Preparation Strategy of Hydrogel Loaded with Natural Products and Its Research Progress in Skin Repair
Abstract
1. Introduction
2. Skin Repair Process
2.1. Hemostasis and Coagulation
2.2. Inflammatory Phase
2.3. Proliferative Phase
2.4. Remodeling Stage
3. Function Mechanism of Loaded Natural Product Hydrogel for Wound Repair
3.1. Hemostatic Function
3.2. Antimicrobial Properties
3.3. Anti-Inflammatory Action
3.4. Angiogenesis
3.5. Skin Regeneration
3.6. Skin Repair Monitoring
4. Application Strategies of Hydrogels with Different Cross-Linking Mechanisms to Promote Wound Repair
4.1. Preparation of Hydrogel
4.1.1. Physical Cross-Linking
Ionic Cross-Linking
Hydrophobic Cross-Linking
Hydrogen Bonding Cross-Linking
4.1.2. Chemical Cross-Linking
Radical Polymerization
Radiation Polymerization
Enzymatic Cross-Linking
4.2. Construction Mode of Loaded Natural Active Hydrogel
4.2.1. Self-Assembly
Single-Molecule Self-Assembly
Multi-Molecular Self-Assembly
4.2.2. Physical Parcels
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.; Sanklecha, R.; Mitra, D. Oxidized dextran-modified cotton gauze for application as a fouling-resistant wound dressing. Bull. Mater. Sci. 2024, 47, 269. [Google Scholar] [CrossRef]
- Ottaviano, L.; Buoso, S.; Zamboni, R.; Sotgiu, G.; Posati, T. Natural Protein Films from Textile Waste for Wound Healing and Wound Dressing Applications. J. Funct. Biomater. 2025, 16, 20. [Google Scholar] [CrossRef]
- Liu, X.; Niu, Y.; Chen, K.C.; Chen, S. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater. Sci. Eng. C 2017, 71, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wang, Z.; Hu, Y.; Dong, Z.; Chen, J.; Zhou, Q.; Li, H.; Tang, S. The esterified lentinan bilayer nanofibrous membrane for promoting wound healing. Carbohydr. Polym. 2022, 292, 119698. [Google Scholar] [CrossRef]
- Phillips, T.J.; Palko, M.J.; Bhawan, J. Histologic evaluation of chronic human wounds treated with hydrocolloid and nonhydrocolloid dressings. J. Am. Acad. Dermatol. 1994, 30, 61–64. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; You, T.; Zhao, B.; Dong, L.; Huang, C.; Zhou, X.; Xing, M.; Qian, W.; Luo, G. 3D Printing-Based Hydrogel Dressings for Wound Healing. Adv. Sci. 2024, 11, e2404580. [Google Scholar] [CrossRef]
- Lu, C.; Sun, Q.; Li, Z.; Wei, Y.; Yu, J.; Li, S.; Wang, Y.; Li, K.; Tang, C.; Cao, H.; et al. Injectable glycyrrhizinate-pectin hydrogel wound dressing based on natural ingredients. Carbohydr. Polym. 2025, 359, 123562. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, e2100475. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, R.; Zhao, Y.; Wang, H.; Luo, W.; Zhang, J.; Li, Z.; Wang, P. An injectable, self-healing, anti-infective, and anti-inflammatory novel glycyrrhizic acid hydrogel for promoting acute wound healing and regeneration. Front. Bioeng. Biotechnol. 2025, 12, 1525644. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, Q. Current research on fungi in chronic wounds. Front. Mol. Biosci. 2023, 9, 1057766. [Google Scholar] [CrossRef]
- Obara, K.; Baba, K.; Shirai, K.; Hamada, Y.; Arakawa, N.; Hasegawa, A.; Takaoka, N.; Aki, R.; Hoffman, R.M. Hair-follicle-associated pluripotent (HAP) stem-cell-sheet implantation accelerates cutaneous wound closure and suppresses scar formation in a mouse model. Cell Cycle 2025, 24, 29–42. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Wang, J.; Liang, L.; Li, J.; Yu, Y.; Zeng, J.; He, M.; Wei, X.; Liu, Z.; et al. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater. Sci. 2024, 12, 3745–3764. [Google Scholar] [CrossRef]
- Brenner, B.; Lisman, T. Hemostasis and Thrombosis in Extreme Physiological and Pathological Conditions. Semin. Thromb. Hemost. 2018, 44, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, M.J.E.; Heemskerk, J.W.M.; Jurk, K. Molecular Mechanisms of Hemostasis, Thrombosis and Thrombo-Inflammation. Int. J. Mol. Sci. 2022, 23, 5825. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Toh, C.-H. Rethinking coagulation: From enzymatic cascade and cell-based reactions to a convergent model involving innate immune activation. Blood 2023, 142, 2133–2145. [Google Scholar] [CrossRef]
- Zou, C.-Y.; Li, Q.-J.; Hu, J.-J.; Song, Y.-T.; Zhang, Q.-Y.; Nie, R.; Li-Ling, J.; Xie, H.-Q. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater. Today Bio 2022, 17, 100468. [Google Scholar] [CrossRef] [PubMed]
- Anthoney, N.; Foldi, I.; Hidalgo, A. Toll and Toll-like receptor signalling in development. Development 2018, 145, dev156018. [Google Scholar] [CrossRef]
- Baldo, A.; Di Domizio, J.; Yatim, A.; Vandenberghe-Dürr, S.; Jenelten, R.; Fries, A.; Grizzetti, L.; Kuonen, F.; Paul, C.; Modlin, R.L.; et al. Human neutrophils drive skin autoinflammation by releasing interleukin (IL)-26. J. Exp. Med. 2024, 221, e20231464. [Google Scholar] [CrossRef]
