The Effects of Processing Conditions and Pressure on Composite Polymer Electrolyte Performance
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Film Preparation
4.2. GPE Physical Characterization
4.3. Electrochemical Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater. Today Sustain. 2023, 21, 100316. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Choi, D. Ambient-atmosphere processed flexible all-solid-state lithium-ion battery using flexible and robust hybrid solid electrolyte membrane. J. Alloys Compd. 2025, 1014, 178627. [Google Scholar] [CrossRef]
- Chen, F.; Jing, M.X.; Yang, H.; Yuan, W.Y.; Liu, M.Q.; Ji, Y.S.; Hussain, S.; Shen, X.Q. Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 2021, 27, 1101–1111. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Yang, S.; Zhu, J.; Hong, H.; Li, S.; Xiong, Q.; Huang, Z.; Wang, S.; Liu, J. Inhibiting Residual Solvent Induced Side Reactions in Vinylidene Fluoride-Based Polymer Electrolytes Enables Ultra-Stable Solid-State Lithium Metal Batteries. Adv. Mater. 2024, 36, 2401549. [Google Scholar] [CrossRef] [PubMed]
- Halder, B.; Mohamed, M.G.; Kuo, S.-W.; Elumalai, P. Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery. Mater. Today Chem. 2024, 36, 101926. [Google Scholar] [CrossRef]
- Hernández, G.; Lee, T.K.; Erdélyi, M.; Brandell, D.; Mindemark, J. Do non-coordinating polymers function as host materials for solid polymer electrolytes? The case of PVdF-HFP. J. Mater. Chem. A 2023, 11, 15329–15335. [Google Scholar] [CrossRef]
- Cao, S.; Chen, F.; Shen, Q.; Zhang, L. Dual-coordination-induced poly (vinylidene fluoride)/Li6.4Ga0.2La3Zr2O12/succinonitrile composite solid electrolytes toward enhanced rate performance in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2023, 15, 37422–37432. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zhang, Z.-H.; Wang, Z.-M.; Zhang, Q.; Ye, Y.-S.; Lu, J.-H.; Rahman, Z.U.; Zhang, Z.-W. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 9428–9435. [Google Scholar] [CrossRef]
- Qiu, G.; Shi, Y.; Huang, B. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 2022, 15, 5153–5160. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, G.; Li, X.; Zhang, S.; Chen, R.; Wang, X.; Gao, Y.; Wang, Z.; Chen, L. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C.-W.; Shen, Y. Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785. [Google Scholar] [CrossRef]
- Alam, T.; Mondal, A.; Das, A. Role of LLZO dispersion in ion migration property of a ceramic integrated polymer composite electrolyte. Ionics 2024, 30, 7953–7968. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, L.; Zhang, J.; Li, Q.; Sun, D.; Ren, Y.; Tang, Y.; Jin, G.; Wang, H. La2O3 Filler’s Stabilization of Residual Solvent in Polymer Electrolyte for Advanced Solid-State Lithium-Metal Batteries. Small Sci. 2023, 3, 2300017. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ding, H.; Chen, X.; Yang, W. Three-dimensional LLZO/PVDF-HFP fiber network-enhanced ultrathin composite solid electrolyte membrane for dendrite-free solid-state lithium metal batteries. J. Membr. Sci. 2023, 665, 121095. [Google Scholar] [CrossRef]
- Prabakaran, P.; Manimuthu, R.P.; Gurusamy, S.; Sebasthiyan, E. Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries. Chin. J. Polym. Sci. 2017, 35, 407–421. [Google Scholar] [CrossRef]
- Molla, S.; Khatun, F.; Rajak, U.; Bagchi, B.; Das, S.; Thakur, P. Electroactive CTAB/PVDF composite film based photo-rechargeable hybrid power cell for clean energy generation and storage. Sci. Rep. 2022, 12, 22350. [Google Scholar] [CrossRef]
