Advancements in Tissue-Equivalent Gel Dosimeters
Abstract
1. Introduction
2. Gel Dosimeters
2.1. Fricke Gel Dosimeters and Hydrogels
2.2. Polymer Dosimeters
2.3. Solid Plastic Dosimeters
2.4. Radiofluoregenic or Radiophotoluminescence Dosimeters
3. Tissue Equivalence
Dosimeter Type | Samples | Approximate Chemical Formula * | ρ [g/cm3] | <Z/A> | Zeff |
---|---|---|---|---|---|
Polymer Gel Dosimeters | PAGAT, MAGAT, NIPAM | C15H16O116N3PS1Cl1K1 MgCl doped PAGAT2 [44] | 1.12 | 0.542 | 10.71 |
Radiochromic Polymer Gels | PRESAGE | C29H57O14N9S [47] | 1.05 | 0.540 | 7.3 |
Solid Plastic Dosimeters | PMMA | C5H8O2 | 1.190 | 0.539 | 6.47 |
Radiophotoluminescence | RPLDs | C596H741038O370212N156Na3P1 [48] | 2.20 | 0.500 | 12.00 |
Solid Phase Organic Dosimeters | TLDs | LiF | 2.635 | 0.463 | 3.92 |
4. Measurement Procedures
4.1. NMR and MRI Scanning Methods
4.2. X-Ray CT Scanning
4.3. Optical Scanning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Podgoršak, E.B. Radiation Physics for Medical Physicists, 3rd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-25380-0. [Google Scholar]
- Yadav, N. Tissue-Equivalent Materials Used to Develop Phantoms in Radiation Dosimetry: A Review. Mater. Today Proc. 2021, 47, 7170–7173. [Google Scholar] [CrossRef]
- Marques, T.; Schwarcke, M.; Garrido, C.; Zucolot, V.; Baffa, O.; Nicolucci, P. Gel Dosimetry Analysis of Gold Nanoparticle Application in Kilovoltage Radiation Therapy. J. Phys. Conf. Ser. 2010, 250, 012084. [Google Scholar] [CrossRef]
- Powers, M.; Baines, J.; Crane, R.; Fisher, C.; Gibson, S.; Marsh, L.; Oar, B.; Shoobridge, A.; Simpson-Page, E.; Van der Walt, M.; et al. Commissioning measurements on an Elekta Unity MR-Linac. Phys. Eng. Sci. Med. 2022, 45, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Magugliani, G.; Marranconi, M.; Liosi, G.; Locatelli, F.; Gambirasio, A.; Trombetta, L.; Hertsyk, V.; Torri, V.; Galluccio, F.; Macerata, E.; et al. Pilot Scale Validation Campaign of Gel Dosimetry for Pre-Treatment Quality Assurance in Stereotactic Radiotherapy. Phys. Med. 2023, 114, 103158. [Google Scholar] [CrossRef]
- Kudrevicius, L.; Jaselske, E.; Adliene, D.; Rudzianskas, V.; Radziunas, A.; Tamasauskas, A. Application of 3D Gel Dosimetry as a Quality Assurance Tool in Functional Leksell Gamma Knife Radiosurgery. Gels 2022, 8, 69. [Google Scholar] [CrossRef]
- Guadarrama-Huerta, P.J.; Arzaga-Barajas, E.; Rodríguez-Laguna, A.; Jiménez-Acosta, J.A.; Poitevin-Chacón, M.A.; Massillon-Jl, G. Patient-Specific Quality Assurance in SBRT Treatments Using 3D Polymer Gel Dosimetry. Radiat. Meas. 2024, 175, 107166. [Google Scholar] [CrossRef]
- Ermeneux, L.; Petitfils, A.; Marage, L.; Gschwind, R.; Huet, C. Dosimetry with the TruView Gel on a 0.35 T MR-Linac: A Feasibility Study. Radiat. Meas. 2024, 175, 107170. [Google Scholar] [CrossRef]
