
4.1. Material
4.2. Fabrication of Hydrogel Beads
4.3. Characterization
4.4. Atomic Force Microscopy
4.5. Equilibration of Trans-Ferry-Beads
4.6. Cell Culture
4.7. Passaging Adherent Cell Cultures
4.8. Viability Test Cell Compatibility
4.9. Confocal Laser Scanning Microscopy
4.10. Viability Test after Confluency
4.11. Quantification of Cell Density
4.12. Cell Lysis and eYFP Extraction
4.13. Flow Cytometric Cytotoxicity Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Thombare, N.; Mishra, S.; Siddiqui, M.Z.; Jha, U.; Singh, D.; Mahajan, G.R. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 2018, 185, 169–178. [Google Scholar] [CrossRef]
- Michalik, R.; Wandzik, I. A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers 2020, 12, 2425. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
- Fahimizadeh, M.; Diane Abeyratne, A.; Mae, L.S.; Singh, R.K.R.; Pasbakhsh, P. Biological Self-Healing of Cement Paste and Mortar by Non-Ureolytic Bacteria Encapsulated in Alginate Hydrogel Capsules. Materials 2020, 13, 3711. [Google Scholar] [CrossRef]
- Moatsou, D.; Hansell, C.F.; O’Reilly, R.K. Precision polymers: A kinetic approach for functional poly(norbornenes). Chem. Sci. 2014, 5, 2246–2250. [Google Scholar] [CrossRef] [Green Version]
- Lutz, J.-F.; Lehn, J.-M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Kuan, S.L.; Bergamini, F.R.G.; Weil, T. Functional protein nanostructures: A chemical toolbox. Chem. Soc. Rev. 2018, 47, 9069–9105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannewald, N.; Winterwerber, P.; Zechel, S.; Ng, D.Y.W.; Hager, M.D.; Weil, T.; Schubert, U.S. DNA Origami Meets Polymers: A Powerful Tool for the Design of Defined Nanostructures. Angew. Chemie Int. Ed. 2020, 60, 6218–6229. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wunderlich, K.; Mukherji, D.; Koynov, K.; Heck, A.J.; Raabe, M.; Barz, M.; Fytas, G.; Kremer, K.; Ng, D.Y.W.; et al. Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry. J. Am. Chem. Soc. 2020, 142, 1332–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodenberger, N.; Kubiczek, D.; Rosenau, F. Easy manipulation of architectures in protein-based hydrogels for cell culture applications. J. Vis. Exp. 2017, 126, e55813. [Google Scholar] [CrossRef]
- Bodenberger, N.; Kubiczek, D.; Paul, P.; Preising, N.; Weber, L.; Bosch, R.; Hausmann, R.; Gottschalk, K.-E.; Rosenau, F. Beyond bread and beer: Whole cell protein extracts from baker’s yeast as a bulk source for 3D cell culture matrices. Appl. Microbiol. Biotechnol. 2017, 101, 1907–1917. [Google Scholar] [CrossRef]
- Bodenberger, N.; Paul, P.; Kubiczek, D.; Walther, P.; Gottschalk, K.E.; Rosenau, F. A Novel Cheap and Easy to Handle Protein Hydrogel for 3D Cell Culture Applications: A High Stability Matrix with Tunable Elasticity and Cell Adhesion Properties. ChemistrySelect 2016, 1, 1353–1360. [Google Scholar] [CrossRef]
- Kubiczek, D.; Flaig, C.; Raber, H.; Dietz, S.; Kissmann, A.; Heerde, T.; Bodenberger, N.; Wittgens, A.; González-Garcia, M.; Kang, F.; et al. A Cerberus-Inspired Anti-Infective Multicomponent Gatekeeper Hydrogel against Infections with the Emerging “Superbug” Yeast Candida auris. Macromol. Biosci. 2020, 20, 2000005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ischakov, R.; Adler-Abramovich, L.; Buzhansky, L.; Shekhter, T.; Gazit, E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic Med. Chem. 2013, 21, 3517–3522. [Google Scholar] [CrossRef]
- Bodenberger, N.; Kubiczek, D.; Halbgebauer, D.; Rimola, V.; Wiese, S.; Mayer, D.; Rodriguez Alfonso, A.A.; Ständker, L.; Stenger, S.; Rosenau, F. Lectin-Functionalized Composite Hydrogels for “Capture-and-Killing” of Carbapenem-Resistant Pseudomonas aeruginosa. Biomacromolecules 2018, 19, 2472–2482. [Google Scholar] [CrossRef] [Green Version]