- Tafur, J.P.; Santos, F.; Fernández Romero, A.J. Influence of the ionic liquid type on the gel polymer electrolytes properties. Membranes 2015, 5, 752–771. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.-A.; Chen, L.; Fan, B.; Shao, G.; Liu, R.; Wang, C.-A. Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries. ACS Appl. Energy Mater. 2021, 4, 11802–11812. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Arsyad, A.; Saaid, F.; Najihah, M.; Tan, W. FTIR studies on interactions among components in PVdF-HFP: PC: MPII electrolytes. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1151, p. 012060. [Google Scholar]
- Lu, J.; Liu, Y.; Yao, P.; Ding, Z.; Tang, Q.; Wu, J.; Ye, Z.; Huang, K.; Liu, X. Hybridizing poly (vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230–238. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, R.K. Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J. Mater. Chem. C 2015, 3, 7305–7318. [Google Scholar] [CrossRef]
- Han, B.; Jiang, P.; Li, S.; Lu, X. Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. Solid State Ion. 2021, 361, 115572. [Google Scholar] [CrossRef]
- Ruan, Z.; Du, Y.; Pan, H.; Zhang, R.; Zhang, F.; Tang, H.; Zhang, H. Incorporation of poly (ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries. Polymers 2022, 14, 1950. [Google Scholar] [CrossRef]
- Duan, T.; Cheng, H.; Liu, Y.; Sun, Q.; Nie, W.; Lu, X.; Dong, P.; Song, M.-K. A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater. 2024, 65, 103091. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Zhou, Q.; Zhang, Y.; Lv, D.; Shen, Y.; Fu, X.; Wang, X.; Luo, S.; Zheng, Y. Insights into quasi solid-state polymer electrolyte: The influence of succinonitrile on polyvinylene carbonate electrolyte in view of electrochemical applications. Battery Energy 2023, 2, 20220049. [Google Scholar] [CrossRef]
- Voigt, N.; van Wüllen, L. The effect of plastic-crystalline succinonitrile on the electrolyte system PEO: LiBF4: Insights from solid state NMR. Solid State Ion. 2014, 260, 65–75. [Google Scholar] [CrossRef]
- Yadav, P.; Hosen, M.S.; Dammala, P.K.; Ivanchenko, P.; Van Mierlo, J.; Berecibar, M. Development of composite solid polymer electrolyte for solid-state lithium battery: Incorporating LLZTO in PVDF-HFP/LiTFSI. Solid State Ion. 2023, 399, 116308. [Google Scholar] [CrossRef]
- Wu, X.; Jie, X.; Liang, X.; Zhang, L.; Wang, J.; Wu, S. Polymer/ceramic gel electrolyte with in-situ interface forming enhances the performance of lithium metal batteries. J. Energy Storage 2024, 78, 110107. [Google Scholar] [CrossRef]
- Cai, J.; Liu, T.; Liu, C.; Liu, G. PVDF-HFP/LiTFSI based composite solid state electrolyte with different micromorphology of Li6.25Ga0.25La3Zr2O12 doping. J. Alloys Compd. 2023, 968, 171872. [Google Scholar] [CrossRef]
- Zou, J.; Gao, X.; Zhou, X.; Yang, J.; Tang, J.; Kou, H.; Chang, R.; Zhang, Y. Al and Ta co-doped LLZO as active filler with enhanced Li+ conductivity for PVDF-HFP composite solid-state electrolyte. Nanotechnology 2023, 34, 155402. [Google Scholar] [CrossRef]
- Hu, J.; He, P.; Zhang, B.; Wang, B.; Fan, L.-Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289. [Google Scholar] [CrossRef]
- Zha, W.; Li, J.; Li, W.; Sun, C.; Wen, Z. Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chem. Eng. J. 2021, 406, 126754. [Google Scholar] [CrossRef]
- Noh, H.; Kim, D.; Lee, W.; Jang, B.; Ha, J.S.; Yu, J.H. Surface Modification of Ga-Doped-LLZO (Li7La3Zr2O12) by the Addition of Polyacrylonitrile for the Electrochemical Stability of Composite Solid Electrolytes. Energies 2023, 16, 7695. [Google Scholar] [CrossRef]