- Nierer, L.; Kamp, F.; Reiner, M.; Corradini, S.; Rabe, M.; Dietrich, O.; Parodi, K.; Belka, C.; Kurz, C.; Landry, G. Evaluation of an Anthropomorphic Ion Chamber and 3D Gel Dosimetry Head Phantom at a 0.35 T MR-Linac Using Separate 1.5 T MR-Scanners for Gel Readout. Z. Med. Phys. 2022, 32, 312–325. [Google Scholar] [CrossRef]
- Pappas, E.; Kalaitzakis, G.; Boursianis, T.; Zoros, E.; Zourari, K.; Pappas, E.P.; Makris, D.; Seimenis, I.; Efstathopoulos , E.; Maris, T.G.; et al. Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. Phys. Med. Biol. 2019, 64, 225009. [Google Scholar]
- Du, D.; Kim, J.; Glide-Hurst, C.; Doemer, A.; Wen, N.; Movsas, B.; Dragovic, J.; Chetty, I. Commissioning and Validation of Patient-Specific Quality Assurance on an MR-Linac. Med. Phys. 2018, 45, e143. [Google Scholar]
- Maras, P.; Kozicki, M. Fast Isocenter Determination Using 3D Polymer Gel Dosimetry with Kilovoltage Cone-Beam CT Reading and the PolyGeVero-CT Software Package for Linac Quality Assurance in Radiotherapy. Materials 2022, 15, 6807. [Google Scholar] [CrossRef] [PubMed]
- Sunbul, N.B.; Oraiqat, I.; Rosen, B.; Miller, C.; Meert, C.; Matuszak, M.M.; Clarke, S.; Pozzi, S.; Moran, J.M.; El Naqa, I. Application of Radiochromic Gel Dosimetry to Commissioning of a Megavoltage Research Linear Accelerator for Small-Field Animal Irradiation Studies. Med. Phys. 2021, 48, 1404–1416. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L.; Ruda, H.E. Impact of Scattering Foil Composition on Electron Energy Distribution in a Clinical Linear Accelerator Modified for FLASH Radiotherapy: A Monte Carlo Study. Materials 2024, 17, 3355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Almajidi, Y.Q.; Awad, S.A.; Alhachami, F.R.; Gatea, M.A.; Kadhum, W.R. Dosimetric Properties of PASSAG Polymer Gel Dosimeter in Electron Beam Radiotherapy Using Magnetic Resonance Imaging. J. X-Ray Sci. Technol. 2023, 31, 825–836. [Google Scholar] [CrossRef]
- De Deene, Y. Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels 2022, 8, 599. [Google Scholar] [CrossRef]
- Nezhad, Z.A.; Geraily, G. A Review Study on Application of Gel Dosimeters in Low Energy Radiation Dosimetry. Appl. Radiat. Isot. 2022, 179, 110015. [Google Scholar] [CrossRef]
- Romeo, M.; Cottone, G.; D’Oca, M.C.; Bartolotta, A.; Gallo, S.; Miraglia, R.; Gerasia, R.; Milluzzo, G.; Romano, F.; Gagliardo, C.; et al. Diffusion Correction in Fricke Hydrogel Dosimeters: A Deep Learning Approach with 2D and 3D Physics-Informed Neural Network Models. Gels 2024, 10, 565. [Google Scholar] [CrossRef]
- Penev, K.I.; Mequanint, K. New directions for tetrazolium—Gellan gum gel dosimeters. J. Phys. Conf. Ser. 2022, 2167, 012031. [Google Scholar] [CrossRef]
- Korkut, Ö.; Aktaş, S.; Sağsöz, M. Dosimetric Fricke Gel Systems Improved with CaCl2 and Gluconic Acid. Int. Adv. Res. Eng. J. 2018, 2, 143–146. [Google Scholar]
