Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Drug Particle Size in PG/PVA Hydrogel Incorporating IMC with or Without Bead Milling
2.2. Evaluation of Physical Properties of PG/PVA Hydrogel Incorporating IMC NPs
2.3. Skin Absorption of IMC in PG/PVA Hydrogel Incorporating IMC NPs
2.4. Comparison of Skin Absorption of PG/PVA Hydrogel and Previously Reported Carbopol Hydrogel Incorporating IMC NPs
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. PG/PVA Hydrogels Incorporating IMC MPs and IMC NPs
4.4. Measurement of IMC Levels Using HPLC
4.5. Characterization of IMC Particles in PG/PVA Hydrogels
4.6. Evaluation of IMC@PG/PVA Hydrogel Properties
4.7. In Vitro Drug Release and Transdermal Penetration Studies of IMC@PG/PVA Hydrogel
4.8. Percutaneous Absorption Studies of IMC@PG/PVA Hydrogel
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | one-way repeated-measures analysis of variance |
COX | cyclooxygenase |
DDS | drug delivery system |
DTA | differential thermal analysis |
HPβCD | 2-hydroxypropyl-β-cyclodextrin |
IMC | indomethacin |
MP | microparticle |
NP | nanoparticle |
NSAID | nonsteroidal anti-inflammatory drug |
PG | propylene glycol |
PVA | polyvinyl alcohol |
RSD | relative standard deviation |
SC | stratum corneum |
TG | thermogravimetry |
XRD | powder X-ray diffraction |
References
- Waterbury, L.D.; Silliman, D.; Jolas, T. Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium. Curr. Med. Res. Opin. 2006, 22, 1133–1140. [Google Scholar] [PubMed]
- Ziltener, J.-L.; Leal, S.; Fournier, P.-E. Non-steroidal anti-inflammatory drugs for athletes: An update. Ann. Phys. Rehabil. Med. 2010, 53, 278–288. [Google Scholar] [PubMed]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Transdermal drug delivery: The inherent challenges and technological advancements. Asian J. Pharm. Sci. 2010, 5, 276–288. [Google Scholar]
- Han, T.; Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [Google Scholar] [PubMed]
- Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. [Google Scholar]
- Brambilla, D.; Luciani, P.; Leroux, J.-C. Breakthrough discoveries in drug delivery technologies: The next 30 years. J. Control. Release 2014, 190, 9–14. [Google Scholar]
- Nagai, N.; Ogata, F.; Otake, H.; Nakazawa, Y.; Kawasaki, N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int. J. Nanomed. 2018, 13, 5215–5229. [Google Scholar]
- Soma, D.; Attari, Z.; Reddy, M.S.; Damodaram, A.; Koteshwara, K.B.G. Solid lipid nanoparticles of irbesartan: Preparation, characterization, optimization and pharmacokinetic studies. Braz. J. Pharm. Sci. 2017, 53, e15012. [Google Scholar]
- Montenegro, L.; Lai, F.; Offerta, A.; Sarpietro, M.G.; Micicchè, L.; Maccioni, A.M.; Valenti, D.; Fadda, A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 2016, 32, 100–112. [Google Scholar]
- Palmer, B.C.; DeLouise, L.A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef]
- Nagai, N.; Ogata, F.; Yamaguchi, M.; Fukuoka, Y.; Otake, H.; Nakazawa, Y.; Kawasaki, N. Combination with l-menthol enhances transdermal penetration of Indomethacin solid nanoparticles. Int. J. Mol. Sci. 2019, 20, 3644. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.-R.; Kim, J.O.; Lee, J.H.; Kim, Y.I.; Kim, J.H.; Chang, S.W.; Jin, S.G.; Kim, J.A.; Lyoo, W.S.; Han, S.S.; et al. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: Gel characterization and in vivo healing evaluation. AAPS PharmSciTech 2010, 11, 1092–1103. [Google Scholar] [PubMed]
- Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech 2018, 9, 3199–3209. [Google Scholar]
- Cho, Y.H.; Kim, B.C.; Dan, K.S. Effects of propylene glycol on the physical properties of poly(vinyl alcohol) solutions and films. Macromol. Res. 2009, 17, 591–596. [Google Scholar]
- Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S. Latest advances in cryogel technology for biomedical applications. Adv. Ther. 2019, 2, 1800114. [Google Scholar]
- Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers 2017, 9, 671. [Google Scholar] [CrossRef]
- Caló, E.; Barros, J.; Ballamy, L.; Khutoryanskiy, V.V. Poly(vinyl alcohol)-Gantrez® AN cryogels for wound care applications. RSC Adv. 2016, 6, 105487–105494. [Google Scholar]
- Chhatri, A.; Bajpai, J.; Bajpai, A.K. Designing polysaccharidebased antibacterial biomaterials for wound healing applications. Biomatter 2011, 1, 189–197. [Google Scholar]
- Abruzzo, A.; Nicoletta, F.P.; Dalena, F.; Cerchiara, T.; Luppi, B.; Bigucci, F. Bilayered buccal films as child-appropriate dosage form for systemic administration of propranolol. Int. J. Pharm. 2017, 531, 257–265. [Google Scholar] [PubMed]
- FDA. Substances Added to Food (Formerly EAFUS). Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances (accessed on 16 January 2025).