- Yoshimura, A.; Wakabayashi, Y.; Mori, T. Cellular and molecular basis for the regulation of inflammation by TGF. J. Biochem. 2010, 147, 781–792. [Google Scholar] [CrossRef]
- Kopitar-Jerala, N. The Role of Interferons in Inflammation and Inflammasome Activation. Front. Immunol. 2017, 8, 873. [Google Scholar] [CrossRef]
- Matar, D.Y.; Ng, B.; Darwish, O.; Wu, M.; Orgill, D.P.; Panayi, A.C. Skin Inflammation with a Focus on Wound Healing. Adv. Wound Care 2022, 12, 269–287. [Google Scholar] [CrossRef]
- Cordeiro, J.V.; Jacinto, A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 2013, 14, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Ishida, Y. Molecular pathology of wound healing. Forensic Sci. Int. 2010, 203, 93–98. [Google Scholar] [CrossRef]
- Haensel, D.; Dai, X. Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev. Dyn. 2017, 247, 473–480. [Google Scholar] [CrossRef]
- Cucina, A.; Borrelli, V.; Randone, B.; Coluccia, P.; Sapienza, P.; Cavallaro, A. Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J. Surg. Res. 2003, 109, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Suess, P.M.; Smith, S.A.; Morrissey, J.H. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J. Thromb. Haemost. 2020, 18, 3043–3052. [Google Scholar] [CrossRef]
- Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G.; Wang, F.; Guo, A.; Walczysko, P.; Gu, Y.; et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 2006, 442, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Phillips, T.J. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 2016, 74, 589–606. [Google Scholar] [CrossRef]
- Patenall, B.L.; Carter, K.A.; Ramsey, M.R. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int. J. Mol. Sci. 2024, 25, 1304. [Google Scholar] [CrossRef]
- Chiquet, M.; Gelman, L.; Lutz, R.; Maier, S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2009, 1793, 911–920. [Google Scholar] [CrossRef]
- Li, W.W.; Talcott, K.E.; Zhai, A.W.; Kruger, E.A.; Li, V.W. The role of therapeutic angiogenesis in tissue repair and regeneration. Adv. Ski. Wound Care 2005, 18, 491–502. [Google Scholar] [CrossRef]
- Simpson, C.L.; Patel, D.M.; Green, K.J. Deconstructing the skin: Cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell Biol. 2011, 12, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Blais, M.; Parenteau-Bareil, R.; Cadau, S.; Berthod, F. Concise review: Tissue-engineered skin and nerve regeneration in burn treatment. STEM CELLS Transl. Med. 2013, 2, 545–551. [Google Scholar] [CrossRef]
- Guerra, A.; Belinha, J.; Jorge, R.N. Modelling skin wound healing angiogenesis: A review. J. Theor. Biol. 2018, 459, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sawadkar, P.; Lali, F.; Garcia-Gareta, E.; Garrido, B.G.; Chaudhry, A.; Matharu, P.; Kyriakidis, C.; Greco, K. Innovative hydrogels in cutaneous wound healing: Current status and future perspectives. Front. Bioeng. Biotechnol. 2025, 13, 1454903. [Google Scholar] [CrossRef]
- Wan, J.; Liang, Y.; Wei, X.; Liang, H.; Chen, X.-L. Chitosan-based double network hydrogel loading herbal small molecule for accelerating wound healing. Int. J. Biol. Macromol. 2023, 246, 125610. [Google Scholar] [CrossRef]
- Huang, X.; Li, T.; Jiang, X.; Wang, Z.; Wang, M.; Wu, X.; Li, J.; Shi, J. Co-assembled Supramolecular Hydrogel of Salvianolic Acid B and a Phosphopeptide for Enhanced Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 45606–45615. [Google Scholar] [CrossRef]
- Zhu, J.; Hou, R.; Liu, M.; Wang, L.; Chen, W.; Sun, Y.; Wei, W.; Ye, S. A novel wound dressing based on epigallocatechin-3-gallate self-assemble hydrogels promotes effects on wound healing. Mater. Today Sustain. 2022, 18, 100125. [Google Scholar] [CrossRef]
- Sharma, A.; Mittal, P.; Yadav, A.; Mishra, A.K.; Hazari, P.P.; Sharma, R.K. Sustained Activity of Stimuli-Responsive Curcumin and Acemannan Based Hydrogel Patches in Wound Healing. ACS Appl. Bio Mater. 2022, 5, 598–609. [Google Scholar] [CrossRef]
- Wang, L.; Xia, K.; Han, L.; Zhang, M.; Fan, J.; Song, L.; Liao, A.; Wang, W.; Guo, J. Local Administration of Ginkgolide B Using a Hyaluronan-Based Hydrogel Improves Wound Healing in Diabetic Mice. Front. Bioeng. Biotechnol. 2022, 10, 898231. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yan, A.; Zeng, J.; Geng, S.; Li, X.; Huang, G. A tri-component hydrogel composed of Bletilla striata polysaccharide, carboxymethyl chitosan and cinnamaldehyde: Potent enhancement of diabetic wound healing. Carbohydr. Polym. 2026, 373, 124536. [Google Scholar] [CrossRef]
