A Thermo-Photo-Ionic Crosslinked Gellan Gum Hydrogel with Gradient Biomechanic Modulation as a Neuromaterial for Peripheral Nerve Injury
Abstract
1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. Confirmation of Chemical Transitions Using Fourier Transform Infrared Spectroscopy (FTIR)
2.1.2. Swelling and Erosion Analysis
2.1.3. Mechanical Performance Metrics
Matrix Resilience (MR)
Deformability Modulus (DM)
Fracture Energy (FE)
Tensile Strength (TS)
Young’s Modulus
2.1.4. In Vitro PC12 Proliferation
2.2. Discussion
2.2.1. Triple Crosslinking Approach and Relevance to Native Nerve Tissue
2.2.2. Effect of Plasticizer Selection and Concentration on Swelling, Erosion, and Mechanical Properties
2.2.3. Influence of Crosslinking Time on Swelling, Erosion, and Mechanical Properties
2.2.4. The Contributing Effects of Each Crosslinking Approach
2.2.5. The Impact of Plasticizer Selection on Cell Viability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Hydrogel Conduits
4.3. Determination of Fluid-Uptake and Swelling Ratio
4.4. Erosion Studies
4.5. Determination of Compressive Textural Profiling
4.6. Tensile Strength and Young’s Modulus Determination
4.7. FTIR Analysis
4.8. In Vitro Cell Proliferation Assessment
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GG | Gellan Gum |
MAA | Methacrylic acid |
PNI | Peripheral nerve injury |
NGC | Nerve guidance conduit |
FTIR | Fourier transform infrared spectroscopy |
PBS | Phosphate-buffered saline |
MR | Matrix Resilience |
DM | Deformability Modulus |
FE | Fracture Energy |
TS | Tensile Strength |
AUC | Area under the curve |
References
- Bhandari, P.S. Management of Peripheral Nerve Injury. J. Clin. Orthop. Trauma 2019, 10, 862–866. [Google Scholar] [CrossRef]
- Mankavi, F.; Ibrahim, R.; Wang, H. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration. Nanomaterials 2023, 13, 2528. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Chen, X.; Wu, J.; Huang, Z.; Wang, J.; Chen, F.; Liu, C. Biomimetic Multi-Channel Nerve Conduits with Micro/Nanostructures for Rapid Nerve Repair. Bioact. Mater. 2024, 41, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, R.; Knipfer, C.; Henningsen, A.; Smeets, R.; Heiland, M.; Hadlock, T. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BioMed Res. Int. 2016, 2016, 3856262. [Google Scholar] [CrossRef]
- Stocco, E.; Barbon, S.; Emmi, A.; Tiengo, C.; Macchi, V.; de Caro, R.; Porzionato, A. Bridging Gaps in Peripheral Nerves: From Current Strategies to Future Perspectives in Conduit Design. Int. J. Mol. Sci. 2023, 24, 9170. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.; Zhang, Z.; Luo, J.; Cai, Z.; Wang, Y.; Li, Y. Repairing Transected Peripheral Nerve Using a Biomimetic Nerve Guidance Conduit Containing Intraluminal Sponge Fillers. Adv. Healthc. Mater. 2019, 8, 1900913. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, L.; Du, J.; Xu, B.; Li, A.; Wang, W.; Zhao, S.; Li, X. Fluffy Sponge-Reinforced Electrospun Conduits with Biomimetic Structures for Peripheral Nerve Repair. Compos. Part B Eng. 2021, 230, 109482. [Google Scholar] [CrossRef]