- Jang, J.; Lee, D.K. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer 2003, 44, 8139–8146. [Google Scholar]
- Nagai, N.; Ito, Y.; Okamoto, N.; Shimomura, Y. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology 2014, 319, 53–62. [Google Scholar] [PubMed]
- Ibrahima, Y.; Bazzil, J.D.; Otto, J.W.; Caruso, A.N.; Murowchick, J.B.; Youan, B.-B.C. Influence of surface chemistry on cytotoxicity and cellular uptake of nanocapsules in breast cancer and phagocytic cells. AAPS J. 2014, 16, 550–567. [Google Scholar]
- Proulx, S.T.; Luciani, P.; Dieterich, L.C.; Karaman, S.; Leroux, J.-C.; Detmar, M. Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. J. Control. Release 2013, 172, 550–557. [Google Scholar] [PubMed]
- Qin, L.; Zhang, F.; Lu, X.; Wei, X.; Wang, J.; Fang, X.; Si, D.; Wang, Y.; Zhang, C.; Yang, R.; et al. Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. J. Control. Release 2013, 171, 133–142. [Google Scholar]
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available online: https://olaw.nih.gov/policies-laws/avma-guidelines-2020.htm (accessed on 16 January 2025).
- Otake, H.; Masuda, S.; Kadowaki, R.; Ogata, F.; Nakazawa, Y.; Yamamoto, N.; Kawasaki, N.; Nagai, N. Therapeutic effects of rebamipide nanocrystals as carbopol gel formulation containing gum arabic in a hamster model of oral mucositis. J. Oleo Sci. 2024, 73, 1479–1491. [Google Scholar]
Formulation | Jc (µmol/cm2/h) | Kp (×10−3 cm/h) | Km (×10−1) | τ (h) | D (×10−3 cm2/h) |
---|---|---|---|---|---|
IMC-MP@PG/PVA | 0.38 ± 0.04 | 1.37 ± 0.02 | 1.86 ± 0.17 | 1.61 ± 0.13 | 0.52 ± 0.02 |
IMC-NP@PG/PVA | 0.91 ± 0.04 * | 3.30 ± 0.19 * | 4.54 ± 0.39 * | 1.64 ± 0.13 | 0.51 ± 0.04 |
Formulation | IMC-MP@PG/PVA | IMC-NP@PG/PVA |
---|---|---|
ka (h−1) | 0.31 ± 0.05 | 0.39 ± 0.05 |
Bioavailability F (×10−1) | 0.12 ± 0.01 | 0.26 ± 0.01 * |
Formulation | IMC | Methylcellulose | HPβCD | PG | PVA | l-Menthol | Purified Water ad. | Treatment |
---|---|---|---|---|---|---|---|---|
IMC-MP@PG/PVA | 1 g | 0.5 g | 5 g | 17.6 mL | 12 g | 2 g | 100 g | — |
IMC-NP@PG/PVA | 1 g | 0.5 g | 5 g | 17.6 mL | 12 g | 2 g | 100 g | Bead mill |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otake, H.; Ogata, F.; Nakazawa, Y.; Misra, M.; Tsubaki, M.; Kawasaki, N.; Nagai, N. Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin. Gels 2025, 11, 251. https://doi.org/10.3390/gels11040251
Otake H, Ogata F, Nakazawa Y, Misra M, Tsubaki M, Kawasaki N, Nagai N. Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin. Gels. 2025; 11(4):251. https://doi.org/10.3390/gels11040251
Chicago/Turabian StyleOtake, Hiroko, Fumihiko Ogata, Yosuke Nakazawa, Manju Misra, Masanobu Tsubaki, Naohito Kawasaki, and Noriaki Nagai. 2025. "Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin" Gels 11, no. 4: 251. https://doi.org/10.3390/gels11040251
APA StyleOtake, H., Ogata, F., Nakazawa, Y., Misra, M., Tsubaki, M., Kawasaki, N., & Nagai, N. (2025). Pharmacological Behavior of Propylene Glycol/Polyvinyl Alcohol Hydrogel Incorporating Indomethacin Nanocrystals in the Skin. Gels, 11(4), 251. https://doi.org/10.3390/gels11040251