Preparation and Characterization of Oleogels Based on Cellulose Modified by High-Pressure Microfluidization and Rubber Seed Oil Body
Abstract
1. Introduction
2. Results and Discussion
2.1. Cellulose Characterization
2.1.1. Physicochemical Properties of Cellulose
2.1.2. XRD Analysis of Cellulose
2.1.3. FTIR Analysis of Cellulose
2.1.4. Scanning Electron Microscopic of Cellulose
2.2. Characterization of OBs-Based Oleogels
2.2.1. Appearance of Freeze-Dried Products and OBs-Based Oleogels
2.2.2. Oil Binding Capacity
2.2.3. Rheological Properties of Oleogels
2.2.4. Texture Profile Analysis of Oleogels
2.2.5. FTIR Analysis of Oleogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Extraction and Modification of Cellulose from Rubber Seed Shells
4.3. Extraction of OBs
4.4. Preparation of OBs Emulsion and OBs-Based Oleogels
4.5. Characterization of Cellulose
4.5.1. Physicochemical Properties of Cellulose
4.5.2. FTIR Analysis of Cellulose
4.5.3. Scanning Electron Microscopic
4.5.4. X-Ray Diffraction
4.5.5. Brunauer–Emmett–Teller (BET) Analysis
4.6. Characterization of Different Oleogels
4.6.1. Oil Binding Capacity of Oleogels
4.6.2. FTIR Analysis of Oleogels
4.6.3. Rheological Properties of Oleogels
4.6.4. Texture Profile Analysis
4.6.5. CLSM Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimakopoulou-Papazoglou, D.; Zampouni, K.; Katsanidis, E. Natural Waxes as Gelators in Edible Structured Oil Systems: A Review. Gels 2025, 11, 656. [Google Scholar] [CrossRef]
- Abe, A.A.; Aiello, I.; Oliviero Rossi, C.; Caputo, P. Oleogels: Uses, Applications, and Potential in the Food Industry. Gels 2025, 11, 563. [Google Scholar] [CrossRef]
- Ferdaus, M.J.; Mahmud, N.; Talukder, S.; Silva, R.C.D. Characteristics and Functional Properties of Bioactive Oleogels: A Current Review. Gels 2025, 11, 69. [Google Scholar] [CrossRef]
- Silva, R.C.D.; Ferdaus, M.J.; Foguel, A.; Da Silva, T.L.T. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023, 9, 180. [Google Scholar] [CrossRef]
- Fu, M.; Tan, T.B.; Yusoff, M.M.; Adzahan, N.M.; Ismail-Fitry, M.R. Exploring the Efficacy of Oleogel as Fat Replacers in Meat Products: A Comparative Analysis of Various Oleogelators. Food Bioprocess Technol. 2025, 18, 5835–5866. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, L.; Li, X.; Zhang, Q.; Wang, Z.; Chen, N.; Wang, H.; Xie, F.; Qi, B.; Jiang, L. Construction of Soybean Oil Bodies–Xanthan Gum Composite Oleogels by Emulsion-Templated Method: Preparation, Characterization, and Stability Analysis. Food Hydrocoll. 2024, 149, 109526. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Ali, U.; Zhang, H. Fabrication of Curcumin-Loaded Oleogels Using Camellia Oil Bodies and Gum Arabic/Chitosan Coatings for Controlled Release Applications. Int. J. Biol. Macromol. 2024, 254, 127758. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Chen, Z.; Meng, Z. Study on Oil Body Emulsion Gels Stabilized by Composited Polysaccharides through Microgel Particles Compaction and Natural Gelation. Food Hydrocoll. 2023, 135, 108146. [Google Scholar] [CrossRef]
- Yang, N.; Feng, Y.; Su, C.; Wang, Q.; Zhang, Y.; Wei, Y.; Zhao, M.; Nishinari, K.; Fang, Y. Structure and Tribology of κ-Carrageenan Gels Filled with Natural Oil Bodies. Food Hydrocoll. 2020, 107, 105945. [Google Scholar] [CrossRef]