- Lee, D.J.; Fontaine, A.; Meng, X.; Park, D. Biomimetic Nerve Guidance Conduit Containing Intraluminal Microchannels with Aligned Nanofibers Markedly Facilitates in Nerve Regeneration. ACS Biomater. Sci. Eng. 2016, 2, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Jane Bennett, C.; Lin, C.-H.; Yan, S.; Yang, J. Scaffold Design Considerations for Peripheral Nerve Regeneration. J. Neural Eng. 2024, 21, 041001. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Yang, Y.; Yang, Y.; Liu, W. Material Advancement in Tissue-Engineered Nerve Conduit. Nanotechnol. Rev. 2021, 10, 488–503. [Google Scholar] [CrossRef]
- Rodriguez-Fontan, F.; Reeves, B.; Tuaño, K.; Colakoglu, S.; D’ Agostino, L.; Banegas, R. Tobacco Use and Neurogenesis: A Theoretical Review of Pathophysiological Mechanism Affecting the Outcome of Peripheral Nerve Regeneration. J. Orthop. 2020, 22, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.; Batista-Silva, J.; Alves, N.; Passarinha, L.A. Progress and Opportunities in Gellan Gum-Based Materials: A Review of Preparation, Characterization and Emerging Applications. Carbohydr. Polym. 2023, 311, 120782. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-U.; Lee, S.-J.; Gwak, S.-J. Fabrication Techniques of Nerve Guidance Conduits for Nerve Regeneration. Yonsei Med. J. 2022, 63, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Zennifer, A.; Thangadurai, M.; Sundaramurthi, D.; Sethuraman, S. Additive Manufacturing of Peripheral Nerve Conduits—Fabrication Methods, Design Considerations and Clinical Challenges. SLAS Technol. 2023, 28, 102–126. [Google Scholar] [CrossRef]
- Yuan, T.; Li, W.; Zhou, M.; Wang, X.; Wang, B.; Zhao, Y. Biomimetic Multichannel Silk Nerve Conduits with Multicellular Spatiotemporal Distributions for Spinal Cord Injury Repair. Adv. Mater. 2024, 36, 2411628. [Google Scholar] [CrossRef]
- Li, W.; Jian, X.; Zou, Y.; Wu, L.; Huang, H.; Li, H.; Hu, D.; Yu, B. The Fabrication of a Gellan Gum-Based Hydrogel Loaded with Magnesium Ions for the Synergistic Promotion of Skin Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 709679. [Google Scholar] [CrossRef]
- Coutinho, D.F.; Sant, S.V.; Shin, H.; Oliveira, J.T.; Gomes, M.E.; Neves, N.M.; Khademhosseini, A.; Reis, R.L. Modified Gellan Gum Hydrogels with Tunable Physical and Mechanical Properties. Biomaterials 2010, 31, 7494–7502. [Google Scholar] [CrossRef]
- Syahputra, A.R.; Yunus, A.L.; Nilatany, A.; Oktaviani, O.; Nuryanthi, N. Thermal Properties and FTIR Spectroscopy: Edible Film of Chitosan-Glycerol Utilizes Gamma Irradiation. IOP Conf. Ser. Earth Environ. Sci. 2024, 1388, 012020. [Google Scholar] [CrossRef]
- Rattan, S.; Li, L.; Lau, H.K.; Crosby, A.J.; Kiick, K.L. Micromechanical Characterization of Soft, Biopolymeric Hydrogels: Stiffness, Resilience, and Failure. Soft Matter 2018, 14, 3478–3489. [Google Scholar] [CrossRef]
- Topp, K.S.; Boyd, B.S. Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice. Phys. Ther. 2006, 86, 92–109. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, J.; Duan, Q.; Xie, H.; Dong, X.; Yu, L. Strategies and Methodologies for Improving Toughness of Starch Films. Foods 2024, 13, 4036. [Google Scholar] [CrossRef]
