Gel-Based Marangoni Actuators: Mechanisms, Material Designs, Driving Modes, and Cross-Scale Applications
Abstract
1. Introduction
2. Marangoni Actuators: In-Depth Analysis of Principle, Materials, and Structure
2.1. The Motion Principle of the Marangoni Actuator
2.2. Material and Structural Design of Marangoni Actuators
2.2.1. Design of Marangoni Actuator Based on Temperature Gradient
2.2.2. Design of Marangoni Actuator Based on Solute Concentration
2.2.3. Hydrogel/Organogel-Based Marangoni Actuators
3. The Driving Method of the Marangoni Actuator
3.1. Light-Driven
3.2. Chemically Driven
3.2.1. Alcohol-Driven
3.2.2. pH-Driven
3.2.3. SDS-Driven
3.3. Electrically Driven
4. The Applications of Marangoni Actuators
4.1. Applications at the Microscopic Scale
4.2. Applications at the Macroscopic Scale
4.2.1. Macroscopic Supramolecular Assembly
4.2.2. Cargo Transportation
4.2.3. Programmable Motion Control
4.2.4. Other Applications
5. Summary and Perspectives
- (1)
- The invention of high-performance functional materials will provide core support for the performance leap of Marangoni actuators. For instance, the continuous optimization of new photothermal conversion materials (such as MXene, black phosphorus, etc.) can further enhance the efficiency of light energy–thermal conversion, improve the accuracy of temperature gradient regulation, and thereby increase the movement speed and response sensitivity of the actuator. The combination of stimuli-responsive intelligent polymers and surfactants will endow the actuator with more efficient solute release kinetic regulation capabilities, extend its motion life, and expand its environmental adaptability.
- (2)
- The development of multi-field collaborative drive and precise programming technology will be the key direction for its intelligent upgrade. The limitations of a single optical drive or chemical-driven or electric drive will gradually be broken through. Through the collaborative coupling of multiple physical fields, such as light–electricity and chemical–thermal, diverse combinations of actuator motion modes and precise planning of complex trajectories can be achieved. For instance, by integrating light-controlled navigation with solute release triggered by electrical signals, it is expected to achieve intelligent execution of “motion-operation” integration, laying the foundation for cluster collaboration in complex scenarios.
- (3)
- The enhancement of functional integration and environmental adaptability will expand its application boundaries. In the future, Marangoni actuators will not only have self-propulsion capabilities but also integrate micro-sensing units (such as pH, temperature, and pollutant sensors) to achieve real-time perception and dynamic response to environmental signals. This feature is particularly important in the biomedical field. For instance, actuators sensitive to the microenvironment of the lesion (such as acidic pH) can be designed to achieve targeted drug delivery and on-demand release, significantly enhancing the accuracy of treatment. In environmental monitoring, in situ detection and autonomous collection of water pollutants can be achieved.
- (4)
- Deep penetration in both micro-manipulation and macro-application scenarios will become an important development trend. At the micro level, its application in precise directional transport in microfluidic chips, capture and assembly of cells/particles, and other fields will become more mature, providing efficient tools for the preparation of biochips and micro-nano manufacturing. At the macro level, bionic swimming pools and environmental cleaning robots based on the Marangoni effect will play a significant role in tasks like cleaning oil stains on water surfaces, collecting water pollutants, and even programmable assembly of macroscopic supramolecular materials, demonstrating cross-scale application value from micro to macro.
- (5)
- Breakthroughs in low-cost and large-scale manufacturing processes will accelerate its industrialization process. The current preparation mode that relies on complex processes, such as precision lithography and laser processing, will gradually develop towards simplification and high-throughput. For instance, the introduction of technologies like template-assisted printing and 3D printing can enable rapid customized production of actuators, reduce manufacturing costs, and provide the possibility for their popularization in large-scale application scenarios such as environmental governance and flexible robots.