- Guo, J.; Hu, B.; Wei, Y.; Cheng, G.; Wang, C.; Qin, X.; Chen, X.; Chen, J.; Chen, Z.; Chen, T. Hydrogel delivering self-assembled herbal nanoparticles accelerates diabetic wound healing through mitochondrial regulation. Mater. Today Bio 2025, 35, 102417. [Google Scholar] [CrossRef]
- Chanmontri, M.; Kiti, K.; Surassmo, S.; Grøndahl, L.; Suwantong, O. Effect of incorporating α-mangostin or curcumin-β-cyclodextrin inclusion complexes on biological activities of injectable self-healing quaternized chitosan/oxidized pectin hydrogels for wound dressing applications. Polymer 2025, 334, 128721. [Google Scholar] [CrossRef]
- Cunnigham, M. Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Mod. Pathol. 2002, 15, 1125. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J. Laboratory hemostasis: From biology to the bench. Clin. Chem. Lab. Med. 2018, 56, 1035–1045. [Google Scholar] [CrossRef]
- Sundaram, M.N.; Mony, U.; Varma, P.K.; Rangasamy, J. Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr. Polym. 2021, 258, 117634. [Google Scholar] [CrossRef]
- Caspers, M.; Maegele, M.; Fröhlich, M. Current strategies for hemostatic control in acute trauma hemorrhage and trauma-induced coagulopathy. Expert Rev. Hematol. 2018, 11, 987–995. [Google Scholar] [CrossRef]
- Kerris, E.W.J.; Hoptay, C.; Calderon, T.; Freishtat, R.J. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J. Investig. Med. 2019, 68, 813–820. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Wang, H.; Wang, R.; Sun, Z.; Tan, X.; Liu, S.; Wang, H. Effects of a dammarane-type saponin, ginsenoside Rd, in nicotine-induced vascular endothelial injury. Phytomedicine 2020, 79, 153325. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, M.N.; Amirthalingam, S.; Mony, U.; Varma, P.K.; Jayakumar, R. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int. J. Biol. Macromol. 2019, 129, 936–943. [Google Scholar] [CrossRef]
- Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules 2023, 28, 1473. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Lan, X.; Feng, J.; Ni, Y.; Zhu, M.; Sun, J.; Wang, J. Hydrogel loading 2D montmorillonite exfoliated by anti-inflammatory Lycium barbarum L. polysaccharides for advanced wound dressing. Int. J. Biol. Macromol. 2022, 209, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Meng, Q.; Liu, T.; Lv, M.; Su, W.; Liu, B.; Wu, J. Immunomodulatory Antibacterial Hydrogel for Wound Infection Management. Int. J. Nanomed. 2024, 19, 8159–8174. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, H.; Qiu, J.; Wang, S.; Ouyang, L.; Qiao, Y.; Liu, X. Mechanical Force Induced Self-Assembly of Chinese Herbal Hydrogel with Synergistic Effects of Antibacterial Activity and Immune Regulation for Wound Healing. Small 2022, 18, e2201766. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Jia, Y.; Wang, G.; He, H.; Cao, L.; Shi, Y.; Miao, M.; Li, X.-M. Dynamic covalent hydrogel of natural product baicalin with antibacterial activities. RSC Adv. 2022, 12, 8737–8742. [Google Scholar] [CrossRef]
- Cuéllar-Gaona, C.G.; Martínez-Ruiz, E.O.; González-López, J.A.; Ibarra-Alonso, M.C.; Dávila-Medina, M.D.; Treviño-Martínez, M.E.; Soria-Arguello, G.; Mendoza-González, N.Y.; Neira-Velázquez, M.G. Development of Chitosan/Carvacrol-Based Hydrogels: Biocompatibility and Antimicrobial Activity Evaluation. ChemistrySelect 2025, 10, e202405865. [Google Scholar] [CrossRef]
- Hu, J.-J.; Yu, X.-Z.; Zhang, S.-Q.; Zhang, Y.-X.; Chen, X.-L.; Long, Z.-J.; Hu, H.-Z.; Xie, D.-H.; Zhang, W.-H.; Chen, J.-X.; et al. Hydrogel with ROS scavenging effect encapsulates BR@Zn-BTB nanoparticles for accelerating diabetic mice wound healing via multimodal therapy. iScience 2023, 26, 106775. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, N.; Schirmer, L.; Atallah, P.; Wandel, E.; Ferrer, R.A.; Werner, C.; Simon, J.C.; Franz, S.; Freudenberg, U. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl. Med. 2017, 9, eaai9044. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 887, 173090. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Y.; Yao, Y.; Zhu, Y.; Shi, H.; Zhao, M.; Wang, S.; Zou, M.; Cheng, G. A sesbania gum/γ-polyglutamic acid photo-crosslinking composite hydrogel loaded with multi-component traditional Chinese medicine extract synergizes microenvironment amelioration in infected diabetic wound healing. Int. J. Biol. Macromol. 2025, 305, 140965. [Google Scholar] [CrossRef]
- Schirmer, L.; Atallah, P.; Freudenberg, U.; Werner, C. Chemokine-Capturing Wound Contact Layer Rescues Dermal Healing. Adv. Sci. 2021, 8, e2100293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhu, J.; Jin, L.; Chen, J.; Xu, R.; Zhao, Y.; Yan, T.; Wan, H. Salvianolic-Acid-B-Loaded HA Self-Healing Hydrogel Promotes Diabetic Wound Healing through Promotion of Anti-Inflammation and Angiogenesis. Int. J. Mol. Sci. 2023, 24, 6844. [Google Scholar] [CrossRef]
