Hydrogel as a Platform for Point-of-Care Calcium Determination in Blood
Abstract
1. Introduction
2. Results and Discussion
2.1. Selection of Gel for Determination of Calcium Ion Concentration in the Gel + Arsenazo III System
2.2. Determination of Calcium Ion Concentration in Patient Blood Plasma Applied to Hydrogel
2.3. Determination of Calcium Concentration in Patient Blood Plasma and Whole Blood Using the Hydrogel Platform
2.4. Standardization of the Method and Robustness Testing
2.4.1. Gel Source and Purity
2.4.2. Effect of Gel Storage and Thawing
2.4.3. Standardization of Blood Cell Removal and Hemolysis Assessment
2.4.4. Recommendations for Standardized Operation
2.5. Results Discussion
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
- (A)
- Reagents. Bovine skin gelatin, phosphate-buffered saline (PBS), peptide N-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), acrylamide, N,N′-methylenebis (acrylamide) (bis-acrylamide), glutaraldehyde, ammonium persulfate, polyacrylate, and allyl pentaerythritol were purchased from Sigma-Aldrich (St. Louis, MO, USA). TEMED was purchased from Fluka (Darmstadt, Germany). The calcium probe Arsenazo III and calcium chloride were obtained from Khimreaktivy (St. Petersburg, Russia), and calcium-olweks was obtained from Olvex Diagnosticum (Moscow, Russia).
- (B)
- Hydrogels. In the first stage, the formation of different gels and their interaction with the calcium probe Arsenazo III were studied. The following gels were considered: (1) polyacrylamide gel (PAAG), (2) PVA gel (formed from polyvinyl alcohol), (3) self-assembling Fmoc-FF peptide hydrogel, (4) carbomer gel, (5) carbopol gel, and (6) gelatin gel. As the platform for calcium determination in patient blood plasma, a gel made from bovine skin gelatin was selected; all other gels were unsuitable for this purpose. Preparation methods are given in the Supplementary Information. Gels with various gelatin concentrations were used: Cgel = 5–18%. The required mass of gelatin was mixed with mQ water, heated to t = 50 °C, and stirred with a magnetic stirrer. After thorough mixing, the calcium probe Arsenazo III was added, and 120 μL of gel was poured into Petri dishes and allowed to cool at room temperature for several hours to form the gel. The concentration of Arsenazo III probe was varied in the range Cars = 3 × 10−5 M–2.5 × 10−4 M. The pH of the samples was controlled, as a mildly acidic environment (pH of 6–7) is required for selective binding of Arsenazo III to calcium. The pH of hydrogels with Arsenazo III in experiments was 6.5. Test samples (CaCl2 as calibrator, blood plasma, or whole blood) were applied to the prepared gel in 50 μL volumes and allowed to diffuse into the gel for 10 min; the residual drop (not absorbed into the gel) was removed, and then absorption spectra of the sample that entered the gel were measured. The thickness of hydrogels was 0.1 cm.