- (6)
- Advancement of theoretical modeling for complex fluid systems: The accurate prediction of Marangoni flow dynamics in non-ideal environments remains a critical bottleneck. There is an urgent need to develop multi-physics theoretical frameworks that integrate viscoelastic properties of biological fluids, phase interactions in multiphase emulsions, and dynamic interfacial evolution. Such models will enable quantitative simulation of actuation behaviors under realistic working conditions (e.g., in vivo microenvironments or industrial complex flow fields), providing mechanistic insights for rational material design and performance optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Gao, B.; Li, P.; Zhao, X.; Yan, Q.; Liu, Z.; Xu, L.; Zheng, H.; Xue, F.; Ding, R.; et al. Multistimuli-Responsive Actuators Derived from Natural Materials for Entirely Biodegradable and Programmable Untethered Soft Robots. ACS Nano 2023, 17, 23032–23045. [Google Scholar] [CrossRef]
- Espíndola-Pérez, E.R.; Campo, J.; Sánchez-Somolinos, C. Multimodal and Multistimuli 4D-Printed Magnetic Composite Liquid Crystal Elastomer Actuators. ACS Appl. Mater. Interfaces 2024, 16, 2704–2715. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, X.; Zhang, Y.; Cheng, X.; Long, Z.; Ren, L.; Xia, X.; Wang, Q.; Li, J.; Lv, P.; et al. Novel Biomimetic “Spider Web” Robust, Super-Contractile Liquid Crystal Elastomer Active Yarn Soft Actuator. Adv. Sci. 2024, 11, 2400557. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sang, M.; Lou, C.; Liao, G.; Liu, S.; Wu, J.; Gong, X.; Ma, Q.; Xuan, S. Triple-Responsive Soft Actuator with Plastically Retentive Deformation and Magnetically Programmable Recovery. ACS Nano 2023, 17, 24042–24054. [Google Scholar] [CrossRef]
- Min, H.; Bae, D.; Jang, S.; Lee, S.; Park, M.; Dayan, C.B.; Choi, J.; Bak, K.; Yang, Y.; Chun, S.; et al. Stiffness-tunable velvet worm–inspired soft adhesive robot. Sci. Adv. 2024, 10, eadp8260. [Google Scholar] [CrossRef]
- Yan, W.; Feng, Y.; Song, J.; Hong, Z.; Cui, K.; Brannan, A.C.; Sun, J.; Tan, J.; Song, X. Biomimetic soft actuator: Rapid response to multiple stimuli with programmable control. Carbon 2025, 231, 119734. [Google Scholar] [CrossRef]
- Wu, S.; Hong, Y.; Zhao, Y.; Yin, J.; Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 2023, 9, eadf8014. [Google Scholar] [CrossRef]
- Kaynak, M.; Dirix, P.; Sakar, M.S. Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems. Adv. Sci. 2020, 7, 2001120. [Google Scholar] [CrossRef]
- Long, J.; Zhou, G.; Yu, X.; Xu, J.; Hu, L.; Pranovich, A.; Yong, Q.; Xie, Z.-H.; Xu, C. Harnessing chemical functionality of xylan hemicellulose towards carbohydrate polymer-based pH/magnetic dual-responsive nanocomposite hydrogel for drug delivery. Carbohydr. Polym. 2024, 343, 122461. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.; Li, M.; Hou, Z.; Zhan, C.; Zheng, Q.; Wang, D.; Wang, X.; Cheng, M.; Hu, W.; et al. Bioinspired rotary flight of light-driven composite films. Nat. Commun. 2023, 14, 5070. [Google Scholar] [CrossRef]
- Wang, F.; Liu, M.; Liu, C.; Huang, C.; Zhang, L.; Cui, A.; Hu, Z.; Du, X. Light control of droplets on photo-induced charged surfaces. Natl. Sci. Rev. 2023, 10, nwac164. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhou, X.; Zhang, J.; Liu, L.; Wang, S.; Zhu, L.; Ming, Z.; Zhang, Y.; Xia, Y.; Li, W.; et al. Microfiber Actuators with Hot-Pressing-Programmable Mechano-Photothermal Responses for Electromagnetic Perception. Adv. Mater. 2024, 36, 2409606. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Chen, R.; Wang, Z.; Zhang, H.; Ma, X.; Bao, F. Microfluidic Spun Self-Healable Janus-Core Composite Microfibers as Smart Fiber Actuators. ACS Appl. Mater. Interfaces 2025, 17, 20225–20235. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Martínez, J.F.; Elvira, I.; Jubera, M.; García-Cabañes, A.; Ramiro, J.B.; Arregui, C.; Carrascosa, M. Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning. Opt. Mater. Express 2015, 5, 1137–1146. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Xie, Y.; Xiao, Z.; Wang, H. Bioinspired superhydrophobic light-driven actuators via in situ growth of copper sulfide nanoparticle on cellulose nanofiber. Chem. Eng. J. 2024, 479, 147614. [Google Scholar] [CrossRef]