- Guan, Y.-Y.; Luan, X.; Lu, Q.; Liu, Y.-R.; Sun, P.; Zhao, M.; Chen, H.-Z.; Fang, C. Natural Products with Antiangiogenic and Antivasculogenic Mimicry Activity. Mini-Rev. Med. Chem. 2016, 16, 1290–1302. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, Y.; Rong, Y.; Zhou, Y.; Li, S.; Li, X.; Wu, H.; Lv, D.; Cao, X.; Wang, P.; et al. Multifunctional hydrogel targeting senescence to accelerate diabetic wound healing through promoting angiogenesis. J. Nanobiotechnol. 2025, 23, 177. [Google Scholar] [CrossRef] [PubMed]
- Daya, R.; Xu, C.; Nguyen, N.-Y.T.; Liu, H.H. Angiogenic Hyaluronic Acid Hydrogels with Curcumin-Coated Magnetic Nanoparticles for Tissue Repair. ACS Appl. Mater. Interfaces 2022, 14, 11051–11067. [Google Scholar] [CrossRef]
- Kong, Y.; Tang, X.; Zhao, Y.; Chen, X.; Yao, K.; Zhang, L.; Han, Q.; Zhang, L.; Ling, J.; Wang, Y.; et al. Degradable tough chitosan dressing for skin wound recovery. Nanotechnol. Rev. 2020, 9, 1576–1585. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, J.; Lv, M.; She, K.; Sun, J.; Lu, Q.; Han, C.; Ding, S.; Zhao, S.; Wang, G.; et al. Photocrosslinking silver nanoparticles–aloe vera–silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. Regen. Biomater. 2021, 8, rbab048. [Google Scholar] [CrossRef]
- Gupta, P.; Sheikh, A.; Abourehab, M.A.S.; Kesharwani, P. Amelioration of Full-Thickness Wound Using Hesperidin Loaded Dendrimer-Based Hydrogel Bandages. Biosensors 2022, 12, 462. [Google Scholar] [CrossRef]
- Pan, R.; Liu, G.; Zeng, Y.; He, X.; Ma, Z.; Wei, Y.; Chen, S.; Yang, L.; Tao, L. A multi-responsive self-healing hydrogel for controlled release of curcumin. Polym. Chem. 2021, 12, 2457–2463. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, M.; Xu, T.; Zhang, X. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 2022, 433, 134625. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Tang, T.; Liu, Z.; Liu, X.; Yu, K.; Zhang, Y.; Wang, H. Promotion and monitor wound healing by anthocyanin enhanced light curing ε-poly-l-lysine hydrogel encapsulated Cu-MOF. Chem. Eng. J. 2024, 494, 152875. [Google Scholar] [CrossRef]
- Zhang, Z.; Mi, B.; Liao, Y.; Bu, P.; Xie, X.; Yu, C.; Hu, W.; Sun, Y.; Feng, Q.; Liu, M.; et al. Mulberry-inspired tri-act hydrogel for visual monitoring and enhanced diabetic wound repair. Chem. Eng. J. 2025, 505, 159313. [Google Scholar] [CrossRef]
- Arafa, A.A.; Nada, A.A.; Ibrahim, A.Y.; Zahran, M.K.; Hakeim, O.A. Greener therapeutic pH-sensing wound dressing based on Curcuma Longa and cellulose hydrogel. Eur. Polym. J. 2021, 159, 110744. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. PH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr. Polym. 2019, 230, 115638. [Google Scholar] [CrossRef]
- Hu, X.Q.; Zhu, J.Z.; Hao, Z.; Tang, L.; Sun, J.; Sun, W.R.; Hu, J.; Wang, P.Y.; Basmadji, N.P.; Pedraz, J.L.; et al. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024, 25, 3566–3582. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.-T.; Tsai, W.-B. Dual Cross-Linking of Catechol-Alginate Hydrogels: A Strategy for Enhanced Stability and Sustained Drug Delivery. ACS Omega 2025, 10, 12505–12513. [Google Scholar] [CrossRef]
- Liu, J.; Fu, Y.; Jia, W.; Gao, C.; Tang, H.; Li, H.; Yang, W. Multifunctional alginate-sinapic acid/arginine-strontium hydrogel for promoting diabetic wound healing. Int. J. Biol. Macromol. 2025, 308, 142460. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Du, L.; Guo, J.; Zhang, L.; Wang, S.; Wang, X. Injectable carboxymethyl chitosan/konjac glucomannan/catechin hydrogel with free radical-scavenging, antimicrobial, and pro-healing abilities for infected wound repair. Int. J. Biol. Macromol. 2025, 308, 142572. [Google Scholar] [CrossRef]
- Ding, P.; Lu, Y.; Zhao, C.; Guo, W.; Nie, L. Preparation of injectable self-healing hydrogels using carboxymethyl chitosan and oxidized dextran with incorporating quercetin-loaded PF127 micelles for wound healing. Mater. Today Commun. 2024, 41, 110463. [Google Scholar] [CrossRef]
- Chen, S.-K.; Liu, J.-J.; Wang, X.; Luo, H.; He, W.-W.; Song, X.-X.; Nie, S.-P.; Yin, J.-Y. Hericium erinaceus β-glucan/tannic acid hydrogels based on physical cross-linking and hydrogen bonding strategies for accelerating wound healing. Int. J. Biol. Macromol. 2024, 279, 135381. [Google Scholar] [CrossRef]