- Mert, B.; Vilgis, T.A. Hydrocolloid Coated Oleosomes for Development of Oleogels. Food Hydrocoll. 2021, 119, 106832. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Zhang, Y.; Chen, M.; Zhang, H. Preparation, Characterization and Digestive Mechanism of Plant-Derived Oil Bodies-Based Oleogels Structured by Chitosan and Vanillin. Food Hydrocoll. 2023, 136, 108247. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Wang, S.; Chen, W.; Li, X.; Hao, J.; Alouk, I.; Wang, Y.; Xu, D.; Sun, B. The Fabrication, Microstructure, Rheological Properties and Interactions of Soft Solid Oleogels of Hazelnut Oil Body. Food Hydrocoll. 2025, 159, 110711. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Zhang, Y.; Li, X.; Wang, S.; Li, D. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. Chem. Sus. Chem. 2023, 16, e202300518. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Tian, Y.; Zhao, B.; Li, J.; Luo, J.; Sheng, J.; Li, X. Effects of Cellulose Diameter on the Formation and Rheological Properties of Edible Walnut Oleogels Structured by Cellulose Nanofiber. Food Hydrocoll. 2024, 154, 110149. [Google Scholar] [CrossRef]
- Xie, F.; Zhao, T.; Wan, H.; Li, M.; Sun, L.; Wang, Z.; Zhang, S. Structural and Physicochemical Characteristics of Rice Bran Dietary Fiber by Cellulase and High-Pressure Homogenization. Appl. Sci. 2019, 9, 1270. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, W.; Cao, H. Biorefinery Methods for Extraction of Oil and Protein from Rubber Seed. Bioresour. Bioprocess. 2021, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Agbai, C.M.; Olawuni, I.A.; Ofoedu, C.E.; Ibeabuchi, C.J.; Okpala, C.O.R.; Shorstkii, I.; Korzeniowska, M. Changes in Anti-Nutrient, Phytochemical, and Micronutrient Contents of Different Processed Rubber (Hevea Brasiliensis) Seed Meals. Peer. J. 2021, 9, e11327. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Gendy, E.A.; Barasa, M.; Oyekunle, D.O.; Oni, B.; Tiong, S.K. Review on Utilization of Rubber Seed Oil for Biodiesel Production: Oil Extraction, Biodiesel Conversion, Merits, and Challenges. Clean. Eng. Technol. 2024, 21, 100773. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Cai, H.; Zhao, Z.; Wu, Y.; Wen, Z.; Yang, P. Antioxidant and Anti-Inflammatory Properties of Rubber Seed Oil in Lipopolysaccharide-Induced RAW 267.4 Macrophages. Nutrients 2022, 14, 1349. [Google Scholar] [CrossRef]
- Kushayadi, A.G.; Suprayudi, M.A.; Jusadi, D.; Fauzi, I.A. Evaluation of Rubber Seed Oil as Lipid Source in Red Tilapia (Oreochromis sp.) Diet. Aquac. Res. 2020, 51, 114–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, F.; Wu, Y.; Jiao, L.; Wang, Y.; Ding, T. Protective Effect of Rubber Seed Oil on Human Endothelial Cells. J. Mol. Histol. 2024, 55, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yang, F.; McClements, D.J.; Guo, Y.; Liu, R.; Chang, M.; Wei, W.; Jin, J.; Wang, X. Impact of Dietary n-6/n-3 Fatty Acid Ratio of Atherosclerosis Risk: A Review. Prog. Lipid Res. 2024, 95, 101289. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Gao, S.T.; Ma, L.; Zhu, Y.X.; Wang, J.Q.; Zhang, J.M.; Xu, J.C.; Bu, D.P. Effectiveness of Rubber Seed Oil and Flaxseed Oil to Enhance the α-Linolenic Acid Content in Milk from Dairy Cows. J. Dairy. Sci. 2016, 99, 5719–5730. [Google Scholar] [CrossRef]