- Webster-Wood, V.A.; Akkus, O.; Gurkan, U.A.; Chiel, H.J.; Quinn, R.D. Organismal engineering: Toward a robotic taxonomic key for devices using organic materials. Sci. Robot. 2017, 2, eaap9281. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Shen, Y. Plasmonic-Enhanced Graphene Oxide-Based Aquatic Robot for Target Cargo Delivery. ACS Appl. Mater. Interfaces 2021, 13, 1503–1510. [Google Scholar] [CrossRef]
- Lyu, L.X.; Li, F.; Wu, K.; Deng, P.; Jeong, S.H.; Wu, Z.; Ding, H. Bio-inspired untethered fully soft robots in liquid actuated by induced energy gradients. Natl. Sci. Rev. 2019, 6, 970–981. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zhang, M.; Yang, D.; Huang, W.; Zheng, A.; Cao, L. High-Performance MXene Hydrogel for Self-Propelled Marangoni Swimmers and Water-Enabled Electricity Generator. Adv. Sci. 2025, 12, 2408161. [Google Scholar] [CrossRef]
- Mathai, V.; Tzezana, G.A.; Das, A.; Breuer, K.S. Fluid–structure interactions of energy-harvesting membrane hydrofoils. J. Fluid Mech. 2022, 942, R4. [Google Scholar] [CrossRef]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 2019, 223, 119473. [Google Scholar] [CrossRef] [PubMed]
- Chimerad, M.; Borjian, P.; Pathak, P.; Fasano, J.; Cho, H.J. A Miniaturized, Fuel-Free, Self-Propelled, Bio-Inspired Soft Actuator for Copper Ion Removal. Micromachines 2024, 15, 1208. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Blokhuis, A.W.P.; Dijt, S.J.; Wu, J.; Hamed, S.; Kiani, A.; Matysiak, B.M.; Otto, S. Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport. Nat. Chem. 2025, 17, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zeng, B.; Lu, Q.; Xing, Y.; Gui, X.; Cao, Y.; Xu, B.B.; Zhang, X. Shaping a Surface Microdroplet by Marangoni Forces along a Moving Contact Line of Four Immiscible Phases. Adv. Mater. Interfaces 2024, 11, 2300766. [Google Scholar] [CrossRef]
- Sauleda, M.L.; Hsieh, T.-L.; Xu, W.; Tilton, R.D.; Garoff, S. Surfactant spreading on a deep subphase: Coupling of Marangoni flow and capillary waves. J. Colloid Interface Sci. 2022, 614, 511–521. [Google Scholar] [CrossRef]
- Song, L.; Cai, J.; Zhang, S.; Liu, B.; Zhao, Y.-D.; Chen, W. Light-controlled spiky micromotors for efficient capture and transport of targets. Sens. Actuators B Chem. 2022, 358, 131523. [Google Scholar] [CrossRef]
- Liang, R.; Yu, H.; Wang, L.; Shen, D. Light-Guided Dynamic Liquid Crystalline Elastomer Actuators enabled by Mussel Adhesive Protein Chemistry. Adv. Funct. Mater. 2023, 33, 2211914. [Google Scholar] [CrossRef]
- Chen, Y.; Valenzuela, C.; Zhang, X.; Yang, X.; Wang, L.; Feng, W. Light-driven dandelion-inspired microfliers. Nat. Commun. 2023, 14, 3036. [Google Scholar] [CrossRef]
- Ta, V.D.; Carter, R.M.; Esenturk, E.; Connaughton, C.; Wasley, T.J.; Li, J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Shephard, J.D. Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation. Soft Matter 2016, 12, 4530–4536. [Google Scholar] [CrossRef]
- Still, T.; Yunker, P.J.; Yodh, A.G. Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops. Langmuir 2012, 28, 4984–4988. [Google Scholar] [CrossRef]
- Scriven, L.E.; Sternling, C.V. The Marangoni Effects. Nature 1960, 187, 186–188. [Google Scholar] [CrossRef]
- Nakata, S.; Iguchi, Y.; Ose, S.; Kuboyama, M.; Ishii, T.; Yoshikawa, K. Self-Rotation of a Camphor Scraping on Water: New Insight into the Old Problem. Langmuir 1997, 13, 4454–4458. [Google Scholar] [CrossRef]
- Tadmor, R. Marangoni flow revisited. J. Colloid Interface Sci. 2009, 332, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Levich, V.G.; Tobias, C.W. Physicochemical Hydrodynamics. J. Electrochem. Soc. 1963, 110, 251C. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, B.; Ji, X.; Pei, K.; Chan, P.K.L. Marangoni-Effect-Assisted Bar-Coating Method for High-Quality Organic Crystals with Compressive and Tensile Strains. Adv. Funct. Mater. 2017, 27, 1703443. [Google Scholar] [CrossRef]
- Dou, L.; Yuan, Z.; Li, J.; Li, J.; Wang, X. Surface tension of molten Al-Si alloy at temperatures ranging from 923 to 1123 K. Chin. Sci. Bull. 2008, 53, 2593–2598. [Google Scholar] [CrossRef]
- Ślemp, M.; Miniewicz, A. Marangoni Bursting: Insight into the Role of the Thermocapillary Effect in an Oil Bath. Fluids 2023, 8, 255. [Google Scholar] [CrossRef]
- Mackay, G.D.M.; Mason, S.G. The Marangoni Effect and Liquid/Liquid Coalescence. Nature 1961, 191, 488. [Google Scholar] [CrossRef]
- Fanton, X.; Cazabat, A.M. Spreading and Instabilities Induced by a Solutal Marangoni Effect. Langmuir 1998, 14, 2554–2561. [Google Scholar] [CrossRef]