- Liu, H.; Hu, X.; Li, W.; Zhu, M.; Tian, J.; Li, L.; Luo, B.; Zhou, C.; Lu, L. A highly-stretchable and adhesive hydrogel for noninvasive joint wound closure driven by hydrogen bonds. Chem. Eng. J. 2022, 452, 139368. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, J.; Huang, Y.; Mu, L.; Chen, J.; Liang, Z.; Yin, Z.; Chu, D.; Han, Y.; Guo, B. Injectable Antiswelling and High-Strength Bioactive Hydrogels with a Wet Adhesion and Rapid Gelling Process to Promote Sutureless Wound Closure and Scar-free Repair of Infectious Wounds. ACS Nano 2023, 17, 22015–22034. [Google Scholar] [PubMed]
- Bibire, T.; Panainte, A.-D.; Yilmaz, C.N.; Timofte, D.V.; Dănilă, R.; Bibire, N.; Păduraru, L.; Ghiciuc, C.M. Dexketoprofen-Loaded Alginate-Grafted Poly(N-vinylcaprolactam)-Based Hydrogel for Wound Healing. Int. J. Mol. Sci. 2025, 26, 3051. [Google Scholar] [PubMed]
- Demeter, M.; Călina, I.; Scărișoreanu, A.; Nemțanu, M.R.; Brașoveanu, M.; Micutz, M.; Dumitru, M. Formulation, E-Beam Crosslinking, and Comprehensive Characterisation of Lavender Oil-Enriched Hydrogels. Polymers 2024, 16, 3150. [Google Scholar] [CrossRef]
- Mignon, A.; Zimmer, J.; Gutierrez Cisneros, C.; Kühnert, M.; Derveaux, E.; Daikos, O.; Scherzer, T.; Adriaensens, P.; Schulze, A. Electron-Beam-Initiated Crosslinking of Methacrylated Alginate and Diacrylated Poly(ethylene glycol) Hydrogels. Polymers 2023, 15, 4685. [Google Scholar]
- Tran, D.L.; Le Thi, P.; Hoang Thi, T.T.; Park, K.D. Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and promoted cellular behaviors under hyperglycemia. Prog. Nat. Sci. Mater. Int. 2020, 30, 661–668. [Google Scholar] [CrossRef]
- Huang, H.; Gong, W.; Wang, X.; He, W.; Hou, Y.; Hu, J. Self-Assembly of Naturally Small Molecules into Supramolecular Fibrillar Networks for Wound Healing. Adv. Healthc. Mater. 2022, 11, e2102476. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hou, Y.; He, W.; Wang, X.; Zhang, D.; Hu, J. Self-assembly of chlorogenic acid into hydrogel for accelerating wound healing. Colloids Surf. B Biointerfaces 2023, 228, 113440. [Google Scholar]
- Yang, D.; Zhao, W.; Zhang, S.; Liu, Y.; Teng, J.; Ma, Y.; Huang, R.; Wei, H.; Chen, H.; Zhang, J.; et al. Dual Self-Assembly of Puerarin and Silk Fibroin into Supramolecular Nanofibrillar Hydrogel for Infected Wound Treatment. Adv. Healthc. Mater. 2024, 13, e2400071. [Google Scholar] [CrossRef]
- Zhao, M.; Xiang, J.; Meng, Y.; Sun, H.; Yang, W.; Li, Z.; Li, K.; Zhang, Q.; Ao, Z.; Han, D. Astragalus Polysaccharide Hydrogels with Drug-Carrying Super Self-Assembly from Natural Herbs Promote Wound Healing. ACS Nano 2025, 19, 21571–21588. [Google Scholar] [CrossRef]
- Song, F.; Ye, A.; Jiang, L.; Lu, Y.; Feng, Y.; Huang, R.; Du, S.; Dong, X.; Huang, T.; Li, P.; et al. Photothermal-enhanced silver nanocluster bioactive glass hydrogels for synergistic antimicrobial and promote wound healing. Mater. Today Bio 2025, 30, 101439. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, W.; Lin, Y.; Ma, J.; Leng, T.; Cheng, W.; Wang, Y.; Wang, M.; Ning, J.; Yang, S.; et al. Multifunctional antibacterial bioactive nanoglass hydrogel for normal and MRSA infected wound repair. J. Nanobiotechnol. 2023, 21, 162. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kim, B.S.; Park, H.; Lee, J.; Park, W.H. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int. J. Biol. Macromol. 2018, 109, 57–64. [Google Scholar] [CrossRef]
- Wang, J.; Lou, L.; Qiu, J. Super-tough hydrogels using ionically crosslinked networks. J. Appl. Polym. Sci. 2019, 136, 48182. [Google Scholar] [CrossRef]
- Chang, X.; Geng, Y.; Cao, H.; Zhou, J.; Tian, Y.; Shan, G.; Bao, Y.; Wu, Z.L.; Pan, P. Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bonding and Hydrophobic Interactions. Macromol. Rapid Commun. 2018, 39, e1700806. [Google Scholar]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2018, 7, 843–855. [Google Scholar] [CrossRef]
- Martínez-Martínez, M.; Rodríguez-Berna, G.; Gonzalez-Alvarez, I.; Hernández, M.J.; Corma, A.; Bermejo, M.; Merino, V.; Gonzalez-Alvarez, M. Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System. Biomacromolecules 2018, 19, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Z. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2021, 2, e21. [Google Scholar]
- Shu, Q.; Yuan, Y.; Sun, J.; Zhang, Y.; Yu, H.; Tian, X.; Cai, C. Hydrophobic association hydrogel with toughness, high stretch, and sensitivity for flexible sensing. J. Appl. Polym. Sci. 2024, 142, e56348. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Huang, S.; Guo, B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv. Colloid Interface Sci. 2024, 332, 103267. [Google Scholar] [CrossRef]
- Cheng, R.; Zhang, X.; Li, J.; Zheng, H.; Zhang, Q. Nanoporous, Ultrastiff, and Transparent Plastic-like Polymer Hydrogels Enabled by Hydrogen Bonding-Induced Self-Assembly. ACS Appl. Mater. Interfaces 2024, 16, 42783–42793. [Google Scholar] [CrossRef]