- Aktaş, S.; Korkut, Ö.; Sağsöz, M.E. Dose Response of Gluconic Acid-Doped Fricke Gels Irradiated with X-Rays. Int. Adv. Res. Eng. J. 2021, 5, 47–52. [Google Scholar] [CrossRef]
- Sağsöz, M.E.; Korkut, Ö.; Alemdar, N.; Aktaş, S.; Çalı, E.B.; Kantarcı, M. Comparison of Dosimetry Gels Prepared by Agar and Bovine Gelatine. J. Phys. Conf. Ser. 2016, 707, 012037. [Google Scholar] [CrossRef]
- Krauleidis, A.; Adliene, D.; Rutkuniene, Z. The Impact of Temporal Changes in Irradiated nMAG Polymer Gels on Their Applicability in Small Field Dosimetry in Radiotherapy. Gels 2022, 8, 629. [Google Scholar] [CrossRef] [PubMed]
- Cinq-Mars, M.; Jutras, J.-D.; Beaulieu, L. Evaluation of Novel Gel Dosimeters in Radiotherapy. J. Phys. Conf. Ser. 2023, 2630, 012032. [Google Scholar] [CrossRef]
- Farahani, S.; Mosleh-Shirazi, M.A.; Riyahi Alam, N.; Mahdavi, S.R.; Raeisi, F. Global and Spatial Dosimetric Characteristics of N-Vinylpyrrolidone-Based Polymer Gel Dosimeters as a Function of Medium-Term Post-Preparation and Post-Irradiation Time. Radiat. Phys. Chem. 2022, 198, 110280. [Google Scholar] [CrossRef]
- Farhood, B.; Abtahi, S.M.M.; Geraily, G.; Ghorbani, M.; Mahdavi, S.R.; Zahmatkesh, M.H. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat. Phys. Chem. 2018, 147, 91–100. [Google Scholar] [CrossRef]
- Penev, K.I.; Mulligan, M.; Mequanint, K. Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters. Gels 2023, 9, 334. [Google Scholar] [CrossRef]
- Jaszczak-Kuligowska, M.; Maras, P.; Kozicki, M. Preliminary study on a bifunctional, elastic NBT–PVA radiochromic gel acting as a bolus and dosimeter in radiotherapy. J. Phys. Conf. Ser. 2024, 2799, 012007. [Google Scholar] [CrossRef]
- Mohyedin, M.Z.; Zin, H.M.; Adenan, M.Z.; Abdul Rahman, A.T. A review of PRESAGE radiochromic polymer and the compositions for application in radiotherapy dosimetry. Polymers 2022, 14, 2887. [Google Scholar] [CrossRef]
- Mohyedin, M.Z.; Zin, H.M.; Abubakar, A.; Rahman, A.T.A. Study of PRESAGE® dosimeter for end-to-end 3D radiotherapy verification using an anthropomorphic phantom with bespoke dosimeter insert. Phys. Eng. Sci. Med. 2024, 47, 955–966. [Google Scholar] [CrossRef]
- Du, Y.; Wang, R.; Yue, H.; Zhang, Y.; Wu, H.; Wang, W. Dose response and stability of silicone-based deformable radiochromic dosimeters (FlexyDos3D) using spectrophotometer and flatbed scanner. Radiat. Phys. Chem. 2020, 168, 108574. [Google Scholar] [CrossRef]
- Wheatley, M.J.; De Deene, Y. Loss and reintroduction of the radical initiator into the FlexyDos3D silicone dosimeter for 3D printing. J. Phys. Conf. Ser. 2023, 2630, 012027. [Google Scholar] [CrossRef]
- Koshimizu, M. Tissue-Equivalent Radiophotoluminescence Dosimetry Materials Based on Production of Luminescent Molecules via Radiation Chemical Reactions. Radiat. Meas. 2024, 176, 107222. [Google Scholar] [CrossRef]