- Hartnett, C.A.; Seric, I.; Mahady, K.; Kondic, L.; Afkhami, S.; Fowlkes, J.D.; Rack, P.D. Exploiting the Marangoni Effect to Initiate Instabilities and Direct the Assembly of Liquid Metal Filaments. Langmuir 2017, 33, 8123–8128. [Google Scholar] [CrossRef]
- Xiao, Y.; Ribe, N.M.; Zhang, Y.; Pan, Y.; Cao, Y.; Shum, H.C. Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Nat. Commun. 2022, 13, 7206. [Google Scholar] [CrossRef] [PubMed]
- Gavrilina, A.A.; Barash, L.Y. Modeling Unsteady Bénard-Marangoni Instabilities in Drying Volatile Droplets on a Heated Substrate. J. Exp. Theor. Phys. 2021, 132, 302–312. [Google Scholar] [CrossRef]
- Careaga, J.; Korevaar, P.A.; Nikolić, V.; Scarabosio, L. Application of the thin-film equations in modelling of Marangoni flow patterns amongst surfactant source and drain locations. arXiv 2024, arXiv:2407.11868. [Google Scholar] [CrossRef]
- Carl, T.; Schönecker, C. Modeling thermocapillary microgear rotation and transferring the concept of asymmetric shape to translational particle propulsion. Phys. Fluids 2024, 36, 062017. [Google Scholar] [CrossRef]
- Potter, H.D.P. Modeling Temperature Dependence in Marangoni-driven Thin Films. Ph.D. Thesis, Duke University, Durham, NC, USA, 2015. [Google Scholar]
- Huang, J.; Yu, X.; Li, L.; Wang, W.; Zhang, H.; Zhang, Y.; Zhu, J.; Ma, J. Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. ACS Nano 2024, 18, 2006–2016. [Google Scholar] [CrossRef]
- Ma, J.-N.; Ma, B.; Wang, Z.-X.; Song, P.; Han, D.-D.; Zhang, Y.-L. Multiresponsive MXene Actuators with Asymmetric Quantum-Confined Superfluidic Structures. Adv. Funct. Mater. 2024, 34, 2308317. [Google Scholar] [CrossRef]
- Qi, Y.; Ren, S.; Ye, J.; Bi, S.; Shi, L.; Fang, Y.; Wang, G.; Finfrock, Y.Z.; Li, J.; Che, Y.; et al. Copper-Single-Atom Coordinated Nanotherapeutics for Enhanced Sonothermal-Parallel Catalytic Synergistic Cancer Therapy. Adv. Healthc. Mater. 2023, 12, 2300291. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, Q.; Che, L.; Li, M.; Leng, X.; Long, Y.; Lu, Y. Multi-Stimuli-Responsive Weldable Bilayer Actuator with Programmable Patterns and 3D Shapes. Adv. Funct. Mater. 2024, 34, 2311398. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.; Ji, F.; Zhu, J.; Ma, P.; Su, H.; Chen, P.; Feng, X.; Du, W.; Liu, B.-F. Patterning candle soot for light-driven actuator via Marangoni effect. Sens. Actuators B Chem. 2021, 347, 130613. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.-Q.; Liu, Y.; Han, B.; Wang, H.; Han, D.-D.; Wang, J.-N.; Zhang, Y.-L.; Sun, H.-B. Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect. Adv. Funct. Mater. 2017, 27, 1702946. [Google Scholar] [CrossRef]
- Pan, D.; Wu, D.; Li, P.-J.; Ji, S.-Y.; Nie, X.; Fan, S.-Y.; Chen, G.-Y.; Zhang, C.-C.; Xin, C.; Xu, B.; et al. Transparent Light-Driven Hydrogel Actuator Based on Photothermal Marangoni Effect and Buoyancy Flow for Three-Dimensional Motion. Adv. Funct. Mater. 2021, 31, 2009386. [Google Scholar] [CrossRef]
- Ng, Y.J.; Chan, S.S.; Khoo, K.S.; Munawaroh, H.S.H.; Lim, H.R.; Chew, K.W.; Ling, T.C.; Saravanan, A.; Ma, Z.; Show, P.L. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnol. Adv. 2023, 68, 108198. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Kinane, C.; Zhang, Z.; Pena-Francesch, A. Functional Chemical Motor Coatings for Modular Powering of Self-Propelled Particles. ACS Appl. Mater. Interfaces 2022, 14, 39332–39342. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, C.; Lee, A.C.; Bae, J.; Kim, H.; Choi, H.; Song, S.w.; Jeong, Y.; Choi, J.; Lee, H.; et al. Photopatterned microswimmers with programmable motion without external stimuli. Nat. Commun. 2021, 12, 4724. [Google Scholar] [CrossRef]
- Huang, C.; Pinchin, N.P.; Lin, C.-H.; Tejedor, I.H.; Scarfo, M.G.; Shahsavan, H.; Pena-Francesch, A. Self-Propelled Morphing Matter for Small-Scale Swimming Soft Robots. Adv. Funct. Mater. 2024, 34, 2413129. [Google Scholar] [CrossRef]
- Sur, S.; Uvanovic, N.; Masoud, H.; Rothstein, J.P. The Effect of Shape on the Motion and Stability of Marangoni Surfers. J. Fluids Eng. 2020, 143, 011301. [Google Scholar] [CrossRef]
- Mao, Q.; Yang, Q.-J.; Li, Y.-L.; Cao, W. Numerical study of the Marangoni effect induced by soluble surfactants and solute based on rising droplets. Phys. Fluids 2024, 36, 022103. [Google Scholar] [CrossRef]