- Srichai, K.; Tsupphayakornaek, P.; Suwan, A.; Chaisit, T.; Saetung, A.; Saetung, N. New Biofilm Composite Materials from Natural Rubber and Cellulose Nanocrystals from Rubber Seed Shell: Preliminary Study on Cytotoxicity Properties. Prog. Org. Coat. 2025, 204, 109250. [Google Scholar] [CrossRef]
- Kang, Z.; Meng, N.; Liu, M.; Liu, Y.; Jiang, P.; Zhai, X.; Fei, Y.; Wang, L.; Shen, J.; Tan, B. Dynamic High Pressure Microfluidization Modified Oat Dietary Fiber: Texture Modulation and Its Mechanistic in Whole Grain Oat Milk. Food Hydrocoll. 2024, 157, 110418. [Google Scholar] [CrossRef]
- Hua, X.; Xu, S.; Wang, M.; Chen, Y.; Yang, H.; Yang, R. Effects of High-Speed Homogenization and High-Pressure Homogenization on Structure of Tomato Residue Fibers. Food Chem. 2017, 232, 443–449. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Liu, Z.; Shao, X.; Lin, Y.; Song, W.; Xu, D.; Gao, Y.; Han, J. Modification Methods’ Effects on the Characteristics of Carboxylated Cellulose Fibers: Carboxyl Group Introduction Method versus Physical Properties. BioResources 2024, 19, 1590–1601. [Google Scholar] [CrossRef]
- Freixo, R.; Casanova, F.; Ribeiro, A.B.; Pereira, C.F.; Costa, E.M.; Pintado, M.E.; Ramos, Ó.L. Extraction Methods and Characterization of Cellulose Fractions from a Sugarcane By-Product for Potential Industry Applications. Ind. Crops. Prod. 2023, 197, 116615. [Google Scholar] [CrossRef]
- Amara, C.; Razzak, A.; Khiari, R.; Dufresne, A.; Khwaldia, K. Sustainable Production of Cellulose Nanofibers and Nanopaper Sheets from Olive Pomace Waste through Mechanical Defibrillation. Biomass. Conv. Bioref. 2024, 15, 16619–16631. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Mu, T.; Fauconnier, M.L.; Li, M. Preparation of Cellulose Nanofibers from Potato Residues by Ultrasonication Combined with High-Pressure Homogenization. Food Chem. 2023, 413, 135675. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, H. Preparation and Characterization of Cellulose Composite Hydrogels from Tea Residue and Carbohydrate Additives. Carbohydr. Polym. 2016, 147, 226–233. [Google Scholar] [CrossRef]
- Li, X.; Guo, G.; Zou, Y.; Luo, J.; Sheng, J.; Tian, Y.; Li, J. Development and Characterization of Walnut Oleogels Structured by Cellulose Nanofiber. Food Hydrocoll. 2023, 142, 108849. [Google Scholar] [CrossRef]
- Soleimanian, Y.; Ghazani, S.M.; Marangoni, A.G. Rheological Properties of Ethylcellulose Oleogels of Oil Glycerolysis Products as Functional Adipose Tissue Mimetics. Food Hydrocoll. 2024, 151, 109868. [Google Scholar] [CrossRef]
- Roman, C.; Delgado, M.A.; Fernández-Silva, S.D.; García-Morales, M. Exploring the Effect of the Pulp Bleaching on the Thermo-Rheological Behavior of Sustainable Cellulose Nanofiber-Based Oleogels. J. Environ. Chem. Eng. 2022, 10, 108617. [Google Scholar] [CrossRef]
