Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains
Abstract
1. Introduction
2. Results
2.1. Equilibrium Swelling
2.2. Mechanics
2.3. Thermal Stability
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Synthesis of MPBA
5.2. p(AAm-co-MPBA) Hydrogels
5.3. Swelling Studies
5.4. Mechanical Measurements
5.5. Thermal Degradation
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lorand, J.P.; Edwards, J.O. Polyol Complexes and Structure of Benzeneboronate Ion. J. Org. Chem. 1959, 24, 769–774. [Google Scholar] [CrossRef]
- James, T.D.; Sandanayake, K.; Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. 1996, 35, 1911–1922. [Google Scholar] [CrossRef]
- Barker, S.A.; Hatt, B.W.; Sommers, P.J.; Woodbury, R.R. The use of poly(4-vinylbenzeneboronic acid) resin in the fractionation and interconversion of carbohydrates. Carbohydr. Res. 1973, 26, 55–64. [Google Scholar] [CrossRef]
- Koyama, T.; Terauchi, K. Synthesis and application of boronic acid-immobilized porous polymer particles: A novel packing for high-performance liquid affinity chromatography. J. Chromatogr. B Biomed. Appl. 1996, 679, 31–40. [Google Scholar] [CrossRef]
- Li, Y.; Jeppsson, J.O.; Jornten-Karlsson, M.; Linne Larsson, E.; Jungvid, H.; Galaev, I.Y.; Mattiasson, B. Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin. J. Chromatogr. B 2002, 776, 149–160. [Google Scholar] [CrossRef]
- Kataoka, K. High-capacity cell separation by affinity selection on synthetic solid-phase matrices. In Cell Separation Science and Technology; Kompala, D.S., Todd, P., Eds.; American Chemical Society: Washington, DC, USA, 1991; pp. 159–174. [Google Scholar]
- Asher, S.A.; Alexeev, V.L.; Goponenko, A.V.; Sharma, A.C.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N. Photonic Crystal Carbohydrate Sensors: Low Ionic Strength Sugar Sensing. J. Am. Chem. Soc. 2003, 125, 3322–3329. [Google Scholar] [CrossRef] [PubMed]
- Alexeev, V.L.; Sharma, A.C.; Goponenko, A.V.; Das, S.; Lebedev, I.K.; Wilcox, C.S.; Finegold, D.N.; Asher, S.A. High Ionic Strength Glucose-Sensing Photonic Crystal. Anal. Chem. 2003, 75, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Alexeev, V.; Das, S.; Finegold, D.; Asher, S. Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid. Clin. Chem. 2004, 50, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Muscatello, M.; Stunja, L.E.; Asher, S.A. Polymerized Crystalline Colloidal Array Sensing of High Glucose Concentration. Anal. Chem. 2009, 81, 4978–4986. [Google Scholar] [CrossRef] [PubMed]
- Kabilan, S.; Marshall, A.J.; Sartain, F.K.; Lee, M.-C.; Hussain, A.; Yang, X.; Blyth, J.; Karangu, N.; James, K.; Zeng, J.; et al. Holographic Glucose Sensors. Biosens. Bioelectron. 2005, 20, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lee, M.-C.; Sartain, F.; Pan, X.; Lowe, C.R. Designed Boronate Ligands for Glucose-Selective Holographic Sensors. Chem. Eur. J. 2006, 12, 8491–8497. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pan, X.; Blyth, J.; Lowe, C.R. Towards the Real-time Monitoring of Glucose in Tear Fluid: Holographic Glucose Sensors with Reduced Interference from Lactate and pH. Biosens. Bioelectron. 2008, 23, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chang, S.F.; Hao, H.; Tathireddy, P.; Orthner, M.; Magda, J.J.; Solzbacher, F. Osmotic Swelling Pressure Response of Smart Hydrogels Suitable for Chronically Implantable Glucose Sensors. Sens. Actuators B Chem. 2010, 144, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Orthner, M.; Lin, G.; Avula, M.; Buetefisch, S.; Magda, J.J.; Rieth, L.W.; Solzbacher, F. Hydrogel Based Sensor Arrays (2 × 2) with Perforated Piezoresistive Diaphragms for Metabolic Monitoring (In Vitro). Sens. Actuators B Chem. 2010, 145, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Horkay, F.; Cho, S.H.; Tathireddy, P.; Rieth, L.; Solzbacher, F.; Magda, J. Thermodynamic analysis of the selectivity enhancement obtained by using smart hydrogels that are zwitterionic when detecting glucose with boronic acid moieties. Sens. Actuators B Chem. 2011, 160, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Lei, M.; Gu, Y.; Siegel, R.A.; Ziaie, B. A Microstructured Silicon Membrane with Entrapped Hydrogels for Environmentally Sensitive Fluid Gating. Sens. Actuators B Chem. 2006, 114, 9–18. [Google Scholar] [CrossRef]