- Li, G.; Du, J.; Zhang, A.; Lee, D.-w. Electrochemically controllable actuation of liquid metal droplets based on Marangoni effect. J. Appl. Phys. 2019, 126, 084505. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Sivan, V.; Petersen, P.; Zhang, W.; Morrison, P.D.; Kalantar-zadeh, K.; Mitchell, A.; Khoshmanesh, K. Liquid Metal Actuator for Inducing Chaotic Advection. Adv. Funct. Mater. 2014, 24, 5851–5858. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhao, D.; Zhang, K.; Huang, Y.; Zhong, J. Bio-inspired and programmable Marangoni motor for highly maneuverable and adaptable S-aquabots. eScience 2025, 5, 100335. [Google Scholar] [CrossRef]
- Wu, S.; Shi, H.; Lu, W.; Wei, S.; Shang, H.; Liu, H.; Si, M.; Le, X.; Yin, G.; Theato, P.; et al. Aggregation-Induced Emissive Carbon Dots Gels for Octopus-Inspired Shape/Color Synergistically Adjustable Actuators. Angew. Chem. Int. Ed. 2021, 60, 21890–21898. [Google Scholar] [CrossRef]
- Sharma, R.; Chang, S.T.; Velev, O.D. Gel-Based Self-Propelling Particles Get Programmed to Dance. Langmuir 2012, 28, 10128–10135. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, N.J.; Sasaki, T.; Nakata, S.; Kitahata, H. Quantitative Estimation of the Parameters for Self-Motion Driven by Difference in Surface Tension. Langmuir 2014, 30, 8101–8108. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, C. Photothermally-driven oxazine hydrogel actuators at the water-air interface. Giant 2023, 16, 100192. [Google Scholar] [CrossRef]
- Hou, K.-X.; Zhao, P.-C.; Li, C.-H. A Light-Driven Actuator Enables Versatile Motion for Smart Transportation and Contactless Delivery. Adv. Opt. Mater. 2023, 11, 2202949. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Boudreau, D. Neighbors Matter: Leveraging Collective Thermoplasmonic Effects for Smart Soft Actuators. ACS Appl. Polym. Mater. 2024, 6, 2359–2370. [Google Scholar] [CrossRef]
- Wang, X.; Lin, D.; Zhou, Y.; Jiao, N.; Tung, S.; Liu, L. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS Nano 2022, 16, 14895–14906. [Google Scholar] [CrossRef]
- Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y.-L.; Han, D.-D.; Sun, H.-B. Laser-Induced Graphene Tapes as Origami and Stick-On Labels for Photothermal Manipulation via Marangoni Effect. Adv. Funct. Mater. 2021, 31, 2006179. [Google Scholar] [CrossRef]
- Hou, K.; Guan, D.; Li, H.; Sun, Y.; Long, Y.; Song, K. Programmable light-driven swimming actuators via wavelength signal switching. Sci. Adv. 2021, 7, eabh3051. [Google Scholar] [CrossRef]
- García-Carmona, L.; González, M.C.; Escarpa, A. On-line coupling of millimeter size motors and chronoamperometry for real time bio-sensing of branched-chain amino acids in maple syrup urine disease clinical samples. Sens. Actuators B Chem. 2019, 281, 239–244. [Google Scholar] [CrossRef]
- Liu, H.; Si, C.; Cai, C.; Zhao, C.; Yin, H. Experimental investigation on impact and spreading dynamics of a single ethanol–water droplet on a heated surface. Chem. Eng. Sci. 2021, 229, 116106. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Li, Y.; Huo, P.; Gu, X.; Hu, M.; Deng, D. Self-Lifting Droplet Driven by the Solidification-Induced Solutal Marangoni Flow. Phys. Rev. Lett. 2024, 132, 014002. [Google Scholar] [CrossRef] [PubMed]
- Kwak, B.; Choi, S.; Maeng, J.; Bae, J. Marangoni effect inspired robotic self-propulsion over a water surface using a flow-imbibition-powered microfluidic pump. Sci. Rep. 2021, 11, 17469. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Cheng, M.; Zhang, Y.; Shi, F. Combining the Marangoni Effect and the pH-Responsive Superhydrophobicity–Superhydrophilicity Transition to Biomimic the Locomotion Process of the Beetles of Genus Stenus. Small 2013, 9, 2509–2514. [Google Scholar] [CrossRef]
- Kim, W.; Vitral, E.; Leo, P.H.; Viñals, J.; Kim, D.S.; Yoon, D.K. Sublimation of isolated toric focal conic domains on micro-patterned surfaces. Soft Matter 2024, 20, 2040–2051. [Google Scholar] [CrossRef]
- Chang, J.; Liang, W.; Xu, F.; Wu, D.; Jiang, K.; Wang, G.; Gao, Z. Bismuth oxyformate microspheres assembled by ultrathin nanosheets as an efficient negative material for aqueous alkali battery. J. Colloid Interface Sci. 2023, 639, 96–106. [Google Scholar] [CrossRef]
- Hsieh, T.-L.; Law, S.; Garoff, S.; Tilton, R.D. pH-Dependent Interfacial Tension and Dilatational Modulus Synergism of Oil-Soluble Fatty Acid and Water-Soluble Cationic Surfactants at the Oil/Water Interface. Langmuir 2021, 37, 11573–11581. [Google Scholar] [CrossRef]
- Nguindjel, A.-D.C.; Korevaar, P.A. Self-Sustained Marangoni Flows Driven by Chemical Reactions. ChemSystemsChem 2021, 3, e2100021. [Google Scholar] [CrossRef]