- Abou-Elsoud, M.; Salama, M.; Ren, S.; Sun, H.; Huang, X.; Ahn, D.U.; Cai, Z. Impact of Ultrasonication and High-Pressure Homogenization on the Structure and Characteristics of Emulsion-Templated Oleogels Stabilized by Low-Density Lipoprotein/Pectin Complexes. Food Hydrocoll. 2025, 162, 110985. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Mubeen, H.M.; Zhang, T.; Lei, H.; Zhao, W.; Xu, H.; Li, M. Preparation, Structural Characterization and in Vitro Digestibility Mechanism of Walnut Oil Body Emulsion Gels Based on Crosslinking of Edible Polysaccharide and Vanillin. Food Hydrocoll. 2025, 164, 111167. [Google Scholar] [CrossRef]
- Wang, Y.; Yiu, C.C.-Y.; Kim, W.; Vongsvivut, J.; Zhou, W.; Selomulya, C. Emulsion Gels of Oil Encapsulated in Double Polysaccharide Networks as Animal Fat Analogues. Food Hydrocoll. 2026, 171, 111807. [Google Scholar] [CrossRef]
- Ma, Z.; Lin, X.; Liu, F.; Zheng, H.; Li, Y. Preparation, Characterization, and Application of a Novel Chestnut Starch-Based Bigel as a Fat Substitute in Bread. Int. J. Biol. Macromol. 2025, 328, 147516. [Google Scholar] [CrossRef]
- Liu, J.; Junejo, S.A.; Xiao, Y.; Jin, Y.; Shi, S.; Zhou, Y. Effect of Camellia Oil Body-Based Oleogels on the Film-Forming Properties of Soy Protein Isolate. Food Chem. 2024, 458, 140282. [Google Scholar] [CrossRef]
- Nikiforidis, C.V.; Kiosseoglou, V. Physicochemical Stability of Maize Germ Oil Body Emulsions as Influenced by Oil Body Surface−xanthan Gum Interactions. J. Agric. Food Chem. 2010, 58, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, Y.; Ouyang, J. Novel Bigel Based on Nanocellulose Hydrogel and Monoglyceride Oleogel: Preparation, Characteristics and Application as Fat Substitute. Food Res. Int. 2024, 198, 115397. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G. Investigating Viscoelastic Properties and Structural Stability Mechanisms of Oil Bodies Emulsion Gels: Role of Non-Intrinsic Protein. Food Chem. 2024, 460, 140575. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and Physicochemical Properties of Soluble Dietary Fiber from Orange Peel Assisted by Steam Explosion and Dilute Acid Soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef] [PubMed]
Sample | WHC (g/g) | OHC (g/g) | SC (mL/g) |
---|---|---|---|
CL | 4.92 ± 0.11 b | 7.41 ± 0.14 b | 0.65 ± 0.01 b |
MCL | 29.37 ± 0.93 a | 28.39 ± 1.01 a | 3.38 ± 0.80 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Wang, L.; Jiang, K.; Liu, G. Preparation and Characterization of Oleogels Based on Cellulose Modified by High-Pressure Microfluidization and Rubber Seed Oil Body. Gels 2025, 11, 819. https://doi.org/10.3390/gels11100819
Meng Z, Wang L, Jiang K, Liu G. Preparation and Characterization of Oleogels Based on Cellulose Modified by High-Pressure Microfluidization and Rubber Seed Oil Body. Gels. 2025; 11(10):819. https://doi.org/10.3390/gels11100819
Chicago/Turabian StyleMeng, Zhipeng, Lei Wang, Kai Jiang, and Guoqin Liu. 2025. "Preparation and Characterization of Oleogels Based on Cellulose Modified by High-Pressure Microfluidization and Rubber Seed Oil Body" Gels 11, no. 10: 819. https://doi.org/10.3390/gels11100819
APA StyleMeng, Z., Wang, L., Jiang, K., & Liu, G. (2025). Preparation and Characterization of Oleogels Based on Cellulose Modified by High-Pressure Microfluidization and Rubber Seed Oil Body. Gels, 11(10), 819. https://doi.org/10.3390/gels11100819