4.2. Blood Collection and Application to Hydrogel
4.3. Determination of Calcium Ion Concentration by Absorption Spectroscopy
4.4. Determination of Hydrogel Pore Diameter by Scanning Ion Conductance Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PVA | Polyvinyl acetate |
| PAAG | Polyacrylamide gel |
| Fmoc-FF | Fluorenylmethoxycarbonyl-diphenylalanine |
References
- Nii, T.; Katayama, Y. Biomaterial-assisted regenerative medicine. Int. J. Mol. Sci. 2021, 22, 8657. [Google Scholar] [CrossRef] [PubMed]
- Chamkouri, H.; Chamkouri, M. A review of hydrogels, their properties and applications in medicine. Am. J. Biomed. Sci. Res. 2021, 11, 485–493. [Google Scholar] [CrossRef]
- Revete, A.; Aparicio, A.; Cisterna, B.A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E.A.; Molino, J.; Reginensi, D. Advancements in the use of hydrogels for regenerative medicine: Properties and biomedical applications. Int. J. Biomater. 2022, 2022, 3606765. [Google Scholar] [CrossRef]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, M.; Zhao, J.; Chai, R.; Kang, J. Looking into the future: Toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv. Mater. 2018, 30, 1705388. [Google Scholar] [CrossRef]
- Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, J.M. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 2019, 12, 1824. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Bhuyan, M.M.; Jeong, J.H. Gels/hydrogels in different devices/instruments—A review. Gels 2024, 10, 548. [Google Scholar] [CrossRef]
- Wang, T.W.; Spector, M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 2009, 5, 2371–2384. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhove, I.; Tytgat, L.; Ryx, M.; Blondeel, P.; Stillaert, F.; Thienpont, H.; Ottevaere, H.; Van Vlierberghe, S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater. 2017, 63, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Patnaik, S.; Guo, X.; Li, Z.; Lo, W.; Butler, R.; Claude, A.; Liu, Z.; Zhang, G.; Liao, J.; et al. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater. 2014, 10, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.M.; De la Hoz Siegler, H. Evolution of hybrid hydrogels: Next-generation biomaterials for drug delivery and tissue engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef]
- Du, X.; Zhai, J.; Li, X.; Zhang, Y.; Li, N.; Xie, X. Hydrogel-based optical ion sensors: Principles and challenges for point-of-care testing and environmental monitoring. ACS Sens. 2021, 6, 1990–2001. [Google Scholar] [CrossRef]
- Wong, N.D.; Gransar, H.; Shaw, L.; Polk, D.; Moon, J.H.; Miranda-Peats, R.; Hayes, S.W.; Thomson, L.E.J.; Rozanski, A.; Friedman, J.D.; et al. Thoracic aortic calcium versus coronary artery calcium for the prediction of coronary heart disease and cardiovascular disease events. JACC Cardiovasc. Imaging 2009, 2, 319–326. [Google Scholar] [CrossRef]
- Kiriakopoulos, A.; Giannakis, P.; Menenakos, E. Calcitonin: Current concepts and differential diagnosis. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221099344. [Google Scholar] [CrossRef]
- Buzanovskii, V.A. Determination of calcium in blood. Rev. J. Chem. 2019, 9, 12–70. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Lima Marson, F.A.; Mendonça, R.M.H.; Bertuzzo, C.S.; Paschoal, I.A.; Ribeiro, J.D.; Ribeiro, A.F.; Levy, C.E. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis. J. Pediatr. 2019, 95, 443–450. [Google Scholar] [CrossRef]
- Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the colorimetric determination of calcium in saliva samples. Sensors 2023, 23, 198. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, I.; Turunen, P.; Garms, B.C.; Rowan, A.; Corrie, S.; Grøndahl, L. Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions. Mater. Adv. 2023, 4, 669–682. [Google Scholar] [CrossRef]
- Zijlstra, W.G.; Buursma, A. Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comp. Biochem. Physiol. B 1997, 118, 743–749. [Google Scholar] [CrossRef]