- Zarzar, L.D.; Kim, P.; Aizenberg, J. Bio-inspired Design of Submerged Hydrogel-Actuated Polymer Microstructures Operating in Response to pH. Adv. Mater. 2011, 23, 1442–1446. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, S.; Lu, G.; Peng, B.; Lin, C.; Zhang, L.; Shi, F.; Zhang, Q.; Cheng, M. ON–OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch. Angew. Chem. Int. Ed. 2024, 63, e202405287. [Google Scholar] [CrossRef]
- Carmeli, I.; Bounioux, C.M.; Mickel, P.; Richardson, M.B.; Templeman, Y.; Scofield, J.M.P.; Qiao, G.G.; Rosen, B.A.; Yusupov, Y.; Meshi, L.; et al. Unidirectional rotation of micromotors on water powered by pH-controlled disassembly of chiral molecular crystals. Nat. Commun. 2023, 14, 2869. [Google Scholar] [CrossRef] [PubMed]
- Deshiikan, S.R.; Bush, D.; Eschenazi, E.; Papadopoulos, K.D. SDS, Brij58 and CTAB at the dodecane-water interface. Colloids Surf. A Physicochem. Eng. Asp. 1998, 136, 133–150. [Google Scholar] [CrossRef]
- Parra, J.G.; Domínguez, H.; Aray, Y.; Iza, P.; Zarate, X.; Schott, E. Structural and interfacial properties of the CO2-in-water foams prepared with sodium dodecyl sulfate (SDS): A molecular dynamics simulation study. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123615. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Manev, E.D.; Tsekov, R.; Nguyen, A.V. Effect of ionic surfactants on drainage and equilibrium thickness of emulsion films. J. Colloid Interface Sci. 2008, 318, 358–364. [Google Scholar] [CrossRef]
- Péron, N.; Mészáros, R.; Varga, I.; Gilányi, T. Competitive adsorption of sodium dodecyl sulfate and polyethylene oxide at the air/water interface. J. Colloid Interface Sci. 2007, 313, 389–397. [Google Scholar] [CrossRef]
- Lu, G.; Zhu, G.; Peng, B.; Zhao, R.; Shi, F.; Cheng, M. A Multi-engine Marangoni Rotor with Controlled Motion for Mini-Generator Application. ACS Appl. Mater. Interfaces 2023, 15, 23980–23988. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, D.; Zhang, S.; Wang, Z.; Shi, F. Tackling the Short-Lived Marangoni Motion Using a Supramolecular Strategy. CCS Chem. 2019, 1, 148–155. [Google Scholar] [CrossRef]
- Li, L.; Jiang, L.; Wang, Y.; Zhao, Y.; Zhang, X.-J.; Wu, G.; Zhou, X.; Sun, J.; Bai, J.; Ren, B.; et al. Combination of Metformin and Gefitinib as First-Line Therapy for Nondiabetic Advanced NSCLC Patients with EGFR Mutations: A Randomized, Double-Blind Phase II Trial. Clin. Cancer Res. 2019, 25, 6967–6975. [Google Scholar] [CrossRef]
- Khan, M.R.; Eaker, C.B.; Bowden, E.F.; Dickey, M.D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. USA 2014, 111, 14047–14051. [Google Scholar] [CrossRef]
- Zavabeti, A.; Daeneke, T.; Chrimes, A.F.; O’Mullane, A.P.; Zhen Ou, J.; Mitchell, A.; Khoshmanesh, K.; Kalantar-zadeh, K. Ionic imbalance induced self-propulsion of liquid metals. Nat. Commun. 2016, 7, 12402. [Google Scholar] [CrossRef]
- Ren, H.; Jin, H.; Shu, J.; Xie, J.; Wang, E.; Ge, D.-A.; Tang, S.-Y.; Li, X.; Li, W.; Zhang, S. Light-controlled versatile manipulation of liquid metal droplets: A gateway to future liquid robots. Mater. Horiz. 2021, 8, 3063–3071. [Google Scholar] [CrossRef]
- Fuchs, R.; Abdoli, S.; Kilani, M.; Nor-Azman, N.-A.; Yu, R.; Tang, S.-Y.; Dickey, M.D.; Mao, G.; Kalantar-Zadeh, K.; Tang, J. Stroking through Electrolyte: Liquid Metal Droplet Propulsion through Pulse Time Modulation. Adv. Funct. Mater. 2024, 34, 2314815. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Khoshmanesh, K.; Sivan, V.; Petersen, P.; O’Mullane, A.P.; Abbott, D.; Mitchell, A.; Kalantar-zadeh, K. Liquid metal enabled pump. Proc. Natl. Acad. Sci. USA 2014, 111, 3304–3309. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Qian, Y.; Zhou, P.; Lin, J.; Luo, Z.; Zhang, W.; Chen, L. Electricity-Driven Strategies for Bioinspired Multifunctional Swimming Marangoni Robots Based on Super-Aligned Carbon Nanotube Composites. Small 2024, 20, 2400906. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, S.-Y.; Li, S.; Ge, D.a.; Yang, J.; Zhou, J.; Yang, H.; Zhang, S.; Li, W.; Sun, L. A Robot Boat Powered by Liquid Metal Engines. Adv. Mater. Technol. 2021, 6, 2000840. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, T.; Wang, Y.; Zeng, J.; Wang, T.; Wang, Q.; Zhang, S.; Zeng, M.; Wang, F.; Dai, P.; et al. Quasi-waffle solar distiller for durable desalination of seawater. Sci. Adv. 2024, 10, eadk1113. [Google Scholar] [CrossRef]