- Counihan, M.J.; Lee, J.; Mirmira, P.; Barai, P.; Burns, M.E.; Amanchukwu, C.V.; Srinivasan, V.; Zhang, Y.; Tepavcevic, S. Improved interfacial Li-ion transport in composite polymer electrolytes via surface modification of LLZO. Energy Mater. 2025, 5, 500032. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; McShane, E.J.; McCloskey, B.D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Liu, K.; Li, J.; Ma, C.; Zhou, L.; Du, Y. Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and LLZTO. J. Colloid Interface Sci. 2020, 580, 389–398. [Google Scholar] [CrossRef]
- Maeyoshi, Y.; Yoshii, K.; Sano, H.; Sakaebe, H.; Tamate, R.; Kaneko, T.; Sodeyama, K. Gel Polymer Electrolytes Based on Poly (vinylidene fluoride-co-hexafluoropropylene) and Salt-Concentrated Electrolytes for High-Voltage Lithium Metal Batteries. ACS Appl. Polym. Mater. 2025, 7, 1629–1638. [Google Scholar] [CrossRef]





| Sample | Thickness (µm) | Solvent Retention (%, Calculated) | Solvent Retention (%, TGA) | Enthalpy (J g−1) | Xc (%) | Tmelt,PVDF-HFP (°C) | Tmelt,SN (°C) |
|---|---|---|---|---|---|---|---|
| PVDF-HFP | 265 | 14.8 | 20.4 | 25.034 | 24.071 | 148.55 | --- |
| PVDF-HFP-SN | 357 | 26.4 | 28.1 | 13.302 | 12.790 | 139.32 | 53.59 |
| PVDF-HFP-SN-LLZTO | 275 | 25.9 | 27.4 | 18.445 | 17.736 | 141.16 | 53.04 |
| Wavenumber (cm−1) | Peak Designation |
|---|---|
| 709 | PVDF-HFP, γ-phase |
| 739 | LiTFSI |
| 812 | PVDF-HFP, γ-phase |
| 837 | PVDF-HFP, β-phase |
| 854 | PVDF-HFP, α-phase |
| 1056 | PVDF-HFP, C–C |
| 1173 | PVDF-HFP, –CF2– |
| 1353 | LiTFSI |
| 1407 | PVDF-HFP, –CH2– |
| Sample | Ionic Conductivity at 25 °C (S cm−1 × 10−5) | Maximum Conductivity with Corresponding Pressure at 90 °C (S cm−1 × 10−3, psi) | Ea (eV) | tLi+ |
|---|---|---|---|---|
| PVDF-HFP | 0.16 | 0.47, 16.3 | 0.66 | 0.18 |
| PVDF-HFP-SN | 2.96 | 1.09, 6.43 | 0.46 | 0.95 |
| PVDF-HFP-SN-LLZTO | 4.14 | 1.32, 16.3 | 0.45 | 0.28 |
| LLZO (wt.%) | Conductivity (S cm−1) | Temperature (°C) | Solvent, Retention (%) | Test Cell | Reference |
|---|---|---|---|---|---|
| LLZTO, 5 | 1.3 × 10−3 | 90 | NMP, 26 | Pressure Cell | This Work |
| LLZTO, 5 | 4.1 × 10−5 | Room Temperature | NMP, 26 | Pressure Cell | This Work |
| LLZTO, 20 | 8.2 × 10−4 4.9 × 10−5 | 60 20 | NMP, N/D | CR3032 Coin Cell | [29] |
| LLZTO, 30 | 3.6 × 10−4 | Room Temperature | NMP/Acetone, N/D | CR2032 Coin Cell | [24] |
| LLZTO, 30 | 7.9 × 10−4 | Room Temperature | DMF, N/D | CR2025 Coin Cell | [30] |
| Ga-LLZO, 10 | 9.8 × 10−5 | Room Temperature | DMF, N/D | “button cell” | [31] |
| Al-LLZTO, 20 | 5.4 × 10−4 | Room Temperature | NMP, N/D | CR2025 Coin Cell | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchi, S.P.; Elam, L.N.; McBrayer, J.D.; Schorr, N.B. The Effects of Processing Conditions and Pressure on Composite Polymer Electrolyte Performance. Gels 2025, 11, 890. https://doi.org/10.3390/gels11110890
Macchi SP, Elam LN, McBrayer JD, Schorr NB. The Effects of Processing Conditions and Pressure on Composite Polymer Electrolyte Performance. Gels. 2025; 11(11):890. https://doi.org/10.3390/gels11110890
Chicago/Turabian StyleMacchi, Samantha P., Lillian N. Elam, Josefine D. McBrayer, and Noah B. Schorr. 2025. "The Effects of Processing Conditions and Pressure on Composite Polymer Electrolyte Performance" Gels 11, no. 11: 890. https://doi.org/10.3390/gels11110890
APA StyleMacchi, S. P., Elam, L. N., McBrayer, J. D., & Schorr, N. B. (2025). The Effects of Processing Conditions and Pressure on Composite Polymer Electrolyte Performance. Gels, 11(11), 890. https://doi.org/10.3390/gels11110890