- Bodenberger, N.; Kubiczek, D.; Trösch, L.; Gawanbacht, A.; Wilhelm, S.; Tielker, D.; Rosenau, F. Lectin-mediated reversible immobilization of human cells into a glycosylated macroporous protein hydrogel as a cell culture matrix. Sci. Rep. 2017, 7, 6151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masters, J.R.; Stacey, G.N. Changing medium and passaging cell lines. Nat. Protoc. 2007, 2, 2276–2284. [Google Scholar] [CrossRef]
- Vrtačnik, P.; Kos, Š.; Bustin, S.A.; Marc, J.; Ostanek, B. Influence of trypsinization and alternative procedures for cell preparation before RNA extraction on RNA integrity. Anal. Biochem. 2014, 463, 38–44. [Google Scholar] [CrossRef]
- Chen, S.; So, E.C.; Strome, S.E.; Zhang, X. Impact of Detachment Methods on M2 Macrophage Phenotype and Function. J. Immunol. Methods 2015, 426, 56–61. [Google Scholar] [CrossRef]
- Lieber, M.; Todaro, G.; Smith, B.; Szakal, A.; Nelson-Rees, W. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 1976, 17, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chang, S.; Hao, H.; Tathireddy, P.; Orthner, M.; Magda, J.; Solzbacher, F. Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sens. Actuators B Chem. 2010, 144, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Bodenberger, N.; Kubiczek, D.; Abrosimova, I.; Scharm, A.; Kipper, F.; Walther, P.; Rosenau, F. Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel. Biotechnol. Rep. 2016, 12, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, M.; Guhl, E.; Graessmann, M.; Graessmann, A. Cellular mutation mediates T-antigen-positive revertant cells resistant to simian virus 40 transformation but not to retransformation by polyomavirus and adenovirus type 2. J. Virol. 1987, 61, 1821–1827. [Google Scholar] [CrossRef] [Green Version]
- Okita, K.; Matsumura, Y.; Sato, Y.; Okada, A.; Morizane, A.; Okamoto, S.; Hong, H.; Nakagawa, M.; Tanabe, K.; Tezuka, K.; et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 2011, 8, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, F.C.; Girardi, A.J.; Gilden, R.V.; Koprowski, H. Infection of Human and Simian Tissue Cultures with Rous Sarcoma Virus. Proc. Natl. Acad. Sci. USA 1964, 52, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chen, N.; Li, S.; Battig, M.R.; Wang, Y. Programmable Hydrogels for Controlled Cell Catch and Release Using Hybridized Aptamers and Complementary Sequences. J. Am. Chem. Soc. 2012, 134, 15716–15719. [Google Scholar] [CrossRef]
- Li, S.; Chen, N.; Zhang, Z.; Wang, Y. Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials 2013, 34, 460–469. [Google Scholar] [CrossRef]
- Li, S.; Chen, N.; Gaddes, E.R.; Zhang, X.; Dong, C.; Wang, Y. A Drosera-bioinspired hydrogel for catching and killing cancer cells. Sci. Rep. 2015, 5, 14297. [Google Scholar] [CrossRef] [Green Version]
- Gaddes, E.R.; Gydush, G.; Li, S.; Chen, N.; Dong, C.; Wang, Y. Aptamer-Based Polyvalent Ligands for Regulated Cell Attachment on the Hydrogel Surface. Biomacromolecules 2015, 16, 1382–1389. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favella, P.; Sihler, S.; Raber, H.; Kissmann, A.-K.; Krämer, M.; Amann, V.; Kubiczek, D.; Baatz, J.; Lang, F.; Port, F.; et al. Albumin Microspheres as “Trans-Ferry-Beads” for Easy Cell Passaging in Cell Culture Technology. Gels 2021, 7, 176. https://doi.org/10.3390/gels7040176
Favella P, Sihler S, Raber H, Kissmann A-K, Krämer M, Amann V, Kubiczek D, Baatz J, Lang F, Port F, et al. Albumin Microspheres as “Trans-Ferry-Beads” for Easy Cell Passaging in Cell Culture Technology. Gels. 2021; 7(4):176. https://doi.org/10.3390/gels7040176
Chicago/Turabian StyleFavella, Patrizia, Susanne Sihler, Heinz Raber, Ann-Kathrin Kissmann, Markus Krämer, Valerie Amann, Dennis Kubiczek, Jennifer Baatz, Fabian Lang, Fabian Port, and et al. 2021. "Albumin Microspheres as “Trans-Ferry-Beads” for Easy Cell Passaging in Cell Culture Technology" Gels 7, no. 4: 176. https://doi.org/10.3390/gels7040176