- Kendrick, N.C. Purification of arsenazo III, a Ca2+-sensitive dye. Anal. Biochem. 1976, 76, 487–501. [Google Scholar] [CrossRef]
- Hosten, E.; Rohwer, H. Interaction of anions with arsenazo III-lanthanide (III) complexes. Anal. Chim. Acta 1997, 345, 227–233. [Google Scholar] [CrossRef]
- Brahm, J.; Lessel, R.; Ditlev, S.; Schmidt, R. Flux of selected body fluid constituents and benzylpenicillin in polyacrylamide hydrogel (PAAG). J. Tissue Eng. Regen. Med. 2012, 6, 793–802. [Google Scholar] [CrossRef]
- Nathan, K.G.; Genasan, K.; Kamarul, T. Polyvinyl alcohol-chitosan scaffold for tissue engineering and regenerative medicine application: A review. Mar. Drugs 2023, 21, 304. [Google Scholar] [CrossRef]
- Tikhonova, T.N.; Barkovaya, A.V.; Efremov, Y.M.; Mamed-Nabizade, V.V.; Kolmogorov, V.S.; Timashev, P.S.; Sysoev, N.N.; Fadeev, V.V.; Gorelkin, P.V.; Adler-Abramovich, L.; et al. Non-Invasive Nanometer Resolution Assessment of Cell–Soft Hydrogel System Mechanical Properties by Scanning Ion Conductance Microscopy. Int. J. Mol. Sci. 2024, 25, 13479. [Google Scholar] [CrossRef]
- Perale, G.; Veglianese, P.; Rossi, F.; Peviani, M.; Santoro, M.; Llupi, D.; Micotti, E.; Forloni, G.; Masi, M. In situ agar–carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Mater. Lett. 2011, 65, 1688–1692. [Google Scholar] [CrossRef]
- Echave, M.C.; Hernáez-Moya, R.; Iturriaga, L.; Pedraz, J.L.; Lakshminarayanan, R.; Dolatshahi-Pirouz, A.; Taebnia, N.; Orive, G. Recent advances in gelatin-based therapeutics. Expert Opin. Biol. Ther. 2019, 19, 773–779. [Google Scholar] [CrossRef]
- Tikhonova, T.N.; Efremov, Y.M.; Kolmogorov, V.S.; Iakovlev, A.P.; Sysoev, N.N.; Timashev, P.S.; Fadeev, V.V.; Tivtikyan, A.S.; Salikhov, S.V.; Gorelkin, P.V.; et al. Mechanical properties of soft hydrogels: Assessment by scanning ion-conductance microscopy and atomic force microscopy. Soft Matter 2024, 20, 9464–9474. [Google Scholar] [CrossRef] [PubMed]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Yadav, J.; Kumar, S.; Singh, P. Metabolism of Macro-Elements (Calcium, Magnesium, Sodium, Potassium, Chloride and Phosphorus) and Associated Disorders. In Clinical Applications of Biomolecules in Disease Diagnosis: A Comprehensive Guide to Biochemistry and Metabolism; Springer Nature: Singapore, 2024; pp. 177–203. [Google Scholar]
- Morgan, B.R.; Artiss, J.D.; Zak, B. Calcium determination in serum with stable alkaline Arsenazo III and triglyceride clearing. Clin. Chem. 1993, 39, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Dong, D.; Wang, Z.; Gao, Y.; Yu, D.; Ye, S.; Du, X.; Ma, L.; Cao, H.; Liu, F.; et al. Analysis of influencing factors of serum total protein and serum calcium content in plasma donors. PeerJ 2022, 10, e14474. [Google Scholar] [CrossRef]
- Kratochvil, B.; He, X.W. A study of the Ca2+–Arsenazo III system and its application to the spectrophotometric determination of free calcium in solution. Can. J. Chem. 1990, 68, 1932–1936. [Google Scholar] [CrossRef]
- Dong, L.; Chen, X.; Hu, Z. Study on the binding of Arsenazo-TB to human serum albumin by Rayleigh light scattering technique and FT-IR. Biochim. Biophys. Acta 2006, 1764, 257–262. [Google Scholar] [CrossRef]
- Mok, C.F.; Ching, Y.C.; Muhamad, F.; Abu Osman, N.A.; Hai, N.D.; Che Hassan, C.R. Adsorption of dyes using poly(vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: A review. J. Polym. Environ. 2020, 28, 775–793. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Du, Q.; Wang, X.; Hu, S.; Chen, L.; Wang, Z.; Xia, Y.; Xia, L. Adsorption of methylene blue from aqueous solutions by polyvinyl alcohol/graphene oxide composites. J. Nanosci. Nanotechnol. 2016, 16, 1775–1782. [Google Scholar] [CrossRef]
- Binaeian, E.; Zadvarzi, S.B.; Yuan, D. Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. Int. J. Biol. Macromol. 2020, 162, 150–162. [Google Scholar] [CrossRef]