- Feng, Z.; Zuo, H.; Gao, W.; Ning, N.; Tian, M.; Zhang, L. A Robust, Self-Healable, and Shape Memory Supramolecular Hydrogel by Multiple Hydrogen Bonding Interactions. Macromol. Rapid Commun. 2018, 39, 1800138. [Google Scholar]
- Zhao, J.; Peng, Y.-Y.; Wang, J.; Diaz-Dussan, D.; Tian, W.; Duan, W.; Kong, L.; Hao, X.; Narain, R. Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties. Biomacromolecules 2022, 23, 2552–2561. [Google Scholar]
- Peng, F.; Ailing, W.; Feifei, W. A Facile Crosslinked Hyaluronic Acid Hydrogel Strategy: Elution Conditions Adjustment. ChemistrySelect 2025, 10, e00480. [Google Scholar] [CrossRef]
- Xinxin, H.; Jingchao, L.; Jing, L.; Qiang, G.; An, M.; Jianzhang, L. Research progress on double-network hydrogels. Mater. Today Commun. 2021, 29, 102757. [Google Scholar] [CrossRef]
- Ramazani, A.; Dabbaghi, A.; Gouranlou, F. Synthesis of Amphiphilic Co-network through Click Chemistry Reactions: A Review. Curr. Org. Chem. 2018, 22, 362–369. [Google Scholar] [CrossRef]
- Seidi, F.; Zhao, W.; Xiao, H.; Jin, Y.; Saeb, M.R.; Zhao, C. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polym. Chem. 2020, 11, 4355–4381. [Google Scholar] [CrossRef]
- Demeter, M.; Meltzer, V.; Călina, I.; Scărișoreanu, A.; Micutz, M.; Albu Kaya, M.G. Highly elastic superabsorbent collagen/PVP/PAA/PEO hydrogels cross-linked via e-beam radiation. Radiat. Phys. Chem. 2020, 174, 108898. [Google Scholar] [CrossRef]
- Naranjo-Alcazar, R.; Bendix, S.; Groth, T.; Gallego Ferrer, G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023, 9, 230. [Google Scholar] [CrossRef]
- Liu, G.; Hu, M.; Sun, L.-C.; Han, X.; Liu, Q.; Alcocer, M.; Fei, D.; Cao, M.-J.; Liu, G.-M. Allergenicity and Oral Tolerance of Enzymatic Cross-Linked Tropomyosin Evaluated Using Cell and Mouse Models. J. Agric. Food Chem. 2017, 65, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Ma, J.; Jia, L.; Zhao, H.; Dong, Y.; Jiang, Y.; Zhang, W.; Hu, Z. Enzymatic one-pot preparation of carboxylmethyl chitosan-based hydrogel with inherent antioxidant and antibacterial properties for accelerating wound healing. Int. J. Biol. Macromol. 2022, 226, 823–832. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, W.; Soladoye, O.P.; Zhang, N.; Zhang, Y.; Fu, Y. Towards food-derived self-assembling peptide-based hydrogels: Insights into preparation, characterization and mechanism. Food Chem. 2024, 459, 140397. [Google Scholar]
- Hao, M.; Wei, S.; Su, S.; Tang, Z.; Wang, Y. A Multifunctional Hydrogel Fabricated by Direct Self-Assembly of Natural Herbal Small Molecule Mangiferin for Treating Diabetic Wounds. ACS Appl. Mater. Interfaces 2024, 16, 24221–24234. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, J.; Pi, W.; Xu, R.; Yao, S.; Zhang, X.; Yang, L.; Zhao, Y.; Wei, J.; Li, G.; et al. Supramolecular Chiral Amplification Mediated by Tiny Structural Changes in Natural Binary Carrier-Free Hydrogels with Promotion Methicillin-Resistant Staphylococcus aureus-Infected wound Healing by Inhibiting the Complement System. Small Struct. 2025, 6, 2400507. [Google Scholar] [CrossRef]
- Kaur, N.; Hamid; Choudhary, P.; Jaiswal, A.K. Recent progress in bioactive loaded hydrogels for food applications. J. Agric. Food Res. 2025, 20, 101756. [Google Scholar] [CrossRef]






| Name | Responsiveness | Mechanical | Release Characteristics | Biocompatibility and Safety | Function | References |
|---|---|---|---|---|---|---|
| PVA/CS/emodin hydrogel | pH responsive | The tensile strength is 1070 kPa, the fracture strain is 154%, the elastic modulus is 638 kPa, and the toughness is 803 kJ/m3, all of which are highest at the maximum concentration of emodin. | Rapid release | Low cytotoxicity; animal experiments showed no significant toxic reactions, but the high concentration of the emodin group (E3) inhibited cell growth and significantly decreased cell viability. | Promote cell proliferation and migration, enhance the expression of growth factors (EGF, VEGF-A, TGF-β 1, and bFGF), accelerate wound healing, promote angiogenesis and collagen deposition, resist bacteria and inflammation, maintain a moist environment of the wound, absorb exudates, and ensure that the hydrogel is intact and not easily damaged, reducing the risk of infection. | [37] |
| 1&SAB hydrogel | ROS responsiveness | Rheological properties (G′ > G″); high elasticity (G′ and G″ remain stable in frequency scanning (0.1–100 rad/s)). | Rapid release | Low cytotoxicity; animal experiments have shown no significant toxic reactions. | Promoting cell migration (enhancing the migration ability of human dermal fibroblasts), antibacterial activity (effectively inhibiting Escherichia coli), antioxidant activity (effectively clearing ABTS free radicals and resisting oxidative damage induced by H2O2 at the cellular level), strong adhesion, promoting angiogenesis (increasing the number of CD31 positive blood vessels in wound tissue), promoting collagen deposition and tissue remodeling (accelerating collagen fiber deposition, promoting epithelialization, and reducing scar formation), and accelerating wound healing. | [38] |