- Lei, M.; Baldi, A.; Nuxoll, E.; Siegel, R.A.; Ziaie, B. A Hydrogel Based Implantable Micromachined Transponder for Wireless Glucose Measurement. Diabetes Technol. Ther. 2006, 8, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Ziaie, B.; Nuxoll, E.; Ivan, K.; Noszticzius, Z.; Siegel, R.A. Integration of Hydrogels with Hard and Soft Nanostructures. J. Nanosci. Nanotechnol. 2007, 7, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Baldi, A.; Nuxoll, E.E.; Siegel, R.A.; Ziaie, B. Hydrogel-Based Microsensors for Wireless pH Monitoring. Biomed. Microdevices 2009, 11, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.A.; Gu, Y.; Lei, M.; Baldi, A.; Nuxoll, E.; Ziaie, B. Hard and Soft Micro- and Nanofabrication: An Integrated Approach to Hydrogel Based Sensing and Drug Delivery. J. Control. Release 2010, 141, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Tierney, S.; Falch, B.M.; Hjelme, D.R.; Stokke, B.T. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo. Anal. Chem. 2009, 81, 3630–3636. [Google Scholar] [CrossRef] [PubMed]
- Tierney, S.; Hjelme, D.R.; Stokke, B.T. Determination of Swelling of Responsive Gels with Nanometer Resolution. Fiber-Optic Based Platform for Hydrogels as Signal Transducers. Anal. Chem. 2008, 80, 5086–5093. [Google Scholar] [CrossRef] [PubMed]
- Tierney, S.; Volden, S.; Stokke, B.T. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform. Biosens. Bioelectron. 2009, 24, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Suzuki, K.; Okabayashi, O.; Hoshino, H.; Kataoka, K.; Sakurai, Y.; Okano, T. Glucose-sensing electrode coated with polymer complex gel containing phenylboronic acid. Anal. Chem. 1996, 68, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Sato, N.; Sakata, T.; Kataoka, K.; Miyahara, Y. Glucose-sensitive field effect transistor using totally synthetic compounds. J. Solid State Electrochem. 2009, 13, 165–170. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Pruzinsky, S.A.; Braun, P.V. Glucose-Sensitive Inverse Hydrogel Opals: Analysis of Optical Diffraction Response. Langmuir 2004, 20, 3096–3106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Losego, M.D.; Braun, P.V. Hydrogel-Based Glucose Sensors: Effects of Phenylboronic Acid Chemical Structure on Response. Chem. Mater. 2013, 25, 3239–3250. [Google Scholar] [CrossRef]
- Mesch, M.; Zhang, C.; Braun, P.V.; Giessen, H. Functionalized hydrogel on plamonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2015, 2, 475–480. [Google Scholar] [CrossRef]
- Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo coninuous glucose monitoring. Proc. Natl. Acad. Sci. USA 2010, 107, 17894–17898. [Google Scholar] [CrossRef] [PubMed]
- Hisamitsu, I.; Kataoka, K.; Okano, T.; Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): Prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm. Res. 1997, 14, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Shiino, D.; Koyama, Y.; Kataoka, K.; Yokoyama, M.; Okano, T.; Sakurai, Y. Design of glucose responsive, insulin releasing device using polymers containing boronic acid groups. J. Artif. Organs 1992, 21, 1196–1198. [Google Scholar]
- Shiino, D.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. A self-regulated insulin delivery system using boronic acid gel. J. Intell. Mater. Syst. Struct. 1994, 5, 311–314. [Google Scholar] [CrossRef]
- Baldi, A.; Gu, Y.; Loftness, P.; Siegel, R.A.; Ziaie, B. A Hydrogel-Actuated Environmentally-Sensitive Microvalve for Active Flow Control. IEEE J. Microelectromech. Syst. 2003, 12, 613–621. [Google Scholar] [CrossRef]
- Siegel, R.A.; Gu, Y.; Baldi, A.; Ziaie, B. Novel Swelling/Shrinking Behaviors of Glucose-Binding Hydrogels and their Potential Use in a Microfluidic Delivery System. Macromol. Symp. 2004, 208, 249–256. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A Synthetic Approach Toward a Self-Regulated Insulin Delivery System. Angew. Chem. Int. Ed. 2012, 51, 2124–2128. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Mujumdar, S.K.; Siegel, R.A. Swelling Properties of Hydrogels Containing Phenylboronic Acids. Chemosensors 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291–5300. [Google Scholar] [CrossRef]