- Skowyra, M.M.; Ankjærgaard, C.; Yu, L.; Lindvold, L.R.; Skov, A.L.; Miller, A. Characterization of a Radiofluorogenic Polymer for Low-Energy Electron Beam Penetration Depth Visualization. Polymers 2022, 14, 1015. [Google Scholar] [CrossRef]
- Eyadeh, M.M.; Rabaeh, K.A.; Issa, A.S.B.; Diamond, K.R. Evaluation of a Novel N-(Hydroxymethyl)Acrylamide Polymer Gel Dosimeter Formulation with Organic Glucose Additive for Radiotherapy. Radiat. Meas. 2023, 166, 106983. [Google Scholar] [CrossRef]
- Kozicki, M.; Maras, P. An Optical Reusable 2D Radiochromic Gel-Based System for Ionising Radiation Measurements in Radiotherapy. Molecules 2024, 29, 2558. [Google Scholar] [CrossRef]
- Rafiei, M.M.; Tavakoli-Anbaran, H.; Kurudirek, M. A detailed investigation of gamma-ray energy absorption and dose buildup factor for soft tissue and tissue equivalents using Monte Carlo simulation. Radiat. Phys. Chem. 2020, 177, 109118. [Google Scholar] [CrossRef]
- Kumahara, N.; Takemura, A.; Ishihara, S.; Noto, K.; Kojima, H.; Isomura, N.; Yokoyama, H.; Goto, I. Sensitivity of a Bone-Equivalent Polymer Gel Dosimeter for Measuring the Dose to Bone During Radiation Therapy. Radiol. Phys. Technol. 2023, 16, 227–234. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients; Version 1.03; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. Available online: http://physics.nist.gov/xaamdi (accessed on 21 December 2024).
- White, D.R.; Booz, J.; Griffith, R.V.; Spokas, J.J.; Wilson, I.J. Tissue Substitutes in Radiation Dosimetry and Measurement. J. Radiol. Prot. 1989, 23, 1. [Google Scholar]
- Sakar, E.; Ozpolat, O.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X/PSD: Development of a User-Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Çalı, E.B.; Korkut, O.; Gundes, A.; Gallo, S.; Sagsoz, M.E. Dosimetric and Physical Characteristics of a Bone-Equivalent Normoxic Polymer Gel. unpublished.
- Macchione, M.A.; Lechón Páez, S.; Strumia, M.C.; Valente, M.; Mattea, F. Chemical Overview of Gel Dosimetry Systems: A Comprehensive Review. Gels 2022, 8, 663. [Google Scholar] [CrossRef]
- Kunkyab, T.; Hilts, M.; Jirasek, A.; Hyde, D. Spatial and Dosimetric Accuracy of 3D Polymer Gel with CBCT Readout—Varian HyperArc® SRS Implementation. J. Phys. Conf. Ser. 2023, 2630, 012015. [Google Scholar] [CrossRef]
- Kozicki, M.; Jaszczak-Kuligowska, M.; Maras, P. Measurement of Ionising Radiation Dose Absorbed by Bones Using a Bone-Imitating Polymer Gel Dosimeter. Measurement 2025, 240, 115633. [Google Scholar] [CrossRef]
- Jaszczak-Kuligowska, M.; Kozicki, M.; Maras, P. Towards Optimization of the Chemical Composition of a Bone-Imitating Dosimeter as a Potential Component of Multiphase Dosimeters. J. Phys. Conf. Ser. 2024, 2799, 012006. [Google Scholar] [CrossRef]