- Li, H.; Lei, S.; Tang, Y.; Zou, L.; Hu, H.; Wang, S. Drug Effect of Thulium (III)-Arsenazo III Complex on Herring Sperm DNA. J. Chem. 2018, 2018, 7232793. [Google Scholar] [CrossRef]
- Lu, Y.W.; Laurent, G.; Pereira, H. A novel methodology for evaluation of formation constants of complexes: Example of lanthanide–Arsenazo III complexes. Talanta 2004, 62, 959–970. [Google Scholar] [CrossRef]
- Chowdhury, T.K.J. Fabrication of extremely fine glass micropipette electrodes. Phys. E Sci. Instrum. 1969, 2, 1087. [Google Scholar] [CrossRef]
- Novak, P.; Li, C.; Shevchuk, A.I.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T.G.; Gorelik, J.; Ostanin, V.P.; Lab, M.J.; et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 2009, 6, 279. [Google Scholar] [CrossRef]
- Kolenc, O.I.; Quinn, K.P. Evaluating cell metabolism through autofluorescence imaging of NAD (P) H and FAD. Antioxid. Redox Signal. 2019, 30, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Tse, J.R.; Engler, A.J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 2010, 47, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427–434. [Google Scholar] [CrossRef] [PubMed]




| Gelatin Concentration in Hydrogels (%) | Calcium Concentration in the Blood Plasma of Different Donors, Assessed by Clinical Analysis, (mM) | Calcium Concentration in the Blood Plasma of Different Donors After Adhesion of Plasma on the Hydrogel (mM) |
|---|---|---|
| 5 | 2.16 | 1.42 |
| 6 | 2.16 | 2.17 |
| 7 | 2.20 | 2.22 |
| 9 | 1.96 | 1.95 |
| 12 | 2.22 | 2.17 |
| 18 | 2.24 | 2.30 |
| Gelatin Concentration in Hydrogels (%) | Calcium Concentration in the Blood Plasma of Different Donors, Assessed by Clinical Analysis (mM) | Calcium Concentration in the Blood Plasma of Different Donors after Adhesion of Plasma on the Hydrogel (mM) | Calcium Concentration in the Blood Plasma of Different Donors After Adhesion of Whole Blood on the Hydrogel (mM) |
|---|---|---|---|
| 5 | 2.16 | 1.42 | 1.42 |
| 6 | 2.16 | 2.17 | 1.50 |
| 7 | 2.20 | 2.22 | 2.15 |
| 8 | 2.14 | 2.17 | 2.12 |
| 9 | 1.96 | 1.95 | 1.6 |
| 12 | 2.22 | 2.17 | 1.05 |
| 18 | 2.24 | 2.3 | 1.3 |
| ISE-PoC | Microfluidic Chips | Hydrogel Platform | |
|---|---|---|---|
| Sample type | Whole blood, plasma | Plasma | Whole blood, plasma |
| Form of Ca detected | Ionized Ca2+ | Total or ionized Ca2+ | Ionized Ca2+ |
| Equipment required | Specialized analyzer | Microfluidic system | Photometric system |
| Assay time | 1–3 min | 5–15 min | 10–15 min |
| Limitations | Requires calibration | Requires calibration, complex fabrication, possible chip clogging, high equipment cost | Requires calibration |
| Blood collection | Venous blood (sometimes capillary blood) | Venous blood (sometimes capillary blood) | Capillary blood |
| Accuracy | Measures clinically relevant Ca2+ fraction | High correlation with standard lab methods | Measures clinically relevant Ca2+ fraction |
| Sample volume | 60–100 μL | 10–50 μL | 10–50 μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tikhonova, T.N.; Barkovaya, A.V.; Efremov, Y.M.; Panov, V.I.; Timashev, P.S.; Fadeev, V.V. Hydrogel as a Platform for Point-of-Care Calcium Determination in Blood. Gels 2026, 12, 28. https://doi.org/10.3390/gels12010028
Tikhonova TN, Barkovaya AV, Efremov YM, Panov VI, Timashev PS, Fadeev VV. Hydrogel as a Platform for Point-of-Care Calcium Determination in Blood. Gels. 2026; 12(1):28. https://doi.org/10.3390/gels12010028
Chicago/Turabian StyleTikhonova, Tatiana N., Anastasia V. Barkovaya, Yuri M. Efremov, Vladimir I. Panov, Peter S. Timashev, and Victor V. Fadeev. 2026. "Hydrogel as a Platform for Point-of-Care Calcium Determination in Blood" Gels 12, no. 1: 28. https://doi.org/10.3390/gels12010028
APA StyleTikhonova, T. N., Barkovaya, A. V., Efremov, Y. M., Panov, V. I., Timashev, P. S., & Fadeev, V. V. (2026). Hydrogel as a Platform for Point-of-Care Calcium Determination in Blood. Gels, 12(1), 28. https://doi.org/10.3390/gels12010028