- Horgan, A.M.; Marshall, A.J.; Kew, S.J.; Dean, K.E.S.; Creasey, C.D.; Kabilan, S. Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens. Bioelectron. 2006, 21, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- English, A.; Tanaka, T.; Edelman, E.R. Equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte hydrogels. J. Chem. Phys. 1997, 107, 1645–1654. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Angell, C.A.; Ngai, K.L.; McKenna, G.B.; McMillan, P.F.; Martin, S.W. Relaxation in Glassforming Liquids and Amorphous Solids. Appl. Phys. Rev. 2000, 88, 3113–3157. [Google Scholar] [CrossRef]
- Xing, S.; Guan, Y.; Zhang, Y. Kinetics of glucose-induced swelling of P(NIPAM-AAPBA) microgels. Macromolecules 2011, 44, 4479–4486. [Google Scholar] [CrossRef]
- Hall, D.G. Structure, properties, and preparation of boronic acid derivatives. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials (Volume 1 and 2), 2nd ed.; Hall, D.G., Ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Shiino, D.; Kubo, A.; Murata, Y.; Koyama, Y.; Kataoka, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Amine effect on phenylboronic acid complex with glucose under physiological pH in aqueous solution. J. Biomater. Sci. Polym. Ed. 1996, 7, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Cifferi, A. Bond scrambling and network elasticity. Chemistry 2009, 15, 6920–6925. [Google Scholar] [CrossRef] [PubMed]
- Wojtecki, R.J.; Meador, M.A.; Rowan, S.J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2010, 10, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Pritchard, R.H.; Terentjev, E.M. Stress Relaxation, Dynamics, and Plasticity of Transient Polymer Networks. Macromolecules 2016, 49, 2843–2852. [Google Scholar] [CrossRef]
- Campbell, D.S. Exchange reactions as a basis of thermoplastic behaviour in crosslinked polymers. Polym. Int. 1973. [Google Scholar] [CrossRef]
- Flory, P.J. Elasticity of Polymer Networks Cross-linked in States of Strain. Trans. Faraday Soc. 1960, 56, 722–743. [Google Scholar] [CrossRef]
- Fricker, H.S. On the theory of stress relaxation by cross-link reorganization. Proc. R. Soc. A 1973, 335, 289–300. [Google Scholar] [CrossRef]
- Fricker, H.S. The effects on rubber elasticity of the addition and scission of cross-links under strain. Proc. R. Soc. Lond A 1973, 335, 267–287. [Google Scholar] [CrossRef]
- Rottach, D.R.; Curro, J.G.; Budzien, J.; Grest, G.S.; Evervaers, R. Molecular dynamics simulation of polymer networks undergoing sequential cross-linking and scission. Macromolecules 2010, 40, 131–139. [Google Scholar] [CrossRef]
- Scanlan, J. Cross-link breakdown and re-formation in strained polymer networks. Trans. Faraday Soc. 1961, 57, 839–845. [Google Scholar] [CrossRef]
- Colvin, A.E.; Jiang, H. Increased In Vivo Stability and Functional Lifetime of an Implantable Glucose Sensor through Platinum Catalysis. J. Biomed. Mater. Res. Part A 2012, 101, 1274–1282. [Google Scholar]




| Fixed Parameters | Fitted Parameters: 95% CI |
|---|---|
| = 0.553 mol/cm3 | χ = 0.61 ± 0.01 |
| = 0.242 | = 7.26 ± 1.29 mmol/cm3 |
| Csalt = 0.155 mol/L | pKa = 8.20 ± 0.10 |
| KS = 0.09 mmol/L |



| pH | (Pa) | d/d0 | Calculated (mM) | |
|---|---|---|---|---|
| pH 10 | 0 mM | 3012 | 2.05 | 7.45 |
| F9 mM | 2460 | 2.02 | 5.99 | |
| G9 mM | 5042 | 1.54 | 9.35 | |
| pH 7.4 | 0 mM | 5131 | 1.13 | 6.96 |
| F9 mM | 3200 | 1.86 | 7.19 | |
| G9 mM | 5031 | 1.26 | 7.62 | |
| (s) | τ (95% CI) (s) | β (95% CI) (Dimensionless) |
|---|---|---|
| 1 | 3.75 ± 0.13 | 0.495 ± 0.011 |
| 10 | 3.68 ± 0.21 | 0.549 ± 0.013 |
| 100 | 15.49 ± 0.26 | 0.753 ± 0.016 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.; Lee, H.; Jones, C.F.; Mujumdar, S.K.; Gu, Y.; Siegel, R.A. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains. Gels 2018, 4, 4. https://doi.org/10.3390/gels4010004
Kim A, Lee H, Jones CF, Mujumdar SK, Gu Y, Siegel RA. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains. Gels. 2018; 4(1):4. https://doi.org/10.3390/gels4010004
Chicago/Turabian StyleKim, Arum, Heelim Lee, Clinton F. Jones, Siddharthya K. Mujumdar, Yuandong Gu, and Ronald A. Siegel. 2018. "Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains" Gels 4, no. 1: 4. https://doi.org/10.3390/gels4010004
APA StyleKim, A., Lee, H., Jones, C. F., Mujumdar, S. K., Gu, Y., & Siegel, R. A. (2018). Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains. Gels, 4(1), 4. https://doi.org/10.3390/gels4010004