- Farajzadeh, E.; Sina, S. Developing a radiochromic dosimeter for dosimetry in blood irradiation chambers. Radiat. Phys. Chem. 2021, 188, 109637. [Google Scholar] [CrossRef]
- Sandwall, P.A.; Bastow, B.P.; Spitz, H.B.; Elson, H.R.; Lamba, M.; Connick, W.B.; Fenichel, H. Radio-Fluorogenic Gel Dosimetry with Coumarin. Bioengineering 2018, 5, 53. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, L.; Chen, H.; Hu, L. Recent Advances in Hydrogel-Based Sensors Responding to Ionizing Radiation. Gels 2022, 8, 238. [Google Scholar] [CrossRef]
- Campbell, W.G.; Rudko, D.A.; Braam, N.A.; Wells, D.M.; Jirasek, A. Validation of Dosimetry Using Hydrogel Systems. Med. Phys. 2013, 40, 061712. [Google Scholar] [CrossRef]
- Doran, S.J. 3D Dosimetry Readout Techniques. J. Phys. Conf. Ser. 2019, 1305, 012029. [Google Scholar] [CrossRef]
- De Deene, Y.; Mason, D. Optimization of MRI Pulse Sequences and Gadobutrol-Doped Polymer Gel for Real-Time 4D Radiation Dosimetry on the MRI-Linac. J. Phys. Conf. Ser. 2023, 2630, 012014. [Google Scholar] [CrossRef]
- Keshtkar, M.; ATakavar Zahmatkesh, M.H.; Montazerabadi, A.R. Uncertainty Analysis in MRI-based Polymer Gel Dosimetry. J. Biomed. Phys. Eng. 2017, 7, 299–304. [Google Scholar]
- Khan, M.; Heilemann, G.; Lechner, W.; Georg, D.; Berg, A.G. Basic Properties of a New Polymer Gel for 3D-Dosimetry at High Dose-Rates Typical for FFF Irradiation Based on Dithiothreitol and Methacrylic Acid (MAGADIT): Sensitivity, Range, Reproducibility, Accuracy, Dose Rate Effect and Impact of Oxygen Scavenger. Polymers 2019, 11, 1717. [Google Scholar] [CrossRef] [PubMed]
- Fitilis, I.; Grigoriadis, A.; Tazes, I.; Petrakis, S.; Andrianaki, G.; Dimitriou, V.; Bakarezos, E.; Benis, E.P.; Tsiapa, I.; Boursianis, T.; et al. Polymer-Gel Radiation Dosimetry of Laser-Based Relativistic Electron Sources for Biomedical Applications: First Qualitative Results and Experimental Challenges. Front. Phys. 2022, 10, 727511. [Google Scholar] [CrossRef]
- Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.B.; Oldham, M.; Schreiner, L.J. Polymer gel dosimetry. Phys. Med. Biol. 2010, 55, R1–R63. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Warmington, L.; Gopishankar, N. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications. World J. Radiol. 2017, 9, 112–125. [Google Scholar] [CrossRef]
- Goosheha, A.; Abtahi, S.M.; Akhond, A.; Mahdavi, S.R. A review of clinical imaging techniques in polymer gel dosimeters. Radiat. Phys. Eng. 2024, 5, 15–23. [Google Scholar]
- Rabaeh, K.A.; Basfar, A.A.; Almousa, A.A.; Devic, S.; Moftah, B. New normoxic N-(Hydroxymethyl)acrylamide based polymer gel for 3D dosimetry in radiation therapy. Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. (AIFB) 2017, 33, 121–126. [Google Scholar] [CrossRef]