- Ben, Z.Y.; Samsudin, H.; Yhaya, M.F. Glycerol: Its Properties, Polymer Synthesis, and Applications in Starch Based Films. Eur. Polym. J. 2022, 175, 111377. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef]
- Côcco Teixeira, S.; Muniz, E.C.; Veloso, T.; César Stringheta, P. Glycerol and Triethyl Citrate Plasticizer Effects on Molecular, Thermal, Mechanical, and Barrier Properties of Cellulose Acetate Films. Food Biosci. 2021, 42, 101202. [Google Scholar] [CrossRef]
- Maiza, M.; Tahar Benaniba, M.; Massardier-Nageotte, V. Plasticizing Effects of Citrate Esters on Properties of Poly(Lactic Acid). J. Polym. Eng. 2015, 36, 371–380. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Feng, T.; Wang, X.; Xia, S.; Zhang, X. Modulation Effect of Glycerol on Plasticization and Water Distribution of Vacuum-Dried Calcium Alginate Gel Beads Encapsulating Peppermint Oil/β-Cyclodextrin Complex. Food Biosci. 2021, 41, 100968. [Google Scholar] [CrossRef]
- Sergi, P.N. Deterministic and Explicit: A Quantitative Characterization of the Matrix and Collagen Influence on the Stiffening of Peripheral Nerves under Stretch. Appl. Sci. 2020, 10, 6372. [Google Scholar] [CrossRef]
- Koppaka, S.; Hess-Dunning, A.; Tyler, D.J. Biomechanical Characterization of Isolated Epineurial and Perineurial Membranes of Rabbit Sciatic Nerve. J. Biomech. 2022, 136, 111058. [Google Scholar] [CrossRef]
- Ugrinovic, V.; Markovic, M.; Bozic, B.; Panic, V.; Veljovic, D. Physically Crosslinked Poly(Methacrylic Acid)/Gelatin Hydrogels with Excellent Fatigue Resistance and Shape Memory Properties. Gels 2024, 10, 444. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Guo, X.; Tan, R.; Chen, J.; Huang, M.; Wang, L.; Zhang, Q. Enhanced Mechanical, Thermal, and Degradation Properties of Zein Composite Films by Citrate Ester Composite Elastomer Based on Hydrothermal Carbon Microspheres. Int. J. Biol. Macromol. 2025, 311, 143750. [Google Scholar] [CrossRef] [PubMed]
- Sartika, M.; Rambe, F.R.; Parinduri, S.Z.D.M.; Harahap, H.; Nasution, H.; Lubis, M.; Taslim; Manurung, R. Tensile Properties of Edible Films from Various Types of Starch with the Addition of Glycerol as Plasticizer: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1115, 012075. [Google Scholar] [CrossRef]
- Kanyuck, K.M.; Mills, T.B.; Norton, I.T.; Norton-Welch, A.B. Swelling of High Acyl Gellan Gum Hydrogel: Characterization of Network Strengthening and Slower Release. Carbohydr. Polym. 2021, 259, 117758. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Jiang, S.; Bratlie, K.M. Chemically Modified Gellan Gum Hydrogels with Tunable Properties for Use as Tissue Engineering Scaffolds. ACS Omega 2018, 3, 6998–7007. [Google Scholar] [CrossRef]
- Paolicelli, P.; Petralito, S.; Varani, G.; Nardoni, M.; Pacelli, S.; Di Muzio, L.; Tirillò, J.; Bartuli, C.; Cesa, S.; Casadei, M.A.; et al. Effect of Glycerol on the Physical and Mechanical Properties of Thin Gellan Gum Films for Oral Drug Delivery. Int. J. Pharm. 2018, 547, 226–234. [Google Scholar] [CrossRef]