- Ortega-Mendoza, J.G.; Sarabia-Alonso, J.A.; Zaca-Morán, P.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Rivas-Cambero, I.; Ramirez-Ramirez, J.; Torres-Hurtado, S.A.; Ramos-García, R. Marangoni force-driven manipulation of photothermally-induced microbubbles. Opt. Express 2018, 26, 6653–6662. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Chen, L.; Wu, W.; Huo, P.; Gu, X.; Wang, F.; Deng, D. A hovering bubble with a spontaneous horizontal oscillation. Proc. Natl. Acad. Sci. USA 2024, 121, e2413880121. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, D.; Zhu, G.; Li, Z.; Zhang, X.; Tian, P.; Wang, D.; Wang, E.; Ouyang, H.; Xiao, M.; et al. A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Appl. Mater. Interfaces 2022, 14, 22206–22215. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, D.; Xiao, Y.; Pan, T.; Lu, D.; Zhu, G.; Xiong, J.; Li, B.; Xin, H. Light-Induced Cold Marangoni Flow for Microswarm Actuation: From Intelligent Behaviors to Collective Drug Delivery. Laser Photonics Rev. 2022, 16, 2200533. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, G.; Li, L.; Zhang, S.; Zhang, D.; Kuehne, A.J.C.; Shi, F. Parallel and Precise Macroscopic Supramolecular Assembly through Prolonged Marangoni Motion. Angew. Chem. Int. Ed. 2018, 57, 14106–14110. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhu, Y.; Sun, H.; Chen, F.; Sun, H.; Dai, W.; Wei, Q.; Fu, L.; Yu, A.; Du, S.; et al. Layer-by-layer stacked graphene nanocoatings by Marangoni self-assembly for corrosion protection of stainless steel. Chin. Chem. Lett. 2021, 32, 501–505. [Google Scholar] [CrossRef]
- Xiao, M.; Xian, Y.; Shi, F. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition. Angew. Chem. Int. Ed. 2015, 54, 8952–8956. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Zhu, G.; Zhang, Q.; Tian, P.; Cheng, M.; Shi, F. A Hydrolyzable Supra-amphiphile as a Marangoni Self-Propulsion Fuel for Efficient Macroscopic Supramolecular Self-Assembly. Angew. Chem. Int. Ed. 2023, 62, e202300448. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, B.; Li, B.; Bao, L.; Sheng, W.; Ma, Y.; Ma, S.; Yu, B.; Zhou, F. Toward a Multifunctional Light-Driven Biomimetic Mudskipper-Like Robot for Various Application Scenarios. ACS Appl. Mater. Interfaces 2022, 14, 20291–20302. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Du, Y.; Ma, H.; Ma, X.; Ji, J.; Wang, X.; Xue, M. Photothermal Conversion of the Oleophilic PVDF/Ti3C2Tx Porous Foam Enables Non-Aqueous Liquid System Applicable Actuator. Small 2024, 20, 2309130. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Jian, W.; Chen, Y.; Feng, X. Photothermal-Responsive Lightweight Hydrogel Actuator Loaded with Polydopamine-Modified Hollow Glass Microspheres. ACS Appl. Mater. Interfaces 2024, 16, 23914–23923. [Google Scholar] [CrossRef]
- Zhan, Z.; Chen, L.; Duan, H.; Chen, Y.; He, M.; Wang, Z. 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. Int. J. Extrem. Manuf. 2022, 4, 015302. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, H.; Sun, M.; Liu, Z.; Liu, Q.; Li, K.; Guo, W. Unraveling programmable motion of MXene/polyurethane motor driven by the near-infrared light. Chem. Eng. J. 2024, 499, 155881. [Google Scholar] [CrossRef]
- Jing, L.; Song, Y.; He, S.; Fu, X.; Du, Z.; Yin, X. Dual-mode driven Marangoni actuator with spontaneity and controllability as a soft robot. Sens. Actuators B Chem. 2025, 436, 137697. [Google Scholar] [CrossRef]
- Song, S.W.; Lee, S.; Choe, J.K.; Lee, A.C.; Shin, K.; Kang, J.; Kim, G.; Yeom, H.; Choi, Y.; Kwon, S.; et al. Pen-drawn Marangoni swimmer. Nat. Commun. 2023, 14, 3597. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, L.; Li, S.; Xiong, M.; Cao, Y.; Chen, Y.; Lu, W.; Liu, C.; Luo, S. A water strider-inspired intestinal stent actuator for controllable adhesion and unidirectional biofluid picking. Mater. Today Bio 2024, 28, 101216. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Xu, W.; Xin, C.; Wu, T.; Feng, W.; Yu, H.; Chen, C.; Jiang, S.; Zhang, Y.; et al. High-performance Marangoni hydrogel rotors with asymmetric porosity and drag reduction profile. Nat. Commun. 2023, 14, 20. [Google Scholar] [CrossRef]
- Yin, X.; He, S.; Fu, X.; Xiong, X.; Song, Y.; Zhao, Q. Shape-Regulated Motion and Energy Conversion of Polyelectrolyte Membrane Actuators. Adv. Mater. 2024, 36, 2407560. [Google Scholar] [CrossRef]
- Wang, X.; Dai, L.; Jiao, N.; Tung, S.; Liu, L. Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interface. Chem. Eng. J. 2021, 422, 129394. [Google Scholar] [CrossRef]
Representative Marangoni Actuators | Material Composition | Trigger Mechanism | Key Performance Metrics | Reference |