- Moftah, B.; Basfar, A.A.; Almousa, A.A.; Al Kafi, A.M.; Rabaeh, K.A. Novel 3D polymer gel dosimeters based on N-(3-Methoxypropyl)acrylamide (NMPAGAT) for quality assurance in radiation oncology. Radiat. Meas. 2020, 135, 106372. [Google Scholar] [CrossRef]
- Sagsoz, M.E.; Pirimoglu, R.B. Radiation Dose to Breasts from a Cardiac Computed Tomography Angiography Scanogram Can Be Reduced by Switching Tube Position. Turk. J. Med. Sci. 2016, 46, 5. [Google Scholar] [CrossRef]
- Sagsoz, M.E.; Bayraktutan, U.; Ogul, H.; Kantarci, M. Chest Circumference as a Predictive Parameter of Computed Tomography Coronary Angiography Radiation Doses from Dual-Source Computed Tomography. Eurasian J. Med. 2013, 45, 43–46. [Google Scholar] [CrossRef]
- Javaheri, N.; Yarahmadi, M.; Refaei, A.; Aghamohammadi, A. Investigating the Sensitivity of New Formulation MAGAT and NIPAM Polymer Gels in the Radiation Therapy Dosimetry. J. Biomed. Phys. Eng. 2022, 12, 489–496. [Google Scholar] [CrossRef]
- Özbay, T.; Yurt, A.; Özsoykal, İ. Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. J. Basic Clin. Health Sci. 2020, 1, 51–58. [Google Scholar] [CrossRef]
- Jirasek, A. Considerations for x-ray CT polymer gel dosimetry. J. Phys. Conf. Ser. 2013, 444, 012005. [Google Scholar] [CrossRef]
- Ceberg, S.; Olding, T.; Baldock, C. Gel dosimetry has a viable future for dosimetry in the radiation oncology clinic. Phys. Eng. Sci. Med. 2024, 47, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, H.; Oshika, R.; Tachibana, R.; Seki, K. Toward “on-line” X-ray computed tomography-based dosimetry using a new polymer gel with rapid response. Radiat. Phys. Chem. 2024, 218, 111570. [Google Scholar] [CrossRef]
- Rousseau, A.; Stien, C.; Gouriou, J.; Bordy, J.M.; Boissonnat, G.; Blideanu, V. End-to-End Quality Assurance for Stereotactic Radiotherapy with Fricke-Xylenol Orange-Gelatin Gel Dosimeter and Dual-Wavelength Cone-Beam Optical CT Readout. Phys. Med. Eur. J. Med. Phys. 2023, 113, 102656. [Google Scholar] [CrossRef]
- Abtahi, S.M.M.; Habibi, F. Investigation of the Beam Quality and Dose Rate Dependence of PAKAG Polymer Gel Dosimeter in Optical Readout Technique. J. Phys. Conf. Ser. 2023, 2630, 012032. [Google Scholar] [CrossRef]
- de Lera-Garrido, F.J.; Vázquez-Villar, V.; Fernández-Liencres, M.P.; Sánchez-Ruiz, A.; Navarro, A.; Tolosa, J.; García-Martínez, J.C. Design of Large Stokes Shift Fluorescent Ortho-Bis-Styrylbenzenes: Optical Characterization and Fluoride Sensing in Logical Gates. Dye. Pigment. 2024, 225, 112035. [Google Scholar] [CrossRef]
- Moluchi, O.; Mulligan, M.; Jordan, K. Bare Spherical Gel Dosimeter with Optical Computed Tomography Scanning. J. Phys. Conf. Ser. 2023, 2630, 012024. [Google Scholar] [CrossRef]
- Silveira, M.A.; Pavoni, J.F.; Bruno, A.C.; Arruda, G.V.; Baffa, O. Three-Dimensional Dosimetry by Optical-CT and Radiochromic Gel Dosimeter of a Multiple Isocenter Craniospinal Radiation Therapy Procedure. Gels 2022, 8, 582. [Google Scholar] [CrossRef]