| EGCG-NapFFY hydrogel | Continuous release (over 48 h) | No significant negative impact on overall animal health. | Extend the duration of drug action, promote wound healing, anti-inflammatory effect (can inhibit the release of pro-inflammatory cytokines), antioxidant, and antibacterial. | [39] | ||
| NPAC2 | Temperature responsiveness | Continuous release (at least 7 days) | Hemolysis rate less than 2%, with good blood compatibility. | Promote wound healing (exerting anti-inflammatory, antioxidant, collagen synthesis, and tissue remodeling effects, accelerating the healing process). | [40] | |
| HA-GB | Continuous release | Promote wound healing of diabetes, anti-inflammatory (reduce the level of pro-inflammatory cytokines (TNF-α, IL-1 β, and IL-6) in the wound, inhibit the NF-κB signal pathway), promote epithelization (increase the expression of TGF-β in the wound and improve epidermal hyperplasia), promote angiogenesis (increase the expression of VEGF in the wound and promote the formation of new blood vessels), and regulate collagen remodeling (promote collagen deposition and increase the ratio of type I collagen to type III collagen, which is conducive to tissue maturation). | [41] | |||
| BCC | Shear thinning characteristic, injectable; BCC hydrogel undergoes gel–sol transition when the strain is 35%. | The hemolysis rate is below 5%, and the cytotoxicity is low. | Promote wound healing of diabetes, resist bacteria, promote the proliferation and migration of L929 fibroblasts, downregulate the expression of pro-inflammatory factor TNF-α in wound tissue, upregulate the expression of anti-inflammatory factor IL-10, inhibit the expression of the NF-κB signaling pathway (p65) and iNOS, promote angiogenesis (increase the expression of vascular endothelial growth factor (VEGF-A) and the number of new CD31-positive blood vessels in wound tissue), and regulate the polarization of macrophages (promote the polarization of macrophages from pro-inflammatory M1 to repair-promoting M2). | [42] | ||
| NC@Gel | Temperature responsiveness | Shear thinning behavior (viscosity decreases with the increase of shear rate); gel strength (G′ > G″) forms stable solid hydrogel. | Hemolytic activity below 4%, with no significant cytotoxicity; animal experiments show no significant toxic reactions. | Accelerate wound healing of diabetes, resist oxidation (effectively eliminate ROS in cells and mitochondria, increase the activity of antioxidant enzymes such as SOD and CAT, and reduce the level of MDA), resist inflammation (inhibit NF-κ B signal pathway, reduce the secretion of pro-inflammatory factors such as TNF-α, promote the polarization of macrophages from pro-inflammatory M1 (CD86+) to anti-inflammatory M2 (CD206+), and increase the level of IL-10), regulate mitochondrial function (reduce the production of mitochondrial ROS), and promote tissue repair (promote angiogenesis, promote collagen deposition and tissue remodeling, and promote cell proliferation and migration). | [43] | |
| HG_MTx/HG_CMx | Temperature responsiveness | Hardness HG_MTx (9.7 N), adhesion HG_MTx (20.3 kPa) and HG_CMx (21.3 kPa); rheological properties (G′ > G″) form stable solid hydrogel. | Continuous release (96 h) | No significant cytotoxicity. | Antibacterial (Staphylococcus aureus and Escherichia coli), antioxidant, anti-inflammatory, and promotes wound healing. | [44] |
| Names | Natural Substances Contained | Cross-Linking Modes | Types of Applications | Mechanism of Action | Reference |
|---|---|---|---|---|---|
| C-Alg | Catechol and sodium alginate | Ionic cross-linking/enzymatic cross-linking | Drug delivery | Dual synergistic mechanism of ionic cross-linking and laccase-catalyzed enzymatic chemical cross-linking | [78] |
| ASASG | Sodium alginate | Ionic cross-linking/hydrogen bonding/electrostatic interactions | Antioxidant, hemostatic, and diabetic wound healing | Multi-target synergistic action of ‘antioxidant, anti-inflammatory, pro-angiogenic, and collagen remodeling’ | [79] |
| U-COC | Catechin | Hydrophobic cross-linking/π–π stacking/hydrogen bonding | Antioxidant, antibacterial, and skin repair | Multi-target synergistic mechanism of ‘antioxidant, antibacterial, anti-inflammatory, and tissue regeneration promoting’ | [80] |