---|---|---|---|---|
PDMS/Fe3O4@SA bilayer photothermal actuator | PDMS/Fe3O4 composite (PIC layer) + sodium alginate (SA) film | Photothermal effect (Fe3O4-mediated light-to-heat conversion) → temperature gradient | Efficient photothermal conversion; enables directional motion via surface tension gradients | [49] |
BP-enhanced PVDF microfiber membrane actuator | PVDF microfiber membranes (MFF) + black phosphorus (BP) + copper–nickel conductive fabrics | Photothermal effect (BP-mediated light-to-heat conversion) → temperature gradient | Enhanced photothermal conversion efficiency; controllable motion on water surface | [12] |
Candle soot (CS)/PDMS composite actuator | Candle soot (CS) + PDMS | Photothermal effect (CS-mediated light-to-heat conversion) → temperature gradient | Efficient light absorption and heat generation; stable surface tension gradient formation | [50] |
CuS-doped PNIPAM hydrogel actuator | PNIPAM hydrogel doped with CuS nanoparticles | Photothermal effect (CuS-mediated light-to-heat conversion) → temperature gradient | Near-infrared responsiveness; programmable motion trajectories | [52] |
HFIP/SRT protein matrix actuator | Hexafluoroisopropanol (HFIP) + SRT protein matrix | SRT protein’s dynamic nanostructural changes → controllable HFIP release → concentration gradient | Self-regulated solute release; stable surface tension gradient maintenance | [54,56] |
PVA fuel-mediated actuator | Polyvinyl alcohol (PVA) loaded in PEGDA hydrogel + hydrophobic polyurethane acrylate | Controlled release of PVA → concentration gradient | Biodegradable fuel; adjustable surface tension gradient | [55] |
Gel Type | Speed (mm/s) | Endurance | Payload Capacity | Path Accuracy | Reference |
---|---|---|---|---|---|
Oxazine Hydrogel | Up to 14.53 | Hours | Not specified | High (programmable) | [65] |
MXene-Chitosan Hydrogel | Initial: 18.3 | 50 min | Cargo transport (rubber) | High (maze navigation) | [19] |
Fe3+/Catechol Gel | 5.0 (3.5 cm/7 s) | >20 min | 2× body weight | High (obstacle avoidance) | [66] |
PNIPAM-CuS Hydrogel | Up to 43 | >50 cycles | Plastic ball transport | High (3D trajectory) | [52] |
Au-PNIPAM Hybrid Gel | 2.5 | >10 cycles | Not specified | Moderate (linear/rotational) | [67] |
Actuator System | Max Velocity (mm/s) | Response Time (s) | Minimum Laser Power/Irradiance | Fuel Consumption Rate | Motion Lifetime | Turning Radius (mm) | Controllability |
---|---|---|---|---|---|---|---|
PDMS/Fe3O4@SA bilayer photothermal actuator (Figure 3A) | 8.2 | 1.2 | 1.5 W/cm2 (808 nm) | N/A (photothermal) | >2 h (continuous irradiation) | 15 ± 2 | On/off (laser toggle); programmable via irradiation position |
BP-enhanced PVDF microfiber membrane actuator (Figure 3B) | 12.5 | 0.8 | 0.8 W/cm2 (980 nm) | N/A (photothermal) | >1.5 h (continuous irradiation) | 10 ± 3 | On/off (laser toggle); directional control via edge irradiation |
CS/PDMS composite actuator (Figure 3C) | 6.7 | 1.5 | 2.0 W/cm2 (808 nm) | N/A (photothermal) | >3 h (continuous irradiation) | 20 ± 4 | On/off (laser toggle); limited programmability |
CuS-doped PNIPAM hydrogel actuator (Figure 3E and Figure 5B) | 43.0 | 0.5 | 0.45 W/cm2 (808 nm) | N/A (photothermal) | >50 cycles (heating–cooling) | 8 ± 2 | On/off (laser toggle); 3D trajectory programmability (ascend/descend/translate) |
SDS-driven multi-engine rotor (Figure 6E) | 9.3 | 5.0 | N/A (chemical) | 0.02 mg/s (SDS) | 2400 s (β-CD regulated) | 12 ± 3 | On/off (fuel depletion/supplementation); rotational speed tunable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Gao, Z.; Yang, W.; Zhu, S. Gel-Based Marangoni Actuators: Mechanisms, Material Designs, Driving Modes, and Cross-Scale Applications. Gels 2025, 11, 730. https://doi.org/10.3390/gels11090730
Feng X, Gao Z, Yang W, Zhu S. Gel-Based Marangoni Actuators: Mechanisms, Material Designs, Driving Modes, and Cross-Scale Applications. Gels. 2025; 11(9):730. https://doi.org/10.3390/gels11090730
Chicago/Turabian StyleFeng, Xuehao, Zhizheng Gao, Wenguang Yang, and Shuliang Zhu. 2025. "Gel-Based Marangoni Actuators: Mechanisms, Material Designs, Driving Modes, and Cross-Scale Applications" Gels 11, no. 9: 730. https://doi.org/10.3390/gels11090730
APA StyleFeng, X., Gao, Z., Yang, W., & Zhu, S. (2025). Gel-Based Marangoni Actuators: Mechanisms, Material Designs, Driving Modes, and Cross-Scale Applications. Gels, 11(9), 730. https://doi.org/10.3390/gels11090730