- Rabek, C.L.; Van Stelle, R.; Dziubla, T.D.; Puleo, D.A. The Effect of Plasticizers on the Erosion and Mechanical Properties of Polymeric Films. J. Biomater. Appl. 2013, 28, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.; Barberio, C.G.; Chaudhry, T.; Power, D.M.; Tan, S.; Lawless, B.M.; Espino, D.M. The Effect of Injurious Compression on the Elastic, Hyper-Elastic and Visco-Elastic Properties of Porcine Peripheral Nerves. J. Mech. Behav. Biomed. Mater. 2021, 121, 104624. [Google Scholar] [CrossRef]
- Gadziński, P.; Froelich, A.; Jadach, B.; Wojtyłko, M.; Tatarek, A.; Białek, A.; Krysztofiak, J.; Gackowski, M.; Otto, F.; Osmałek, T. Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Ramburrun, P.; Kumar, P.; Ndobe, E.; Choonara, Y.E. Gellan-Xanthan Hydrogel Conduits with Intraluminal Electrospun Nanofibers as Physical, Chemical and Therapeutic Cues for Peripheral Nerve Repair. Int. J. Mol. Sci. 2021, 22, 11555. [Google Scholar] [CrossRef]
- Ramburrun, P.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Design and Characterization of Neurodurable Gellan-Xanthan PH-Responsive Hydrogels for Controlled Drug Delivery. Expert. Opin. Drug Deliv. 2016, 14, 291–306. [Google Scholar] [CrossRef] [PubMed]
Sample Description | Curing Time (Minutes) | Triethyl Citrate Concentration (v/v) | Glycerol Concentration (v/v) |
---|---|---|---|
A1 | 10 | 1.0 | 0 |
A2 | 10 | 1.5 | 0 |
A3 | 10 | 2.0 | 0 |
AA1 | 10 | 0 | 1.0 |
AA2 | 10 | 0 | 1.5 |
AA3 | 10 | 0 | 2.0 |
B1 | 20 | 1.0 | 0 |
B2 | 20 | 1.5 | 0 |
B3 | 20 | 2.0 | 0 |
BB1 | 20 | 0 | 1.0 |
BB2 | 20 | 0 | 1.5 |
BB3 | 20 | 0 | 2.0 |
C1 | 30 | 1.0 | 0 |
C2 | 30 | 1.5 | 0 |
C3 | 30 | 2.0 | 0 |
CC1 | 30 | 0 | 1.0 |
CC2 | 30 | 0 | 1.5 |
CC3 | 30 | 0 | 2.0 |
D1 | 45 | 1.0 | 0 |
D2 | 45 | 1.5 | 0 |
D3 | 45 | 2.0 | 0 |
DD1 | 45 | 0 | 1.0 |
DD2 | 45 | 0 | 1.5 |
DD3 | 45 | 0 | 2.0 |
GELLAN GUM | 0 | 0 | 0 |
TRIETHYL CITRATE | 0 | 1.5 | 0 |
GLYCEROL | 0 | 0 | 1.5 |
METHACRYLATE | 20 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatib, S.; Ramburrun, P.; Choonara, Y.E. A Thermo-Photo-Ionic Crosslinked Gellan Gum Hydrogel with Gradient Biomechanic Modulation as a Neuromaterial for Peripheral Nerve Injury. Gels 2025, 11, 720. https://doi.org/10.3390/gels11090720
Khatib S, Ramburrun P, Choonara YE. A Thermo-Photo-Ionic Crosslinked Gellan Gum Hydrogel with Gradient Biomechanic Modulation as a Neuromaterial for Peripheral Nerve Injury. Gels. 2025; 11(9):720. https://doi.org/10.3390/gels11090720
Chicago/Turabian StyleKhatib, Sameera, Poornima Ramburrun, and Yahya E. Choonara. 2025. "A Thermo-Photo-Ionic Crosslinked Gellan Gum Hydrogel with Gradient Biomechanic Modulation as a Neuromaterial for Peripheral Nerve Injury" Gels 11, no. 9: 720. https://doi.org/10.3390/gels11090720
APA StyleKhatib, S., Ramburrun, P., & Choonara, Y. E. (2025). A Thermo-Photo-Ionic Crosslinked Gellan Gum Hydrogel with Gradient Biomechanic Modulation as a Neuromaterial for Peripheral Nerve Injury. Gels, 11(9), 720. https://doi.org/10.3390/gels11090720