- Chacón, D.; Vedelago, J.; Strumia, M.C.; Valente, M.; Mattea, F. Raman spectroscopy as a tool to evaluate oxygen effects on the response of polymer gel dosimetry. Appl. Radiat. Isot. 2019, 150, 43–52. [Google Scholar] [CrossRef]
- Kozicki, M.; Maras, P.; Jaszczak-Kuligowska, M. 3D Polymer Gel Dosimeters with iCBCT 3D Reading and polyGeVero-CT Software Package for Quality Assurance in Radiotherapy. Materials 2024, 17, 1283. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Vrielinck, H.; Jacobsohn, L.G.; Smet, P.F.; Poelman, D. Passive Dosimeters for Radiation Dosimetry: Materials, Mechanisms, and Applications. Adv. Funct. Mater. 2024, 34, 2406186. [Google Scholar] [CrossRef]
- Colnot, J.; Chiavassa, S.; Delpon, G.; Huet, C. Study of the use of gel dosimetry in combination with 3D printing phantom for personalized pretreatment QA in radiotherapy. J. Phys. Conf. Ser. 2021, 2167, 012017. [Google Scholar] [CrossRef]
- Locarno, S.; Gallo, S.; Arosio, P.; Biordi, C.; Dallasega, D.; Gargano, M.; Ludwig, N.; Orsini, F.; Pignoli, E.; Veronese, I.; et al. Dosimetric double network hydrogel based on Poly (vinyl-alcohol)/Phenylalanine-derivatives with enhanced mechanical properties. ACS Appl. Polym. Mater. 2023, 5, 1902–1914. [Google Scholar] [CrossRef]
- de Almeida, W.D.S.; Alves, A.V.S.; Oliveira, W.F.; da Silveira, M.A.L.; de Souza, S.O.; d’Errico, F.; Sussuchi, E.M. Radiochromic Fricke gels with eriochrome cyanine R for radiotherapy dosimetry. Radiat. Phys. Chem. 2022, 191, 109830. [Google Scholar] [CrossRef]
- Gallo, S.; Locarno, S.; Brambilla, E.; Lenardi, C.; Pignoli, E.; Veronese, I. Dosimetric characterization of double network Fricke hydrogel based on PVA-GTA and phenylalanine peptide derivative. J. Phys. D Appl. Phys. 2023, 57, 075303. [Google Scholar] [CrossRef]
- Alves, A.V.S.; de Almeida, W.S.; Sussuchi, E.M.; Lazzeri, L.; d’Errico, F.; de Souza, S.O. Investigation of chelating agents/ligands for Fricke gel dosimeters. Radiat. Phys. Chem. 2018, 150, 151–156. [Google Scholar] [CrossRef]
- Aboelezz, E.; Pogue, B.W. Review of nanomaterial advances for ionizing radiation dosimetry. Appl. Phys. Rev. 2023, 10, 021312. [Google Scholar] [CrossRef]
- Merkis, M.; Griskonis, E.; Laurikaitiene, J.; Puiso, J.; Pikas, I.; Palvanov, S.; Adliene, D. Investigation of dose sensitivity and dose enhancement effect in silver nanoparticle enriched dose gels. Radiat. Phys. Chem. 2023, 213, 111213. [Google Scholar] [CrossRef]
- Locarno, S.; Arosio, P.; Curtoni, F.; Piazzoni, M.; Pignoli, E.; Gallo, S. Microscopic and macroscopic characterization of hydrogels based on poly (vinyl-alcohol)–glutaraldehyde mixtures for Fricke gel dosimetry. Gels 2024, 10, 172. [Google Scholar] [CrossRef]