| CMCS/Odex/Que-PF127 | Quercetin | Hydrophobic cross-linking/physical embedding | Antioxidant, antibacterial, and skin repair | Composite system of ‘CMCS-Odex dynamic network + quercetin–PF127 micelle’ | [81] |
| HEBG/TA | Monkey head mushroom extract | Hydrogen bonding | Antioxidant, antibacterial, and skin repair | Synergistic effect of ‘physical cross-linking network + biologically active ingredients’ | [82] |
| THMA/PEGDA/SA | Sodium alginate | Hydrogen bonding/free radical polymerization | Skin repair | Mechanism of ‘chemical–physical dual network + hydrogen bond dynamic response’ | [83] |
| PCPD/AS@APF/H2O2 | Catechol | Free radical polymerization | Antibacterial and scar repair | Mechanism of ‘rapid gel–mechanical adaptation–antibacterial and anti-inflammatory–promoting regeneration’ | [84] |
| DEXHY | Sodium alginate | Free radical polymerization/physical embedding | Skin repair | Mechanisms of ‘temperature-sensitive carriers–controlled drug release–microenvironmental regulation’ | [85] |
| LO | Lavender oil | Radiation polymerization | Anti-inflammatory and skin repair | Synergistic mechanism of ‘highly absorbent porous structure + slow release of bioactive ingredients + pH-responsive degradation’ | [86] |
| AlgMA/PEGDA | Sodium alginate | Radiation polymerization/free radical polymerization | Wound repair | Mechanism of ‘covalent crosslinking initiated by electron beam + natural–synthetic polymer complementarity’ | [87] |
| CGA | Gallic acid | Enzyme cross-linking | Antioxidation | Mechanism of ‘enzymatic cross-linking–antioxidant–cell regulation’ | [88] |
| GA | Gallic acid | Hydrogen bonding/π–π stacking | Antibacterial, anti-inflammatory, and skin repair | Mechanism of ‘self-assembled fiber network–dynamic mechanical properties–slow release of biological activity’ | [89] |
| CA | Chlorogenic acid | Hydrogen bonding/π–π stacking | Anti-inflammatory and skin repair | Triple mechanism of ‘self-assembled fiber network–dynamic mechanical adaptation–inflammation/angiogenesis coupling regulation’ | [90] |
| Puerarin-SF-Ga | Puerarin | Hydrogen bonding/π–π stacking | Antibacterial, anti-inflammatory, antioxidant, and skin repair | Triple mechanism of ‘double nanofiber network–ion synergistic antibacterial–biological activity–slow release’ | [91] |
| OCS/NX@Cur | Sodium alginate and curcumin | Free radical polymerization/physical embedding | Anti-inflammatory and antioxidant | Synergistic mechanism of ‘double-network mechanical support–sustained release of supramolecular drugs–immune microenvironment regulation’ | [92] |
| rGO/BGs@PDA-loaded CS-HEC/AgNCs hydrogel (bioactive glass) | Chitosan, hydroxyethyl cellulose, and dopamine | π–π stacking/hydrogen bonding/free radical polymerization | Antibacterial and skin repair | Multi-mode synergistic mechanism of near-infrared and photothermal silver ion spatiotemporal synergistic antibacterial, biologically active ion mediated tissue regeneration, and conductive antioxidant microenvironment regulation | [93] |
| FABA (bioactive glass) | Dynamic covalent cross-linking (Schiff base reaction) | Antibacterial and skin repair | Multifunctional synergistic mechanism of Cu2+/alendronate sodium synergistic antibacterial + downregulation of TNF-α/upregulation of IL-4/IL-10 anti-inflammatory + promotion of re-epithelialization and skin appendage regeneration | [94] | |
| CaP NPs (calcium phosphate) | Methyl cellulose | Hydrophobic cross-linking | Repair bone defects | Synergistic bone regeneration mechanism of “thermal responsive gel network + in situ formation of bioactive nanoparticles” | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, L.; Li, Q.; Zhou, Y.; Yang, J.; Sun, X.; Bi, X.; Ding, Q.; Liu, X.; Yang, B. Preparation Strategy of Hydrogel Loaded with Natural Products and Its Research Progress in Skin Repair. Gels 2026, 12, 62. https://doi.org/10.3390/gels12010062
Zhang L, Li Q, Zhou Y, Yang J, Sun X, Bi X, Ding Q, Liu X, Yang B. Preparation Strategy of Hydrogel Loaded with Natural Products and Its Research Progress in Skin Repair. Gels. 2026; 12(1):62. https://doi.org/10.3390/gels12010062
Chicago/Turabian StyleZhang, Lingchen, Qifan Li, Yuhan Zhou, Junran Yang, Xiaohang Sun, Xiaoyu Bi, Qiteng Ding, Xinglong Liu, and Bo Yang. 2026. "Preparation Strategy of Hydrogel Loaded with Natural Products and Its Research Progress in Skin Repair" Gels 12, no. 1: 62. https://doi.org/10.3390/gels12010062
APA StyleZhang, L., Li, Q., Zhou, Y., Yang, J., Sun, X., Bi, X., Ding, Q., Liu, X., & Yang, B. (2026). Preparation Strategy of Hydrogel Loaded with Natural Products and Its Research Progress in Skin Repair. Gels, 12(1), 62. https://doi.org/10.3390/gels12010062