- De Deene, Y.; Jirasek, A. Gel dosimetry: An overview of dosimetry systems and read out methods. Radiat. Meas. 2024, 179, 107321. [Google Scholar] [CrossRef]
Material | Approximate Chemical Formula | ρ [g/cm3] | <Z/A> | Zeff |
---|---|---|---|---|
Adipose Tissue | C1143H2594N11O401Na1S1Cl1 | 0.555 | 0.554 | 3.27 |
Blood, Whole | C212H2322N54O1071Na1S1Cl1Fe1K1 | 1.060 | 0.550 | 3.66 |
Bone, Cortical | C297H959N169O624Na1Mg2S74Ca129 | 1.920 | 0.515 | 5.08 |
Brain | C195H1724N25O718Na1P2S1Cl1K1 | 1.040 | 0.552 | 3.62 |
Breast Tissue | C1111H4249N86O1322Na2Mg2S3Ca1 | 1.020 | 0.552 | 3.48 |
Eye Lens | C576H3375 N144O1433Na2P1S3Cl1 | 1.070 | 0.547 | 3.58 |
Ferrous Sulfate Standard Fricke | FeSO4·7H2O | 1.024 | 0.553 | 5.61 |
Gadolinium Oxysulfide | Gd2O2S10 | 7.440 | 0.423 | 11.92 |
Gafchromic Sensor | C7HNO2 | 1.300 | 0.544 | 3.47 |
Lithium Tetraborate | Li2B4O7 | 2.440 | 0.485 | 3.64 |
Lung Tissue | C171H1996N43O914Na2P1S2Cl2K1 | 1.050 | 0.550 | 3.66 |
Muscle, Skeletal | C425H3615N87O1585Na2P2S3Cl1K4 | 1.050 | 0.550 | 3.64 |
Ovary | C152H2043 N34O941Na2P1S1Cl1K1 | 1.050 | 0.551 | 3.65 |
Polystyrene | C8H8 | 1.060 | 0.538 | 5.7 |
Polytetrafluoroethylene (Teflon) | C2F4 | 2.250 | 0.480 | 8.43 |
Polyvinyl Chloride | C2H3Cl | 1.406 | 0.512 | 13.86 |
Radiochromic Dye Film | C9H16N1O2 | 1.080 | 0.550 | 6.2 |
Testis | C15H16O116N3P1S1Cl1K1 | 1.040 | 0.552 | 9.02 |
Tissue, Soft | C23H34O119N5P1S1Cl1K1 | 1.060 | 0.550 | 8.85 |
Tissue, Four-Component | C6H13NO7 | 1.000 | 0.550 | 7.02 |
Water, Liquid | H2O | 1.000 | 0.555 | 7.42 |
Fricke Gel Dosimeters | Polymer Dosimeters | Radiochromic Polymer Dosimeters | Solid Plastic Dosimeters | RPL Dosimeters | |
---|---|---|---|---|---|
Bases | Water, Gelatine, Fe2+ | Water, Gelatine, Monomer | Water, Gelatine, Surfactant/PVA | Plastic/Elastomer | Solutions ff Coumarin/Aqueous Benzoic Acid/Terephthalic Acid/Trimesic Acid |
Additives | Xo, Mtb, Pva, Nano Gels | Crosslinker Antioxidant | Hydrophobic Dye, Organic Halogen, Tetrazolium Salts/Iodine | Dye, Halogen | Gold Nanoparticles, Mpy, Tbua, Nanoclay, Rd 123, Dhr 123, Halogen, Fe3+ Pyridine, Nanoclay, Gelatine, Agarose |
Readout | OCT, MRI, UV-Vis | OCT, MRI, Raman | OCT, XCT, Raman | OCT, Raman | Optical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagsoz, M.E.; Korkut, O.; Gallo, S. Advancements in Tissue-Equivalent Gel Dosimeters. Gels 2025, 11, 81. https://doi.org/10.3390/gels11020081
Sagsoz ME, Korkut O, Gallo S. Advancements in Tissue-Equivalent Gel Dosimeters. Gels. 2025; 11(2):81. https://doi.org/10.3390/gels11020081
Chicago/Turabian StyleSagsoz, Mustafa Erdem, Ozlem Korkut, and Salvatore Gallo. 2025. "Advancements in Tissue-Equivalent Gel Dosimeters" Gels 11, no. 2: 81. https://doi.org/10.3390/gels11020081
APA StyleSagsoz, M. E., Korkut, O., & Gallo, S. (2025). Advancements in Tissue-Equivalent Gel Dosimeters. Gels, 11(2), 81. https://doi.org/10.3390/gels11020081